
Probabilistic Instruction Cache Analysis using
Bayesian Networks

Mark Bartlett, Iain Bate, James Cussens and Dimitar Kazakov
Department of Computer Science

University of York
York, UK

Email: firstname.lastname@cs.york.ac.uk

Abstract—Current approaches to instruction cache analysis
for determining worst-case execution time rely on building a
mathematical model of the cache that tracks its contents at all
points in the program. This requires perfect knowledge of the
functional behaviour of the cache and may result in extreme
complexity and pessimism if many alternative paths through
code sections are possible. To overcome these issues, this paper
proposes a new hybrid approach in which information obtained
from program traces is used to automate the construction of a
model of how the cache is used. The resulting model involves the
learning of a Bayesian network that predicts which instructions
result in cache misses as a function of previously taken paths. The
model can then be utilised to predict cache misses for previously
unseen inputs and paths. The accuracy of this learned model is
assessed against real benchmarks and an established statistical
approach to illustrate its benefits.

Index Terms—instruction cache; worst-case execution time
(WCET); Bayesian network

I. INTRODUCTION

Improvements in processors have led to a great increase in
the rate at which they can execute instructions. Unfortunately,
the rate at which they can be supplied with instructions from
main memory has not kept pace. For this reason, modern
systems (including embedded systems) commonly feature in-
struction caches between the processor and main memory from
which instructions can be more quickly retrieved for execution.
This reduces the average latency for retrieval of instructions,
but introduces variability that makes reasoning about the
temporal behaviour of the system much more difficult.

Knowledge of the worst-case execution time (WCET) of a
task is a crucial part of scheduling any real-time system. In the
general case, determining the exact WCET is impossible math-
ematically [1] and infeasible through exhaustive testing [2].
Therefore estimates of this quantity are needed instead.

Where failure to meet a deadline can result in catas-
trophic behaviour (hard real-time systems), estimates which
are guaranteed to be at least as large as the real WCET are
needed. Static analysis [2] is used to mathematically derive
these safe estimates. Such a process will however generally
introduce pessimism, as much as 33% according to a recent
case study [3]. For applications where occasional deadline
misses are not so critical (soft real-time systems), having to
provide so much additional unused processing power may
be unnecessarily expensive. Rather, testing may be used to

provide an estimate of the WCET. Any non-exhaustive testing
approach cannot be guaranteed to overestimate the real WCET
but is likely to be less pessimistic.

Estimating WCET using static analysis presents particular
problems in systems with instruction caches. Instructions
found to be in cache when required will be retrieved much
faster than those not in cache, perhaps by orders of magnitude.
Therefore any instruction that is pessimistically assumed to be
out of cache, when in fact it may not be, will result in a large
amount of pessimism being added to the estimate.

This paper therefore presents an alternative approach to
cache analysis based not on creating a cache model through
deduction from the specification of the hardware, but rather
from induction from observations of the behaviour of the
cache in use [4]. The core aspect of this approach is to derive
information on the behaviour of the cache through logging
execution traces and then to automatically generalise this to
a model which can be used to predict cache hits and misses
for any path. In doing so, we seek to avoid any problems
due to lack of knowledge of the hardware or incompleteness
in reasoning about the possible cache state. As with any
measurement based approach, however, the correctness and
safety of the model generated cannot be guaranteed. It is
therefore only suited to soft real-time system applications.

The model built by the approach is based on a Bayesian
network [5]. This records the conditional dependencies be-
tween the caching behaviour of each instruction of interest
and other instructions in the program. A process of learning is
used to automatically select the network which best explains
the behaviour of the cache seen in the program traces gathered.
This model differs in two main ways from a traditional cache
model. First, the model is probabilistic. Rather than just predict
either a cache hit or miss, it assigns a probability based
on the behaviour of other instructions in the program. Such
a method allows the use of all information available, even
when it is clear that insufficient information is known to
correctly classify the instruction with certainty, allows smooth
degradation of quality when not completely correct, and gives
a primitive measure of the confidence with which the label
is assigned. Second, the model is of the use of the cache by
a particular program, whereas a traditional cache model is of
just the cache itself.

The specific contributions of this paper are twofold. First, a

TABLE I
LABELS FOR CACHING BEHAVIOUR OF AN INSTRUCTION.

Label Meaning
Always Hit The instruction is always in the cache when

needed.
Always Miss The instruction is never in the cache when

needed.
First Hit The instruction is in the cache when first

needed, but never when needed after that.
First Miss The instruction is not in the cache when first

needed, but always when needed after that.
Conflict The instruction cannot be statically determined

to have any of the other labels.

previously published version of the technique [6] is modified to
allow it to be used in WCET analysis. The earlier model mixed
the prediction of control flow and cache analysis. We show
here how the learning and utilisation of the model must be
altered to allow control flow analysis to be performed external
to the model, with the model being used to predict cache
behaviour for a given program path. This allows standard static
control flow analysis to be performed and the cache model to
be incorporated as part of the WCET analysis in a similar way
to normal static cache analysis. Second, a thorough evaluation
of the technique is presented with regards to establishing its
accuracy. This examines in particular the size of dataset needed
to create a good model. A comparison is also performed
with another measurement-based approach to cache prediction
based on extreme value statistics, which is an adaption of a
previously published method [7].

The rest of this paper proceeds as follows. Section II
presents previous related work on cache analysis and Bayesian
networks. Section III presents details on the process of acquir-
ing data and learning the cache model from these, before Sec-
tion IV presents results from the application of this technique.
Finally, Section V concludes.

II. BACKGROUND AND RELATED WORK

A. Cache Analysis

Static cache analysis for real-time systems was first pro-
posed by Mueller [8] and much modern analysis has extended
this technique [9]. At the heart of this approach is the use
of data flow analysis to determine the state of the cache
before each execution. As influential as this technique, has
been the idea of labelling each instruction to summarise
its behaviour on repeated executions. Having determined the
cache state before each instruction, a label is then applied to
the instruction to categorise it. The classifications possible are
shown in Table I.

An alternative approach is to use abstract interpretation to
determine the cache contents [10]. This approach conducts
must analysis (to see what will always be in cache when
needed), may analysis (to find what could be in cache) and
persistence analysis (to see what will not be evicted once
loaded). Based on these analyses, a label from Mueller’s
classification is again assigned to each instruction.

The core idea in all of these previous approaches to cache
analysis is to construct a model of the way in which the

cache operates and then track, explicitly or implicitly, the
contents of the cache before and after each instruction. This
requires a full understanding of the operation of the cache
and sophisticated human intelligence to devise the techniques
used for analysis. As a result, good analysis of caches in more
complex systems (such as multicores, MPSoCs and cache
hierarchies) constantly lags behind the state-of-the-art systems.
Our aim is to devise a more automated approach to cache
analysis which functions through a pragmatic analysis of the
cache in operation. Hopefully such a technique would be more
robust to changes in the underlying hardware. An additional
perceived advantage of such a technique is less pessimistic
estimates of WCET for those domains where optimistic values
can be occasionally tolerated.

In addition to work on analysing caches for WCET, there
is a related body of work on making caches more temporally
predictable for simpler analysis, for example by locking their
contents [11]. The work presented in this paper relates to
analysing systems as they are, not modifying the hardware or
software. Such ideas are therefore not pursued or commented
on further here.

B. Bayesian Networks

A Bayesian network is a way of representing a joint
probability distribution over a set of random variables V .
The structure of the network is a directed acyclic graph
(DAG) consisting of a set of nodes, one corresponding to each
variable, and a set of directed edges between these nodes. An
edge in the network from V1 to V2 indicates that the value
of variable V1 may influence the probability distribution of
V2. In other words, the probability distribution of the variable
associated with each node is conditionally dependent on the
variables associated with each of its parents. The exact nature
of this conditional dependence is recorded in a probability
function of the values of the node’s parents. In the case of
discrete random variables (as will be used throughout this
paper) the probability function maps each permutation of a
parent set’s values onto a distribution over the allowable values
of the variable.

For processes that are understood, it is possible to find the
structure of Bayesian networks analytically. However, in some
situations, the relationship between variables is not known a
priori. In this case, it is possible to use machine learning to
generate a network structure from a set of observations of
the variables. This process searches for the network whose
structure best explains the observed data. It can be shown
(assuming there is no prior reason to prefer one network
structure over another) that this is the network for which the
following quantity is maximised [12].

n∏
i=1

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

·
ri∏

k=1

Γ(N ′
ijk +Nijk)

Γ(N ′
ijk)

(1)

where there are n variables, qi is the number of combination
of values for the candidate parent nodes of the ith variable, ri
is the number of possible values for the ith variable, Γ(·) is the

gamma function (an extension of the factorial function to real
numbers), Nijk is the number of observations of that particular
combination of values in the dataset, Njk =

∑n
i=1 Nijk, N ′

ijk

is a constant commonly set to 1
qiri

, and N ′
jk =

∑n
i=1 N

′
ijk.

Intuitively, the first Π is a product over each of the nodes
in the network, the second Π is a product over all possible
tuples of values that the parents of that node can take, and
the final Π is a product over all values that the node itself
can take. In the current paper, the number of nodes is fixed,
as are the set of values taken by the node. Hence the only
way in which the quantity can vary in order to be maximised
is through changing the set of parents of a node. This leads
to the number of possible tuples of values, qi, changing (as
this will be equal to the number of possible values of a node
to the power of the number of parents) and also to different
values of Nijk from the dataset being used. In short, the task
of maximising the equation becomes one of searching for the
best possible set of parents for each node.

Once a network structure has been determined, it is trivial
to produce the corresponding conditional probability table for
the node. Each entry in the conditional probability table is
set to the number of times that the particular combination of
parents‘ and node values were observed together in the dataset
divided by the total number of times that the same combination
of parents‘ values were observed, i.e. the empirical relative
frequency of that value being observed given the values of the
parents.

C. Bayesian Networks for WCET

As far as we are aware only one technique, other than that
modified and extended for this paper, has been previously
proposed using Bayesian networks for WCET analysis [13].
In the presented technique, Bayesian networks are used to
learn and record the interaction of the execution time of
various parts of a program in relation to each other. The
output is then presented to the system designer who can use
it to aid construction of the system. The approach differs
considerably to that presented here, most notably in recording
timing interactions at a much higher level. In the technique
outlined here, such interactions will be at the single instruction
level. Additionally, the previous technique records timing in-
teractions due to any hardware component as well as software
dependencies. The technique to be presented focuses more
tightly on cache analysis, allowing other possible sources of
timing dependency to be treated using separate established
software and hardware analysis methods.

III. A BAYESIAN NETWORK CACHE MODEL

The technique presented in this paper is a modified version
of the cache model proposed in [6]. However, as presented,
that technique allowed only for the distribution of cache hits
or misses on any unknown execution of the program to be
determined. Utilising cache analysis for WCET estimation
however requires something different; the instructions which
result in cache hits or misses must be identified, not just the
total number of these events. This paper shows how this can

be accomplished by modifying the learning process used to
create the cache use model.

To make this paper self-contained, and as the technique
in [6] has not previously been published in the Real-Time
Systems community, we first outline that technique here. The
problems with this are then made explicit before the changes
necessary are presented.

A. Overview of the Technique

The basic model will now first be explained at an intuitive
level before going on to explore in greater depth the various
aspects in the following sections.

The model constructed is a Bayesian network in which
nodes represent instructions of the program under considera-
tion and the edges between these nodes represent an interaction
between the behaviour of the two instructions. That is to say,
an edge from instruction i to instruction j records that when
instruction j is required, whether or not instruction i was
in cache when required (or not executed at all) will have
a bearing on the likelihood that instruction j is in cache.
This relationship may be due to instructions i and j being
in the same cache block or due to i and j being loaded
into the same cache line. In fact, as the network will be
learned from observations, it is not necessary to determine
why the behaviour of one instruction affects another, merely
that there is a statistical correlation observed between the two
behaviours. The exact nature of the relationships between the
instructions linked by edges is recorded in the conditional
probability table at each node.

Obviously, a cache is a fully deterministic hardware device,
hence the choice of a probabilistic representation for the model
may appear unusual. However, such a representation allows
a model to be constructed when the interaction between in-
structions is partially but not fully understood. The conditional
probability tables in the Bayesian network do, of course, allow
for fully deterministic relationships to be described where the
data support this. In addition, a Bayesian framework allows the
selection of the provably best model of the cache given the
observed data; without any reason to suspect that one model of
the cache is more likely than another, the Bayesian model of
the cache is certainly the best that could be determined from
the available data.

B. Data Collection

The cache model is learned from the observation of the
cache in use on a particular program. It is therefore first
necessary to obtain these observations.

The required information for each observation is a trace of
the execution of the program featuring the instructions fetched
in order and whether each was in cache when required, or had
instead to be first retrieved from main memory. Multiple runs
are obtained by altering the input vectors given to the program
under examination.

The methods for and issues surrounding collection of data
for real-time systems are very rehearsed and need not be
explored in depth here [14].

C. Processing Observations

Bayesian networks are learned from a rectangular array of
data in which columns represent the variables that will form
nodes in the network and each row records the outcome of a
single associated observation of each of these variables. For
the cache model application presented here, this means that
each row must be the outcome of a single run of the code for
a random input and each column is the cache behaviour of
a single fetch of a particular instruction. The data values in
the table then state what the observed cache behaviour of that
instruction was on that run.

There are two issues to deal with in order to construct this
table. First, the matter of instructions within (nested) loops,
which may be fetched multiple times within a single execution;
the table can record only a single value for each variable, not a
list of values for all the fetches. Second, the subject of missing
values; some instructions will appear in one execution of a
program but not in others, meaning that for some executions
there is no observation of whether that instruction was in cache
when fetched because it was never fetched.

Instructions which may execute multiple times are treated by
separating them into multiple variables, one for each execution
of the loop. For example, instruction I is split into I1, I2, I3,
etc. denoting the cache behaviour of the instruction on the
first iteration of the containing loop, on the second iteration,
on the third and so on. This generalises to nested loops
by introducing a subscript for each of the containing loops.
The control flow graph can be used to determine appropriate
variable assignments for each recorded instruction execution
in a program trace. These variables are then assigned the
value of HIT or MISS for each run, depending on whether
the instruction was fetched from cache or main memory
respectively.

Those variables so far described relate to the instructions’
behaviour on the nth iteration. It can be observed that some
cache interactions between instructions are likely to be related
to what occurred on the final iteration of a loop, where
this may occur on different iterations in different traces.
Variables are therefore introduced for each instruction on the
last iteration, the second to last iteration, the third to last, etc.
Let the variable I−n refer to the behaviour of instruction I on
the nth from last iteration of the loop. Again this notation
is extended to multiple subscripts for nested loops. These
variables are given values exactly as with the other variables.

The solution to the problem of missing values mentioned
above is to allow variables to take two additional values. In
addition to HIT and MISS, variables also take the values of
NO ITERATION if they were not encountered because the
loop they were in never had that many iterations on that run of
the program, and NOT EXECUTED is assigned to variables
whose loop was encountered, but which were not executed
on that iteration. In addition to filling in the blanks in the
table, these instructions allow for an important link between
the control-flow behaviour of the program and the caching
behaviour. The reason an instruction is or is not in cache when

required may be linked to the path along which the instruction
has been reached; these values allow for such relationships to
be expressed.

Using all of these variables, each trace can thus be trans-
formed into a mapping of a global set of variables to a partic-
ular set of values that fully represents the caching behaviour
of that execution. From this dataset, a Bayesian network can
then be learned.

D. Learning the Bayesian Network

In the dataset obtained as described above, some variables
will take the same value in every single observation. These
variables therefore have no predictive power in determining the
value of other variables nor are affected by the other variables
either. Such variables have their constant values noted and are
pruned from the dataset used for learning. When the value of
such variables is needed for the subsequent cache analysis,
the value seen in all observation is used directly. Note that it
cannot be confirmed that the same value would be seen on
all possible executions of the program, only those that have
been obtained. There is however no way of determining what
may occur on any other executions, hence the values must be
treated as constants. This is a similar idea to the concept of
dynamic invariant detection [15].

Having reduced the dataset to just those instructions that
have different values in different observations, a Bayesian net-
work which seeks to explain the causal relationships between
these variables can be learned. Intuitively, for each variable,
we seek to find the variables whose value can affect the value
of that variable. This is performed by exhaustively searching
through the power set of all other variables, attempting to
maximise a function of the likelihood that those parents are
the variables true parents. The function used for this is that
previously given in Equation (1).

As explained in Section II-B, the appropriate conditional
probability tables for each node can then be found through
the relative frequency of events in the observed dataset.

Those variables which have negative indices are treated
differently from those explained above. Recall that these
are defined as the occurrence counting backwards from the
last iteration. The associated nodes can therefore be created
analytically. For each such node, the parent nodes are set to
all those nodes that could refer to the same instruction when
counting from the first iteration. For example, I−1 will have
as parents I1, I2, I3, . . . In where n is the largest number of
iterations seen. The value taken by such a node can then also
be set deterministically. For example, in the previous example,
I−1 will have its value defined to always be equal to the Ii
with the highest index and which has a value of HIT or MISS.

The final cache model therefore consists of two parts, a list
of instructions-behaviour pairs for those instructions whose
caching behaviour was always observed to be constant and
a Bayesian network which describes causal relationships for
those instructions exhibiting different behaviours in different
executions of the program.

E. Incorporating Domain Specific Knowledge

The process of learning the optimal Bayesian network for a
particular dataset is NP-hard in the number of variables in the
general case [12]. As even simple programs typically consist of
thousands of instructions and may iterate over these thousands
of times, the number of variables to consider for learning the
Bayesian network may be infeasibly large. For this reason, it
is necessary to use some simple domain-specific observations
to reduce the task to a manageable level.

It makes sense that instructions can only be affected by
those that may have happened earlier in time; whether the
second instruction to be fetched was in cache cannot affect
whether the first instruction fetched was there, for example.
Using the control flow graph, we can construct a partial
ordering over the order in which instructions can execute.
From this, a restricted set of instructions can be found which
can occur before each instruction. The set of parents to
consider for each node when learning the Bayesian network
can then be restricted to this set. Particularly for instructions
late in the program, this reduces the set of parents to consider
hugely.

A second similar restriction can also be introduced. Caches
are more likely to contain instructions that have been recently
executed. The search for the best set of parents for a node
can therefore be restricted to those that could have been
executed within a certain period before the current instruction.
As with the above refinement, this set of potential parents
can be found through the same partial ordering and control
flow graph. However, in contrast to the previous refinement.
such an alteration may decrease the quality of the network
learned. More recent instructions are only more likely to affect
an instruction, but it is possible that instructions from much
earlier in a program may still have an effect. Reducing the
number of parents to consider in this way is therefore a trade-
off between the tractability of the learning and the quality of
the outcome.

F. Problems with the Existing Approach

The process outlined above produces a model from which
a predicted distribution of the number of cache hits and
misses for a particular program can be obtained. This can be
constructed through simple Monte Carlo sampling of the nodes
of the Bayesian network subject to the associated conditional
probabilities. An estimate of the worst-case value can then
be found from the tail of this distribution. However, such
estimates cannot be incorporated into standard WCET analysis
in the same way that the results of a static cache analysis can
for two reasons.

First, the instructions which cause cache hits and misses
must be known, not just the total number of these that occur.
For an extremely simple processor, it would be possible to
find the WCET in the absence of a cache and just add on
the number of cache misses multiplied by the additional time
incurred by fetching from main memory as opposed to the
cache. However, in the presence of a pipeline within the
processor, this becomes unsuitable; the overall temporal effect

of a cache miss at one program point may have a completely
different effect to that at another due to the instructions
transversing the pipeline.

Second, the existing technique conflates parts of the con-
trol flow analysis and low-level analysis. While extracting
the number of cache misses from the Bayesian network,
the probability that given instructions execute are implicitly
used through the conditional probabilities assigned to the
NOT EXECUTED or NO ITERATION values. Determining
whether or not instructions execute is part of the calculation
and should not also occur using an alternative method during
the cache analysis. Instead a model is required that predicts
whether or not an instruction is in cache given that it executes.
Determination of what does execute can then be correctly
restored to the control flow and calculation phases.

A change to the Bayesian network learning algorithm allows
this distinction to be made as outlined below.

G. Modification of the Approach

The network will ultimately be utilised to predict whether
instructions are cache hits or misses given that they exe-
cute. It will not be used to predict whether instructions are
executed or not, this information is best determined using
existing techniques at other stages of the WCET analysis
and will be supplied as input to the network. This means
that the network should never predict a NO ITERATION or
NOT EXECUTED value for a variable; if the variable is to
take this value for a particular execution, it will be determined
elsewhere and fixed in the network at analysis time.

One consequence of this is that only variables whose
behaviour has been observed to be both HIT and MISS
in the dataset will need to have their behaviour explained
by other variables. An instruction that is always either
NO ITERATION or HIT, for example, can have its behaviour
on a particular run determined just by knowing whether it was
executed or not. There is therefore no need to learn parent
nodes in the Bayesian network for such a variable.

Using this observation, the dataset (obtained through the
same observation and processing as before) is split into three
parts; those instructions which exhibit constant behaviour,
those which exhibit constant behaviour if they are executed
and those whose caching behaviour may vary. The first of these
are recorded in a list, and will predict that behaviour whenever
that instruction is seen as before. The second are also recorded
and will predict the given cache behaviour if that variable is
actually executed, but are also used as potential parents in
the Bayesian network learning process though will not have
parents learned for themselves. The final set of instructions
are entered into the Bayesian network learning as both nodes
whose parents must be learned and which may be used as
parents of other nodes in turn.

The Bayesian network explaining the causal relationships
between the caching behaviour of instructions can then be
learned from the appropriate variables. Intuitively, the aim
is to discover for each instruction in the final set mentioned
above, the set of instructions whose behaviour may influence

whether or not that instruction is a cache hit or miss. This
is done by maximising a slightly modified quantity related to
that given in Equation 1. As just stated, a network is desired in
which variables cannot predict that they are executed or not,
but can make use of the fact other instructions have or have
not executed in predicting their own caching behaviour. For
this reason, the best network is the one that maximises the
following quantity.

n∏
i=1

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

·
r′i∏

k=1

Γ(N ′
ijk +Nijk)

Γ(N ′
ijk)

(2)

where r′i is the set {HIT,MISS} (i.e. only the possible values
of i when i is known to be executed) and all other symbols
are as defined as for Equation (1).

Once the structure of the network has been determined, the
conditional probability tables associated with each node can
be computed. In each case, the functions are set directly from
the relative frequencies of the variable-value pairs observed in
the dataset. Specifically, for each assignment of values to its
parents, the probability assigned to a variable being a HIT is
equal to the number of times it was observed as being a HIT
in the dataset for that combination of parent values, divided
by the number of times it was observed to be either a HIT or
MISS for those parent values. The probability of a MISS is
always assigned to be 1 – p(HIT).

The result of this modified learning process is a Bayesian
network in which nodes will only ever predict that their
associated variable is a cache hit or miss. As desired, it has
become impossible for the model to predict an instruction will
not execute. Such information can be supplied to the model
when it is used to predict what is in the cache, by fixing
nodes to either of the unexecuted values. This information on
whether other instructions have been executed will then still
be usable in predicting caching behaviour of other instructions
as before. Details of how the model is used for cache analysis
can be found in Section IV.

H. Scalability

Recall that the task of learning the Bayesian network
consists primarily of determining the structure of the network
and that this occurs through finding the set of parents of each
node in turn. As stated above, the search for parents will
only consider other nodes which may have occurred within
a set limit before the node in question. Therefore, on average,
the number of parents to be considered for each node will
be approximately constant regardless of the position in the
program that the node corresponds to (assuming that there is
no reason to believe the branching of code should change in
any systematic way with code length). As the parents of each
node are found independently for each node, the complexity
of the learning is therefore linear in the number of nodes.

The number of nodes is itself based primarily on the length
of the code and the number of repetitions of loops. Under (the
possibly incorrect) assumption that code length is not generally
correlated with the number of repetitions of the loops within

TABLE II
SUMMARY OF BENCHMARK PROGRAMS USED.

Name Description Inputs
binary search Binary search in a set list

of numbers
One integer in the range
0–20

bsort Bubble sort an input vec-
tor

Between 10-20 integers in
the range 0–10

factorial Find the factorial of the
input

One integer in the range
0–20

isort Insertion sort an input
vector

Between 10-20 integers in
the range 0–10

janne complex A program with complex
looping

Two integers in the range
0–30

petri Simulation of a petri net One integer in the range
0–200

select Select the nth largest num-
ber

One integer in the range
0–20

it, this leads to an approximately polynomial complexity in
the length of the program code to the power of the typical
loop nesting depth of instructions. In typical real-time code,
this probably implies complexity of between linear and cubic
in the length of the program code.

As the branching factor and depth of loop nesting are related
closely to the task of a particular piece of code, it is difficult
to make a useful, more specific estimate of the scalability. It
follows however that the technique is obviously at its fastest
and most useful when analysing code that is short or has low
branching factor or shallow loop nesting.

In practice, the total number of nodes to be learned is
far fewer than might be expected as a great number exhibit
constant behaviour and can therefore be removed from consid-
eration in constructing the Bayesian network. All instructions
which are at neither the beginning of a cache line or basic
block will be found to have consistent behaviour for any input
for example. Results in the following chapter demonstrate this
factor.

IV. RESULTS AND EVALUATION

A. Datasets

Evaluation of the technique is not straightforward. The most
direct method of evaluation would be to compare the model
with an idealised Bayesian network for the cache and program
to see how well they compared. However, it is extremely
difficult to create such a perfect network by hand, and if it
were possible to create it automatically, then this learning tech-
nique would be completely unnecessary. Such an evaluation
is therefore only possible for a small toy example [4].

Instead, the quality of the model must be assessed indirectly
by looking at the predictions it makes. To this end, a traditional
machine learning approach was followed. Two datasets are
independently generated. The first, the training dataset, is used
to construct the model. Predictions from the learned model are
then compared to the second, the test dataset, to assess the
quality of the learning. In fact, a range of training and test
datasets are generated as described below.

A selection of seven benchmarks from the Mälardalen

TABLE III
MEAN OF THE SQUARED ERROR BETWEEN THE ACTUAL NUMBER OF

CACHE MISSES FOR EXECUTIONS IN THE TEST DATASET AND THE
PREDICTED VALUES

Benchmark Training Set Size
100 1000

binary search 0.045 0.047
bsort 4.647 1.419

factorial — 1.018
isort 9.559 4.370

janne complex 10.075 7.623
petri 0.000 0.000
select 0.041 0.040

benchmark suite1 were chosen to evaluate. These have been
adapted to take input values in order to make them amenable
to measurement-based analysis. The benchmarks chosen and
the inputs they take are summarised in Table II.

For each benchmark, three datasets were created; a training
set of 100 examples. a training set of 1000 examples and a test
set of 1000 examples. Each example in these datsets consists
of a single trace of the program being executed with inputs
uniformly randomly chosen from the given ranges. For some
of the benchmark marks with smaller input ranges, this means
that most, if not all, possible inputs were represented in the
datasets; for the sorting routines, only a very tiny portion of
possible inputs were seen.

In each case, the same simulation platform was used.
The M5 simulator was used in its default setting for the
ALPHA processor, with a single instruction cache configured
to have a total size of 4kB, block size of 32 bytes and 2-
way associativity. The cache replacement algorithm used was
Least-Recently Used. The hardware was reset to its initial state
between runs to ensure independence.

B. Evaluation

The task of the model is to predict which instructions are
or are not in cache when required. It is not the task of the
model to predict whether or not they are required; that is a
control flow task which would be dealt with at a separate
part of the WCET analysis. Furthermore, we seek accuracy of
prediction, not behaviour in the worst case; the task of cache
analysis is to produce as accurate information as possible on
the cache behaviour which can then be utilised to produce
an estimate of worst-case execution time of the program. The
evaluation, therefore, is carried out as follows. First, the cache
use model is learned, as described in Section III, from a
given training dataset. Following this, the ability to predict
the cache behaviour in each trace in the corresponding test
datasets is assessed. To do this, the execution path information
is extracted from that trace (which instructions are or are not
executed) and supplied to the Bayesian network which fixes
any instructions which did not execute at their appropriate
value (NOT EXECUTED or NO ITERATION). Finally, the
instructions that were executed have their cache behaviour
predicted; from the previously observed behaviour in the case

1http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

TABLE IV
EARTH-MOVER’S DISTANCE BETWEEN THE DISTRIBUTION OF CACHE
MISSES IN THE TEST DATASET AND THE PREDICTED DISTRIBUTION

USING THE BAYESIAN NETWORK.

Benchmark Training Set Size
100 1000

binary search 0.002 0.001
bsort 0.016 0.013

factorial — 0.023
isort 0.026 0.024

janne complex 0.032 0.034
petri 0.000 0.000
select 0.001 0.001

of those instructions believed to have constant behaviour, and
through sampling the Bayesian network with a Monte Carlo
method for those instructions featuring in the network to
yield a probability of each instruction being in cache. This
yields a predicted probability for each individual instruction
executed of it being in cache when required. Combining these
probabilities can then produce a probability distribution over
the number of predicted cache misses for a trace with the same
execution path as the given test trace.

The overall result of the testing is a set of pairs, one for
each test example. First, the actual number of cache misses
observed in that trace. Second, the model’s prediction of the
probability distribution of the number of cache misses for a
trace with that execution path.

The actual number of cache misses for each trace can
be compared to the expected (i.e. mean) value of the cor-
responding predicted probability distribution. This is shown
in Table III. Values in this table show the mean squared
difference between the real and predicted expected number
of cache misses in the dataset. The smaller this value, the
more precisely the predictions match the real data. Formally,
the quantity shown is∑

dataset (actual − expected)2

|dataset|
(3)

Results were obtained for both two training set sizes and
also for several different degrees of sampling the Bayesian
network. The greater number of samples taken, the closer the
distribution obtains corresponds to the real joint distribution
recorded by the network.

As can be seen, the values are generally low, showing high
correspondence between the model’s predictions and the real
values. It should be noted that the values shown in the table are
squares of the actual discrepancies,so a value of 9, say, could
result from only 3 misclassifications of an instruction’s cache
behaviour in each entire example execution. Given the number
of instructions in the programs, these values are incredibly
small.

The table shows that an increased training set size improves
the quality of the models predictions, particularly for those
examples with the highest divergence from the actual values.
There is also a slight improvement in the quality of the
predictions when a greater number of samples are taken, but
this is not particularly dramatic.

The missing values for factorial when trained with 100
examples in this table (and subsequent ones) are due to a
problem in variable assignments. In the test set, there are
instructions that were not encountered at all in that training
set. This means that the algorithm for converting traces into
variables, which was outlined in Section III, is unable to
correctly associate variables in the test set with the ones used
in the model in order to present them for classification. This
issue illustrates the fact that instruction coverage must be
achieved by the method in the training set. The question of
whether random inputs or a more targetted approach to training
set generation would be preferable remains open for future
work.

The comparison presented above does not take into account
any part of the distributions of the predictions other than their
expectation. It is possible however to conduct a second form
of evaluation which examines the entire distribution. Rather
than compare each test example separately, all the test values
can be collated into a distribution over the number of cache
misses in the test set and all the predicted distributions can
be combined into a single predicted distribution similarly.
These two distributions can then be compared for similarity
using various measures. Table IV shows a comparison between
these two distributions using the well-known Earth Mover’s
Distance. Values have been normalised by dividing by the
maximum distance theoretically possible for each example, in
order to allow for comparisons between different benchmarks.
A value of 0 shows identical distributions; a value of 1
maximally dissimilar distributions.

The table shows a very similar pattern to that in Table III.
This suggests that not only is the expected value of the number
of cache misses that the model predicts close to the real value,
but that the complete distribution of the values is also close
to the true distribution.

C. Extreme Value Statistics

Edgar [7] presents a method that can be used to estimate the
WCET of a program given a set of observations of the actual
execution times. While that presented method was applied to
the full execution time of a program, there is no reason that it
cannot be used, almost unmodified, to estimate the worst-case
number of cache misses instead. We do so here to compare
with the Bayesian network approach.

From a set of observations of the number of cache misses
in a series of traces, the probability that the real worst-case
value is less than x is equal to the following quantity [16].

G(x−max)−G(max)

1−G(max)
(4)

where G is a Gumbel distribution with shape parameter σ

(the sample standard deviation ×
√
6

π) and location parameter
µ (the sample mean – Euler’s constant × σ) and max is the
maximum value observed in the sample.

While such a method is potentially useful for estimating
the actual worst-case number of cache misses, it cannot be
used in the as many situations as the Bayesian network model

can. The output of this statistical method is an estimate over
all cache misses in the program. While this may be used in a
simple system, more complex hardware requires more detailed
information as explained earlier.

For the above reason, it is not possible to use extreme value
statistics to compare with the results presented in Tables III
and IV however a separate form of evaluation can be per-
formed for which the two can be compared.

In soft real-time systems, deadline misses can be tolerated
as long as they do not happen too often. The concept of prob-
abilistic hard real-time systems has also been formulated [17].
These systems must meet their deadlines at least a specific
proportion of the time. In both these settings, it may be
possible, or even desirable, to determine a WCET estimate that
is not actually the worst-case, but rather will not be exceeded
too frequently. Such an estimate may allow slower, cheaper
hardware to be utilised. In such a case, rather than the actual
worst-case behaviour, the behaviour at a given high percentile
of the distribution of the behaviour is required. For the current
application, this means determining a number of cache misses
such that there are a greater number of cache misses observed
in only a small number of cases.

The Bayesian network model can be used to estimate
such percentile levels. The distribution over the number of
cache misses which was obtained above (for comparison
using the Earth Mover’s Distance) can have given percentile
levels found. The method using the extreme value distribution
distribution presented above can also be used to estimate these
values. In this case, the curve can be fitted to the same training
data set as the Bayesian network is learned from and the results
compared. Finally, as the real values are unknown, the actual
numbers of cache misses in the test dataset can be used as a
proxy for the population distribution.

Table V shows that in a few cases, the Bayesian network
model exactly matches the ‘true’ behaviour and there are
two cases where the Bayesian network produces an estimate
above the actual values and one case where the extreme value
statistic method does likewise. In most cases however, the
two methods both produce slightly higher estimates than the
observed values.

The Bayesian network produces lower estimates than the
extreme value method in nine cases, and higher estimates in
only four. As the real values are not known however, it is
impossible to know whether these are tighter estimates or
too optimistic. Nevertheless, in all but two cases, the lower
estimates produced by the Bayesian method equal or exceed
the ones obtained from the real data.

The most striking difference between the two methods
is for the petri example. Here, the extreme value method
produces a huge estimate for the number of misses, much
higher than either the real test dataset or the Bayesian network
approach. In fact, as seen in the earlier tables, the Bayesian
network approach produces exactly correct predictions for
this benchmark. The problem for the extreme value method
appears to be that the number of cache misses is extremely
variable, hence high upper bounds are produced. Within this

TABLE V
UPPER PERCENTILES ON THE DISTRIBUTION OF NUMBER OF CACHE MISSES IN THE TEST DATASET OBTAINED UNDER VARIOUS METHODS. ACTUAL

ARE THE REAL VALUES FROM THE TEST DATASET, EVD ARE THE VALUES OBTAINED USING THE EXTREME-VALUE DISTRIBUTION, AND BN ARE
OBTAINED USING THE BAYESIAN NETWORK APPROACH.

Benchmark Method Training Set Size Percentile Level
0.9 0.99 0.999 0.9999 0.99999 0.999999

binary search

actual — 46 46 46 46 46 46

evd 100 48 49 50 51 52 53
1000 48 49 50 51 52 53

bn 100 46 47 47 47 47 47
1000 46 46 46 46 46 46

bsort

actual — 56 56 56 56 56 56

evd 100 59 61 63 65 67 69
1000 59 61 63 65 67 69

bn 100 60 65 73 75 75 75
1000 58 60 62 64 66 66

factorial

actual — 42 42 44 44 44 44

evd 100 42 42 42 42 42 42
1000 45 46 47 48 49 50

bn 100 — — — — — —
1000 43 43 44 44 44 44

isort

actual — 55 55 55 55 55 55

evd 100 58 60 62 64 66 68
1000 58 60 62 64 66 68

bn 100 59 66 78 82 85 88
1000 57 60 63 65 67 72

janne complex

actual — 46 46 46 46 46 46

evd 100 49 51 53 55 57 59
1000 48 50 52 53 55 56

bn 100 46 56 63 63 63 63
1000 50 53 54 54 54 54

petri

actual — 6169 6491 6491 6491 6491 6491

evd 100 11190 15704 20202 24698 29194 33690
1000 11177 15710 20230 24749 29267 33785

bn 100 6169 6491 6491 6491 6491 6491
1000 6169 6491 6491 6491 6491 6491

select

actual — 82 84 84 84 84 84

evd 100 90 96 101 107 112 117
1000 90 95 100 106 111 116

bn 100 79 80 81 81 81 81
1000 79 80 81 81 81 81

variability though, the cache state of individual instructions is
actually extremely consistent, the variability coming in the
number of iterations that occur. For the Bayesian network
method, this regularity can be recorded and utilised; for the
extreme value method that has no concept of where misses
occur in the program, the information is not usable.

The effect of the dataset size on the extreme value method is
virtually nil. In three cases the larger training dataset results
in no changes, three times in a very marginal tightening of
the estimate and once in an increase in the estimates when the
smaller sample was actually optimistic. In contrast, the larger
dataset sizes make quite significant changes to the Bayesian
network method in several cases.

D. Detailed Analysis

A further evaluation was performed to determine the role
of training set size and to understand the accuracy of various
parts of the model derived. The technique described above was
applied to the analysis of a single program, the bubblesort
routine. This benchmark was chosen as interesting cache
behaviour was seen to occur, related to the section of code
which swaps a pair of adjacent numbers in an early trial.

At each comparison, whether this swap occurs affects the
subsequent cache contents.

Evaluation was performed as follows. First, the training data
set was used to identify instructions which appeared to exhibit
fixed behaviour and those for which different traces showed
different cache outcomes. A Bayesian network was learned
for the latter as described above. Following this, the test data
set was used to determine the accuracy of the technique at
predicting the number of cache misses that would occur in
each of the (previously unseen) test traces. The variables in
the test trace were split into three classes depending on their
behaviour in the training set and evaluated as follows.

Variables not seen during training.
For any variables not seen during training, we make
an assumption that the variable would cause a cache
miss (which may not actually be safe due to timing
anomalies). Whether it actually had caused a miss
was also noted.

Variables which exhibited fixed behaviour.
For each variable, whether it was believed to be a
cache miss, based on the training set, was noted
along with whether it actually was a cache miss.

TABLE VI
COMPARISON OF NUMBER OF ACTUAL AND PREDICTED CACHE MISSES IN THE TEST DATA SET. COLUMNS SHOW THE NUMBER OF MISSES RESULTING

FROM VARIABLES NOT SEEN IN THE TRAINING DATA; INSTRUCTIONS BELIEVED TO EXHIBIT FIXED BEHAVIOUR; INSTRUCTIONS KNOWN TO HAVE
VARIABLE BEHAVIOUR.

Number of Training Examples Previously Unseen Believed To Be Fixed Known To Be Variable Total PessimismActual Predicted Actual Predicted Actual Predicted Actual Predicted
100 0 4 5237 5259 309 314 5546 5577 0.56%
200 0 4 5233 5245 313 324 5546 5573 0.50%
300 0 0 5231 5231 315 333 5546 5564 0.32%
400 0 0 5231 5231 315 335 5546 5566 0.37%
500 0 0 5231 5231 315 334 5546 5565 0.35%
600 0 0 5231 5231 315 330 5546 5561 0.27%
700 0 0 5231 5231 315 332 5546 5563 0.31%
800 0 0 5231 5231 315 330 5546 5561 0.27%
900 0 0 5231 5231 315 328 5546 5559 0.23%
1000 0 0 5231 5231 315 328 5546 5559 0.23%

Variables which appeared in the Bayesian network
A probability distribution over the number of cache
misses was found as in the earlier experiments. The
actual observed number of misses for these variables
in the traces was collected as well.

Having obtained these data, the total number of cache
misses that occurred in the whole of the test data set and
the total number that were predicted to have occurred were
found by summing over the data set. The distributions that
occurred from the Bayesian network were converted into a
single number by taking a weighted sum.

The data thus collected is displayed in Table VI. The results
show that technique predicts the number of cache misses
with a high degree of accuracy (>99%) for even the smallest
training data set. Furthermore, in this case, all variables were
seen to be executed in quite small data sets. An overwhelming
number of the instructions were found to have the same
behaviour in all cases, and these account for a large part of
the accuracy of the overall accuracy. This perhaps points to a
strong suitability for dynamic invariant detection [15] in the
field. For those variables featuring in the Bayesian network,
there appears to be a slight trend towards increased accuracy
for the largest data sets.

V. CONCLUSIONS

This paper has presented an approach to cache analysis
differing considerably from those currently used. At the core
of the approach is the learning of a Bayesian network represen-
tation of the cache, which records the influence of instructions
on each other. This model is constructed automatically from
the program with minimal human intervention and no need
for a specification of the cache nor for detailed understanding
of the program semantics. As this is a measurement-based
approach, the obtained results are only valid for soft-real time
systems, however the accuracy of the model’s predictions for
a range of standard benchmarks are extremely close to the real
behaviour.

REFERENCES

[1] P. Puschner and C. Koza, “Calculating the maximum execution time
of real-time programs,” Real-Time Systems, vol. 1, no. 2, pp. 159–176,
1989.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem — Overview of methods and survey of tools,”
Transactions on Embedded Computing Systems, vol. 7, no. 3, pp. 1–53,
2008.

[3] D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper, and S. Wiegratz,
“Static WCET analysis of real-time task-oriented code in vehicle con-
trol systems,” in ISOLA ’06: Proceedings of the Second International
Symposium on Leveraging Applications of Formal Methods, Verification
and Validation. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 212–219.

[4] M. Bartlett, I. Bate, and J. Cussens, “Instruction cache prediction using
Bayesian networks,” in Proceedings of the 19th European Conference
on Artificial Intelligence (ECAI 2010), 2010, pp. 1099–1100.

[5] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Representation and Reasoning Series. San Fran-
cisco, California: Morgan Kaufmann, 1988.

[6] M. Bartlett, I. Bate, and J. Cussens, “Learning Bayesian networks
for improved instruction cache analysis,” in The Ninth International
Conference on Machine Learning and Applications (ICMLA 2010),
2010, to Appear, Available on Request.

[7] S. Edgar, “Estimation of worst-case execution time using statistical
analysis,” Ph.D. dissertation, University of York, 2002.

[8] F. Mueller, “Static cache simulation and its applications,” Ph.D. disser-
tation, Florida State University, Tallahassee, Florida, 1994.

[9] ——, “Timing analysis for instruction caches,” Real-Time Systems
Journal, vol. 18, no. 2-3, pp. 217–247, 2000.

[10] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET
prediction by separated cache and path analyses,” Real-Time Systems
Journal, vol. 18, no. 2-3, pp. 157–179, 2000.

[11] I. Puaut, “WCET-centric software-controlled instruction caches for hard
real-time systems,” in ECRTS ’06: Proceedings of the 18th Euromicro
Conference on Real-Time Systems. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 217–226.

[12] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Machine
learning, vol. 20, no. 3, pp. 197–243, 1995.

[13] M. Zolda, “INFER: Interactive timing profiles based on Bayesian
networks,” in 8th International Workshop on Worst-Case Execution Time
(WCET) Analysis, R. Kirner, Ed., 2008.

[14] N. Wilde and D. Knudson, “Understanding embedded software through
instrumentation: Preliminary results from a survey of techniques,” Tech-
nical Report, Department of Computer Science, University of Florida,
1999.

[15] M. D. Ernst, “Dynamically discovering likely program invariants,”
Ph.D., University of Washington Department of Computer Science and
Engineering, Seattle, Washington, Aug. 2000.

[16] S. Edgar and A. Burns, “Statistical analysis of WCET for scheduling,” in
Real-Time Systems Symposium, 2001. (RTSS 2001), 2001, pp. 215–224.

[17] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of probabilistic
hard real-time systems,” in Proceedings of the 23rd Real-Time Systems
Symposium (RTSS), 2002, pp. 279–288.

