
Sustainable Scheduling Analysis

Sanjoy Baruah∗

The University of North Carolina
at Chapel Hill

Alan Burns
Department of Computer Science

University of York, UK

Abstract

A schedulability test is defined to be sustainable if any
task system deemed schedulable by the test remains so if
it behaves “better” than mandated by its system specifi-
cations. We provide a formal definition of sustainability,
and subject the concept to systematic analysis in the con-
text of the uniprocessor scheduling of periodic and sporadic
task systems. We argue that it is in general good engineer-
ing practice to use sustainable tests if possible, and clas-
sify common uniprocessor schedulability tests according to
whether they are sustainable or not.

1. Introduction
The notion of schedulability is well understood within the
real time systems community. A system is schedulable with
respect to a specified scheduling policy if it will meet all its
timing requirements when executed on its target platform
with that scheduling policy. The system is modelled as be-
ing comprised of a number of concurrent tasks (or threads)
that are characterised by a small number of parameters. The
timing requirements are usually expressed as deadlines. So
schedulability implies that all deadlines are satisfied if the
system behaves according to its parameterized specifica-
tion.

Although the notion of schedulability is clear the inter-
pretation of the system’s parameters is not. Specifically,
are these parameters assumed to be exact or upper/lower
bounds on the values that can be taken at run-time? In this
paper we develop the notion of sustainability to formalize
the expectation that a system determined to be schedulable
should remain schedulable when its real behaviour is ‘bet-
ter’ than worst-case.

In order to formally explain this concept, we need to first
define what we mean by a real-time system. Let us model a
real-time system as being comprised of several tasks, each
of which gives rise to a series of jobs that are to be exe-
cuted on a single processor. Each job is characterized by:
an arrival time, denoting the time-instant at which the job

∗Supported in part by the National Science Foundation (Grant Nos.
CCR-0408996 and CCR-0541056).

is said to arrive at the processor; a ready time (which is zero
or more time units after its arrival time), denoting the ear-
liest time-instant at which the job may begin executing —
the length of time that elapses between the job’s arrival time
and its ready time is called its (release) jitter; an execution
requirement; and a relative deadline, denoting the length
of time that may elapse after a job’s arrival before it must
complete execution. Different task models place different
restrictions on the parameters of the sequences of jobs that
may be generated by each task; for instance, periodic task
models specify that successive jobs of a task arrive an ex-
act pre-specified time apart, and sporadic models mandate a
minimum temporal separation between the arrivals of suc-
cessive jobs of a task.
We are now ready to define the concept of sustainability.

Definition 1 A schedulability test for a scheduling policy
is sustainable if any system deemed schedulable by the
schedulability test remains schedulable when the parame-
ters of one or more individual job[s] are changed in any,
some, or all of the following ways: (i) decreased execu-
tion requirements; (ii) later arrival times; (iii) smaller jit-
ter; and (iv) larger relative deadlines.

Intuitively, sustainability requires that schedulability be pre-
served in situations in which it should be “easier” to ensure
schedulability1. This is the opposite property to that of ro-
bustness: a robust system retains schedulability even when
it operates beyond the worst-case assumptions used in its
schedulability test, e.g., when jobs arrive earlier than ex-
pected, or have greater execution requirement than permit-
ted. Clearly a system can never be fully robust - at some
point the system will become so overloaded that it will fail.
However it is not ruled out that a system could in principle
be fully sustainable, since no amount of ‘underload’ need
force failure.

1Mok and Poon [16] use the term robustness to denote what is called
sustainability in this paper, we feel the use of ‘robustness’ confuses two
distinct properties. The term ‘stability’ is also used in this context, but
again there is confusion with the more normal use of this term in the control
literature.



Summary of results. At first glance, it may appear that
the concept of sustainability is well-understood and is in-
corporated into current schedulability tests. However, we
demonstrate in this paper that this is a misconception: there
are many issues concerning sustainability that have not been
explored. This extremely important schedulability property
deserves a methodical and systematic study; in this paper,
we have attempted to perform such a study in the context
of preemptive uniprocessor scheduling. Most preemptive
schedulability tests turn out to indeed be sustainable with
respect to the execution-requirement parameter, but many
common schedulability tests are not sustainable with re-
spect to the remaining parameters. Indeed, we demonstrate
that several well-known schedulability tests are not sustain-
able (see, e.g., Theorem 11). We also prove that both the
response time analysis and the processor demand criteria
tests are sustainable under reasonable assumptions on their
use; perhaps this property contributes to the popularity of
these particular schedulability tests. At a higher level, we
attempt to draw larger lessons concerning which properties
of schedulability tests tend to render them sustainable or
not.

Organization. The remainder of this paper is organized
as follows. Section 2 describes the terminology, notations
and system model. Section 3 further motivates the use of
sustainable schedulability analysis and argues that sufficient
and sustainable schedulability is usually more important
than sufficient and necessary. The analysis of fixed prior-
ity systems is covered in Section 4, and dynamic-priority
analysis in Section 5. Factors that tend to make it difficult
to achieve sustainable schedulability analysis are identified
in Section 6; in particular, it is noted that task offsets, and
best-case execution-time estimates, are rather brittle with
regard to sustainability.

2. System Model
We focus our attention in this paper to the uniprocessor
scheduling of periodic and sporadic task systems. A real-
time system, A, is assumed to consist of N tasks each of
which gives rise to a series of jobs that are to be executed
on a single processor. Each task τi is characterized by sev-
eral parameters:

• A worst-case execution time Ci, representing the max-
imum amount of time for which each job generated by
τi may need to execute.

• A relative deadline parameter Di, with the interpreta-
tion that each job of τi needs to complete execution
within Di time units of its arrival.

• A release jitter Ji, with the interpretation that each job

of τi is not eligible to execute until Ji time units after
its arrival.

• A period or minimum inter-arrival time Ti; for peri-
odic tasks, this defines the exact temporal separation
between successive job arrivals, while for sporadic
tasks this defines the minimum temporal separation be-
tween successive job arrivals.

Let Π denote a dispatching policy such as EDF or fixed-
priority. A periodic task system is said to be Π-schedulable
if all jobs of all tasks meet their deadlines when the task
system is scheduled using dispatching policy Π. A sporadic
task system is said to be Π-schedulable if all jobs of all tasks
meet their deadlines for all patterns of jobs arrivals that sat-
isfy the specified inter-arrival constraints. A task system is
said to be feasible if it is Π-schedulable for some dispatch-
ing policy Π.

For a system that must be guaranteed, a schedulability
test is applied that is appropriate for the dispatching policy
of the execution platform. A schedulability test is defined to
be sufficient if a positive outcome guarantees that all dead-
lines are always met. Clearly sufficiency is critically im-
portant for most hard-real-time systems. A test can also be
labelled as necessary if failure of the test will indeed lead
to a deadline miss at some point during the execution of the
system. A sufficient and necessary test is exact and hence
is in some sense optimal; a sufficient but not necessary test
is pessimistic, but for many situations an exact test is in-
tractable. From an engineering point of view, a tractable
test with low pessimism is ideal.

Observe that declaring a schedulability test to be sustain-
able represents a stronger claim than simply that a task sys-
tem deemed schedulable by the test would remain schedu-
lable with “better” parameters (e.g., with larger periods or
relative deadlines, or with smaller execution-requirements
or jitters). A sustainable system must continue to meet
all deadlines even if the parameter changes occur “on
line” during run-time. We also permit that the parameters
change back and forth arbitrarily many times. The only re-
striction we will place on such parameter-changing is that
each generated job have exactly one arrival time, ready-
time, execution requirement, and deadline during its life-
time. (We are not requiring that this exact execution require-
ment be known beforehand – it may only become known by
actually executing the job to completion.)

A schedulability test may be sustainable with respect
to some, but not all, task parameters. For example, it is
easy to show that all sufficient schedulability tests for fixed-
priority preemptive scheduling are sustainable with respect
to execution-requirement; however, Example 1 illustrates
that no exact schedulability test for the fixed-priority pre-
emptive scheduling of periodic task systems can be sustain-
able with respect to jitter. One of the objectives of our re-



search is to identify the parameters with respect to which
some of the more commonly-used schedulability tests are
sustainable.

2.1. Other task parameters

Some additional parameters are sometimes used in repre-
senting periodic and sporadic task systems:

• An offset parameter Oi for periodic tasks, denoting the
arrival time of the first job of τi. (Periodic task systems
in which all tasks have the same value for the offset
parameter are referred to as synchronous or zero-offset
periodic task systems.)

• Minimum or best-case execution times (BCET’s) of
jobs of a periodic or sporadic task.

Offsets and BCET’s may allow for a more accurate rep-
resentation of actual system characteristics; unfortunately,
they both seem inherently incompatible with sustainability.
That is, schedulability tests that do not “ignore” these pa-
rameters are generally not sustainable in that task systems
deemed schedulable cease to be so if not just these param-
eters change, but also if other parameters such as the dead-
line or period change “for the better” (see Section 6). It
seems that the safe way to analyse systems with offsets and
BCET’s is to ignore them (i.e., assume that all these param-
eters are equal to zero).

2.2. Sharing non-preemptable resources

Otherwise independent tasks may interact through the shar-
ing of additional serially reusable non-preemptable re-
sources. The presence of such shared resources gives rise
to blocking, and schedulability tests for such systems must
take blocking into account. The sustainability of such
schedulability tests is considered in Sections 4.4 and 5.1.

3. Motivation
Concentrating first on execution time, it is clear from all
forms of WCET analysis that the Ci parameters are upper
bounds. These may in itself overestimate the worst-case
situations (due to difficulties in modelling a processor with
caches, pipeline, out-of-order execution, branch prediction
etc). Additionally, any particular job may not take its worst-
case path and hence will require a computational resource
significantly less than even a tight upper bound. For all re-
alistic systems considerable variability in execution times
are to be expected and hence sustainable tests are required.
This may seem obvious but a number of forms of schedula-
bility analysis fail to have this property. Two of these will
be reviewed later in section 4.6.

As well as the natural variability in computation time, a
significant change in the Ci values can arise during a sys-
tem upgrade. Typically a faster CPU is introduced and one

would not expect time failures to then appear in what was a
timely system. There is however practical evidence of such
failures occurring in real systems due to the use of unsus-
tainable analysis2.

Although variability in computation time is the more
common, changes in the other parameters are also possi-
ble. Polling rates may change with a decrease in frequency
usually assumed to be safe. Sporadic tasks can arrive at
any time as long as there is a least Ti between any two ar-
rivals. For simple system models it is easy to prove that the
worst-case behaviour of a sporadic task is when it arrives
at its maximum rate (i.e. performs like a periodic task).
But for other models the worst-case critical behaviour is not
as easy to identify. For example in the analysis of (n, m)-
hard deadlines a sufficient and necessary test would need
to first model the worst-case arrival patterns of high prior-
ity sporadic jobs since this does not occur when they ar-
rive with maximum frequency [6]. The resulting analysis is
complex (indeed intractable for large systems) and unsus-
tainable. Better to use a simple form of sufficient but not
necessary test that is sustainable.

Sustainability with respect to the deadline parameter is a
significant issue only with respect to those scheduling poli-
cies, such as EDF (and associated resource-sharing proto-
cols such as the Stack Resource Policy) that incorporate the
deadline parameter into their specification. Otherwise since
all models of time are transitive, if a job completes before its
deadline di and a new deadline d′

i is introduced with d′
i > di

then it follows that the job completes before d′
i as well.

The final parameter, release jitter, Ji, can decrease due
to improvements in the system timer or because of reduced
variability in other parts of the system. For example in a
distributed system where a job (τj) is on another node but
causes the release of τi, the jitter for τi is equal to the re-
sponse time of τj [7]. If τj has its response time reduced
via an increase in processor speed then τi’s release jitter will
also reduce. We require sustainability over the jitter param-
eter to prevent such circumstances becoming a problem.

4. Analysis for FP Scheduling
In this section we focus on fixed priority scheduling. First,
we show that not all fixed-priority schedulability tests are
sustainable: in particular, we prove that the exact fixed-
priority schedulability test of Leung and Whitehead [14] is

2It is difficult to provide reference material to substantiate this observa-
tion, nevertheless the first author is aware of a number of real projects that
have failed or underachieve due to this type of timing problem. For exam-
ple a control system that could not generate output in the same minor cycle
as the associated input. The time constant in the control loop was therefore
chosen to reflect this behaviour. During system upgrade a faster processor
was used with the result that output was now produced in the same minor
cycle leading to a degrade in control (as the time constant was not updated
- the control engineers were not involved in the system upgrade).



not sustainable with respect to the jitter or offset param-
eters. Then, we focus on two common forms of analy-
sis: utilization-based analysis [15, 12], and Response Time
Analysis (RTA) [11, 20]. We prove that both are sustainable
with respect to all parameters, and that RTA remains sus-
tainable even when additional non-preemptable resources
must be shared among jobs of different tasks.

4.1. The Leung and Whitehead test

The exact fixed-priority schedulability test for periodic task
systems proposed by Leung and Whitehead essentially con-
sists of simulating system behaviour over the time interval
[0, 2H + max{Oi}) (here, H denotes the hyper-period —
the least common multiple of the periods — of the task sys-
tem), and declaring the system schedulable if and only if no
deadlines are missed.

Example 1 below illustrates that this test is not sustain-
able with respect to the jitter parameter, by demonstrating
that a system that is deemed fixed-priority schedulable by
the Leung and Whitehead test in the presence of release jit-
ter may cease to be so when the jitter is reduced.

Example 1 Consider the periodic task system comprised of
the two tasks τ1 and τ2. Both tasks have zero offset; task
τ1’s parameters are C1 = 1, D1 = T1 = 2, and J1 = 0.5;
and task τ2’s parameters are C2 = 1.5, D2 = T2 = 3, and
J2 = 0. It may be verified that this system is deemed fixed-
priority scheduled by the Leung and Whitehead test if τ1

is assigned the higher priority; however, if J1 is reduced to
zero then τ2’s first job misses its deadline. 2

We will see in Section 6 that the Leung and Whitehead
test is not sustainable with respect to offset parameters, ei-
ther. In fact if some of the tasks have non-zero offset param-
eters, Example 2 in Section 6 illustrates that the Leung and
Whitehead test is unsustainable with respect to the period
parameter even if the values of the offset parameters are
maintained – neither increased nor decreased.

Thus, it is evident that the Leung and Whitehead fixed-
priority schedulability test, despite being an exact test, is
not sustainable along many dimensions. This is one of the
reasons (the computational complexity of the test – expo-
nential in the representation of the task system – is another)
that this test is not nearly as commonly used as the schedu-
lability test we study next: the response time analysis test.

4.2. Response Time Analysis (RTA)

We shall start by assuming independent tasks, no jitter,
and deadline parameters no larger than periods (i.e., Di ≤
Ti ∀i). Suppose that we are given a specific priority assign-
ment for such a task system. For all i, let hp(i) denote the
set of tasks with higher priority than τi. Suppose that all
tasks generate a job at the same instant in time — such a

time-instant is called a critical instant for the task system
— and each τj generates subsequent jobs exactly Tj time
units apart. (Such a job arrival sequence, starting with a
critical instant, is sometimes referred to as a critical arrival
sequence). It has been proved that if all deadlines are met
for the critical arrival sequence, then all deadlines are also
met for any other job arrival sequence that the task system
may legally generate3.

Let Ai(t) denote the amount of execution that task τi is
guaranteed over the time-interval [0, t), if the critical arrival
sequence of jobs occurs. The RTA methodology is based on
the observation that

Ai(t) ≥ t −
∑

j∈hp(i)

⌈

t

Tj

⌉

Cj , (1)

since the second term (the summation) in Expression (1)
represents the total amount of time over [0, t) that tasks in
hp(i) are executing, thereby denying execution to τi.

If Ai(t) ≥ Ci, then it is guaranteed that τi’s first job
has completed by time-instant t. Hence, the worst-case re-
sponse time for τi is given by the smallest value of Ri that
satisfies the following equation:

Ai(Ri) ≥ Ci

i.e.,



Ri ≥ Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj



 (2)

The RTA schedulability-analysis test consists of validat-
ing that the smallest Ri satisfying Equation (2) above is
≤ Di, ∀i. This is an exact (i.e., sufficient and necessary)
test if system semantics permit the possibility of a critical
arrival sequence; else it is a sufficient test.

Theorem 1 Response time analysis of fixed priority pre-
emptive systems with independent tasks and zero jitter is
sustainable with respect to execution requirements, relative
deadlines and periods.

Proof. Suppose that a system is deemed schedulable; i.e.,
for all tasks τi the response-time Ri is no larger than the
relative deadline Di. Observe that Ai(t) — the amount of
execution available to task τi over [0, t) — can only increase
if job execution requirements decrease, and/ or job periods
increase. Hence if a value of Ri satisfying Equation (2)
was obtained for the specified system, it follows that further
increasing Ai(Ri) cannot deny τi’s job Ci units of execu-
tion over [0, Ri). Consequently, the RTA methodology is
sustainable with respect to execution-requirements and pe-
riods.

Changing deadlines of jobs of tasks other than τi’s has
no effect on τi’s ability to meet its deadline. Since the “≤”

3Strictly speaking, this is only true for systems of independent tasks
in which all jobs are ready for execution immediately upon arrival. The
analog arrival sequence for the case when tasks may exhibit jitter is derived
in [7]. Incorporating jitter into RTA is discussed in Section 4.5.



relationship is transitive in all models of time used in real-
time scheduling theory, if Ri ≤ Di and a new deadline D′

i

is introduced, then it follows that Ri ≤ D′
i as well. Hence,

the RTA methodology is sustainable with respect to relative
deadlines as well. 2.

Under the assumptions adopted above — independent
tasks, no jitter, and Di ≤ Ti ∀i — it has been shown [14]
that the Deadline Monotonic (DM) priority assignment pol-
icy is optimal among all fixed priority assignments. In DM
priority assignment, tasks are assigned priorities in inverse
relationship to their deadline parameters (the smaller the
deadline the higher the priority of the task).

Although the above theorem demonstrates that an in-
crease in any Di parameter cannot jeopardise schedulabil-
ity, after such a parameter change the priority-assignment
may no longer correspond to DM. That is, there may be a
“more” optimal priority ordering if a deadline is extended
such that it is now longer than some other task’s deadline.
However, this does not effect sustainability since the system
was schedulable even before the move to optimal – deadline
monotonic – order.

Note that as any Ci parameter can be reduced by an ar-
bitrary amount, sustainability covers the case of where a Ci

value can be reduced to zero, i.e. the removal of a task for
the system.

4.3. Utilization-based analysis
For systems comprised of independent periodic or sporadic
tasks that all have their deadline parameters at least as large
as their deadlines (i.e., Di ≥ Ti ∀i), it has been shown [15]
that the rate-monotonic (RM) priority assignment, which
assigns higher priorities to tasks with smaller values of the
period parameter, is an optimal fixed-priority assignment
scheme. Utilization-based RM-schedulability analysis [15]
consists of determining whether the following inequality is
satisfied:

N
∑

i=1

(

Ci

Ti

)

≤ N(21/N − 1) ; (3)

if so, then the system is guaranteed to be RM-schedulable.
Kuo and Mok [12] provide a potentially superior utiliza-

tion bound for task systems in which the task period pa-
rameters tend to be harmonically related. Let Ñ denote the
number of harmonic chains is the task system; then a suf-
ficient condition for a task system to be RM-schedulable is
that

N
∑

i=1

(

Ci

Ti

)

≤ Ñ(21/Ñ − 1) . (4)

Consider, as an example, a system comprised of N = 4
tasks with T1 = 2, T2 = 4, T3 = 8, and T4 = 16. By
Equation (3), the utilization bound for this task system is
4 × (21/4 − 1), which equals ≈ 0.757. However, since
2, 4, 8, and 16 comprise one harmonic chain, Ñ = 1 and the
utilization bound as given by Equation (4) is 1 × (21 − 1),
which equals 1. Thus, the bound of Equation (4) is an im-
provement on the bound of Equation (3). In general, since

the number of harmonic chains in a system of N tasks is
never more than N and may be less, the bound of Equa-
tion (4) is superior to the bound of Equation (3).

Observe, however, that increasing period parameters of
tasks in a system may result in an increase or a decrease
in the number of harmonic chains. Hence at first glance, it
may appear that the utilization bound of Equation (4) is not
sustainable with respect to period parameters. Returning to
our previous 4-task example, suppose that T3 increases to
10; while 2, 4, and 16 continue to comprise a single har-
monic chain, 10 is not a part of this chain and hence Ñ
becomes equal to 2. The resulting utilization bound given
by Equation (4) is 2 × (21/2 − 1), which equals ≈ 0.83.
The utilization bound thus fell from 1.00 to 0.83 when the
period parameter of a task increased, which would seem to
violate sustainability.

However, it turns out that both utilization-based tests de-
scribed above – the original one from [15] and the one con-
sidering harmonic chains [12] – are in fact as sustainable as
the RTA-based test. This is a consequence of Observation 1
below, which follows directly from analysis of the proofs of
the utilization bounds in [15, 12].

Observation 1 Any system deemed schedulable by the
utilization-based tests in [15, 12] is also deemed schedu-
lable by the RTA test of Section 4.2.

Theorem 2 below follows from Theorem 1 and this obser-
vation.

Theorem 2 The utilization-based RM-schedulability tests
represented by Equation (3) and Equation (4) are sustain-
able with respect to execution requirements, deadlines, and
periods.

4.4. RTA: Incorporating blocking

When tasks share non-preemptable serially reusable re-
sources, a lower-priority job holding such a resource may
delay (“block”) the execution of some higher-priority job.
Hence there is a need to incorporate a blocking term into
response-time analysis for such systems, and Equation (1)
can be generalized to account for such blocking as follows:

Ai(t) ≥ t − Bi −
∑

j∈hp(i)

⌈

t

Tj

⌉

Cj

The blocking term Bi arises from the task interactions
via shared objects implementing some form of concurrency
control protocol such as a priority ceiling protocol[19, 18].
The formula for calculating Bi is typically as follows. Let
K be the number of critical sections (shared objects).

Bi =
K

max
k=1

usage(k, i)c(k) (5)



where usage is a 0/1 function: usage(k, i) = 1 if resource
k is used by some task with priority less than that of τi’s,
and some task with priority greater than or equal to that of
τi’s. Otherwise it gives the result 0; c(k) is the worst-case
execution time of the k’th critical section.

As in Section 4.2, the worst-case response time for τi is
once again given by the smallest value of Ri that satisfies
Ai(Ri) ≥ Ci, i.e.,

Ri ≥ Ci + Bi +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj (6)

Observe that the blocking term is not effected by changes
to relative deadlines and periods. Decreases in some c(k)
values may decrease Bi, but since Bi appears only in the
RHS of Equation (6) any Ri satisfying Equation (6) will
continue to do so subsequent to any such decrease in Bi.
From this we conclude that RTA incorporating blocking is
sustainable with respect to execution requirements, relative
deadlines, and periods.

Note the blocking term is an upper bound. There is no
attempt in the analysis framework to decide if this level of
blocking will actually occur at run-time. For well structured
preemptive systems, the blocking term is usually very small
in comparison with the task’s full execution time and hence
the pessimism within Equation (6) is acceptably small. We
shall illustrate in section 4.6 that attempts to provide exact
analysis (sufficient and necessary) can lead to sacrificing
sustainability.

4.5. RTA: Incorporating release jitter
The final parameter to be incorporated into the definition of
sustainability is release jitter. The effect of jitter is that if
each higher-priority task τj’s first job in the critical arrival
sequence executes with maximum jitter, then d(t+Jj)/Tje)
jobs of τj may get to execute in the interval [0, t) — see [7].
Equation (1) can be generalized to account for the effect of
jitter as follows:

Ai(t) ≥ t −
∑

j∈hp(i)

⌈

t + Jj

Tj

⌉

Cj ,

Once again, the worst-case response time for τi is equal
to the smallest value of Ri that satisfies Ai(Ri) ≥ Ci, i.e.,

Ri ≥ Ci + Bi +
∑

j∈hp(i)

⌈

Ri + Jj

Tj

⌉

Cj (7)

Again it is clear that for any given Ri decreasing the jit-
ter for any higher-priority job will either decrease, or leave
unchanged, the RHS of Equation (7); hence, any Ri satis-
fying Equation (7) will continue to so so subsequent to any
such decrease in jitter. Putting this result together with the
results in Sections 4.2-4.4, we can conclude that

Theorem 3 Response time analysis of fixed priority pre-
emptive systems is sustainable.

The optimal priority assignment for systems with jitter is
(D−J) monotonic [8, 21]. A decrease in J , like an increase
D, may impact on priority ordering, but again schedulabil-
ity will be sustained as the optimal scheme must schedule
any task set that is already schedulable by a different prior-
ity ordering.

4.6. Sufficient, necessary but not sustain-
able analysis

The above discussion has shown that in general RTA is suf-
ficient and sustainable, but may not be necessary. Here we
consider tests that attempt to be exact but which cannot be
sustainable.

The first example is schedulability tests based on model
checking (eg [5, 2]). Advocates of this approach argue that
model checking can produce exact analysis. Typically they
do this by exploring the real blocking that can occur in a
system. This may be less than the upper bound given in
Equation (5). A system may therefore be deemed to be un-
schedulable by RTA but schedulable by a model checking
test. Whilst this is true, the experimental state explosion as-
sociated with model checking makes this form of analysis
totally impractical for realistic systems unless some form of
simplification of the system model is undertaken. The most
common simplification is to assure that each task’s execu-
tion is exactly C (not less)4. This results in an exact test
for these particular parameters but not a sustainable test. A
small reduction in one C value may lead to a change in
execution order that could significantly increase blocking.
Consider the simple example illustrated in Figure 1. Here
task X is released at time 0, task Y is released at time 4 and
task Z at time 2. As X has the highest priority, then Y and
then Z, Z does not start its execution until time 8 and the re-
sponse time of Y is 4 (its execution time). Note that shaded
area of Z represent the time during which Z executes with
an inherited priority due to it accessing a shared object.

0 4 6 8 10 12 142

X

Y

Z

Figure 1. Example Execution - 1

In Figure 2, task X completes early (smaller C). Now
Z starts to execute before Y arrives, at time 3 it accesses
the shared object with a priority higher than task Y. As a
result Y’s execution is postponed and its response time in-

4An alternative simplification is to allow a short range for C, but to
assume non-preemptive dispatching[1].



creases. With RTA, Y is always assumed to have this maxi-
mum blocking and hance a reduction in CX does not impact
on schedulability.

0 4 6 8 10 12 142

X

Y

Z

Figure 2. Example Execution - 2

The second example also comes from the problem of
blocking but concerns the more sizeable blocking that can
occur with non-preemptive systems. Mok and Poon [16]
observe that exact analysis of such systems can lead to
anomalies in that a system that is initially schedulable can
become unschedulable when C values are reduced or T val-
ues increased. They proceed to analyse in detail the prop-
erties of these anomalies, but arguably what is actually re-
quired is a sustainable test for non-preemptive systems. For-
tunately such a test exists [7] and this is sustainable.

5. Analysis for EDF Scheduling
The Earliest Deadline First scheduling algorithm (EDF) pri-
oritizes active jobs according to their deadlines: the earlier
the deadline, the higher the priority, with ties broken arbi-
trarily. Since the run-time behaviour of an EDF-scheduled
system is determined by the deadlines of the jobs, an in-
crease in the deadline parameter may change the relative
ordering of execution of the jobs. Hence it is not imme-
diately obvious whether EDF-schedulability analysis will
prove sustainable or not.

Fortunately, EDF-schedulability analysis algorithms turn
out to be remarkably sustainable. We can easily prove such
sustainability indirectly, by exploiting the well-known opti-
mality property of preemptive uniprocessor EDF: that EDF
is an optimal scheduling algorithm upon preemptive unipro-
cessors, in the sense that if a collection of jobs can be sched-
uled by any scheduling algorithm to meet all deadlines then
EDF also schedules this collection of jobs to meet all dead-
lines.

The following theorem is useful in proving the sustain-
ability of preemptive EDF schedulability tests.

Theorem 4 Let I = {(ri, ci, di)}i≥1 denote a collection of
independent jobs, each characterized by a release time ri,
an exact execution requirement ci, and an absolute deadline
di. If I is EDF-schedulable on a preemptive uniprocessor,
then so is I ′ = {(r′i, c

′
i, d

′
i)}i≥1, provided that r′i ≤ ri,

c′i ≤ ci, and d′
i ≥ di, for all i ≥ 1.

Proof Observe that the EDF schedule of I is also a sched-
ule for I ′ (although this is not necessarily the schedule that
would have been generated by EDF on I ′). Hence, this EDF
schedule of I bears witness to the feasibility of I ′. Since
EDF is optimal on preemptive uniprocessors, it is therefore
guaranteed to successfully schedule I ′ to meet all deadlines
2

Theorem 4 above directly leads to a sustainability re-
sult with respect to the jitter, execution requirement, and
relative-deadline parameters for EDF-scheduling:

Corollary 1 Any sufficient EDF-schedulability test for pe-
riodic or sporadic task systems on preemptive uniproces-
sors is sustainable with respect to jitter, execution require-
ment, and relative deadlines.

It remains to consider sustainability issues with respect
to the period/ inter-arrival separation parameter.

Theorem 5 Any sufficient test for the EDF-scheduling of
sporadic task systems is trivially sustainable with respect to
the inter-arrival separation parameter.

Proof: This follows from the observation that any job ar-
rival pattern resulting from increasing the inter-arrival sep-
aration parameter[s] are among the legal job arrival patterns
of the original system. 2

For any periodic task system, let us define the derived
sporadic task system to be the sporadic task system com-
prised of tasks with identical jitter, relative-deadline, exe-
cution requirement, and period parameters. The following
results from prior research relate the EDF-schedulability of
periodic task systems to the EDF-schedulability of sporadic
task systems (recall that a zero-offset periodic task system
is one in which the offset parameter Oi of all tasks is the
same).

Theorem 6 (from [4])

1. A zero-offset periodic task system is EDF-schedulable
if and only if its derived sporadic task system is EDF-
schedulable.

2. A periodic task system is EDF-schedulable if its de-
rived sporadic task system is EDF-schedulable.

We now state our results concerning sustainability of
EDF-schedulability tests for periodic task systems with re-
spect to the period parameter:

Theorem 7 Any sufficient test for the EDF-scheduling of
zero-offset periodic task systems is sustainable with respect
to the period parameter.

Proof: Follows from Theorem 6 (1), and Theorem 5, since
the job arrival pattern resulting from increasing period pa-
rameter[s] of a zero-offset periodic task system is among



the legal job arrival patterns of the derived sporadic task
system. 2

Theorem 8 Any sufficient EDF-schedulability test applied
to the derived sporadic task system is a sustainable EDF-
schedulability test for periodic task systems with respect to
the period parameter.

Proof: Follows from Theorem 6 (2) and Theorem 5. Ob-
serve, however, that the test may prove to be more pes-
simistic for the periodic task system than it is for the de-
rived sporadic task system; in particular, using an exact
EDF-schedulability test for the derived sporadic task sys-
tem would result in a sufficient (but not exact) test for the
periodic task system. 2

We now discuss the sustainability of specific commonly-
used EDF-schedulability tests. These tests come in two
flavours: utilization-based, and one based upon processor
demand criteria.

Utilization based test. The utilization-based test deems
task system τ = {τ1, τ2, . . . , τN} to be EDF-schedulable
upon a unit-capacity preemptive processor if the following
condition is satisfied:

N
∑

i=1

(

Ci

Ti

)

≤ 1 . (8)

The utilization-based test is exact for systems comprised
entirely of tasks that each have (i) zero jitter, and (ii) dead-
line parameters no smaller than period parameters; if some
tasks τi have Di < Ti or Ji > 0, the utilization-based
test can be shown to not be sufficient for ensuring EDF-
schedulability.

The processor demand criteria tests. For any task τi and
any non-negative number t, let us define the processor de-
mand DBFi(t) to be the largest possible cumulative exe-
cution requirement by jobs of task τi, that have both their
ready times and their deadlines over any time interval of
length t.

The following observation will be used later in this sec-
tion:

Observation 2 The processor demand DBFi(t) is monoton-
ically non-increasing with respect to increasing Di and Ti,
and decreasing Ci and Ji.(These changes may be on-line.)

By the processor demand criteria EDF-schedulability test, a
task system τ is deemed to be EDF-schedulable if

∀ t : t ≥ 0 :

[(

N
∑

i=1

DBFi(t)

)

≥ t

]

. (9)

The processor demand criterion EDF-schedulability test
algorithm is exact if there may be a critical instant in which

all tasks in the system generate a job simultaneously; oth-
erwise it is sufficient but not necessary. Hence, it is exact
for sporadic and zero-offset periodic task systems, and suf-
ficient for periodic task systems with arbitrary offsets.

Theorem 9 Both the utilization-based and the processor
demand criterion EDF schedulability tests are sustainable.

Proof. Follows from Corollary 1 and Theorem 8. 2

5.1. Task interaction and blocking
When tasks interact through the sharing of non-preemptable
serially reusable resources, blocking of higher-priority (i.e.,
earlier deadline) jobs by lower-priority (later-deadline) jobs
may occur. The Stack Resource Policy (SRP) [3] is typi-
cally used in EDF-scheduled systems to arbitrate access to
such resources. In [3, 17], sufficient conditions for a task
system to be schedulable under the EDF+SRP scheduling
framework are derived. For any two tasks τj and τk with
Dj > Dk, let Cjk denote the maximum length of time for
which τj may hold some non-preemptable resource that is
also used by τk. Define a blocking function B(t) as follows:

B(t)
def
= max{Cjk | Dj > t and Dk ≤ t} .

From results in [17], it can be concluded that

∀t ≥ 0 :

(

B(t) +

n
∑

`=1

DBF`(t)

)

≤ t . (10)

is sufficient for guaranteeing that all deadlines are met un-
der EDF+SRP. We will refer to this schedulability test as
the enhanced processor demand test.

Theorem 10 The enhanced processor demand test for
EDF+SRP schedulability analysis is sustainable with re-
spect to the deadline, execution-time, period, and jitter pa-
rameters.

Proof Sketch: From Observation 2, it follows that that the
summation term in Inequality (10) can only decrease with
increasing deadlines and periods, and decreasing execution-
times and jitter. Furthermore, B(t) does not change with
changes to period, and can only decrease with decreasing
execution-time. It therefore follows that the enhanced pro-
cessor demand test is sustainable with respect to execution
requirement and period.

It remains to determine whether Inequality (10) contin-
ues to hold if deadlines increase, or jitters decrease. The
concern here is with respect to the blocking term (B(t))
— in order for one job to block another under EDF+SRP
scheduling, it is necessary that the blocking job have a
ready-time earlier than, and a deadline later than, the
blocked job. The following scenario illustrates this with re-
spect to increasing deadlines:

Suppose that jobs J1 and J2 share some non-
preemptable resource. Job J1 has an earlier deadline than
J2, and J2 has an earlier deadline than J3, in the original



system (i.e., as per system specifications). Since a job may
only be blocked by only lower-priority (later-deadline) jobs,
neither J1 nor J2 can possibly block J3.

However, suppose that J2’s deadline increases during
run-time to later than J3’s. As a consequence, J3 can now
be blocked by J2.

A similar scenario can be envisioned in which blocking
is introduced when a task’s jitter is decreased, resulting in
some job’s ready-time being moved forward.

These scenarios lead us to the conclusion that increas-
ing deadlines and/ or reducing jitter may introduce block-
ing where earlier there was none.

However, a moment’s reflection should convince us that
the introduction of such blocking cannot result in missed
deadlines if the original system passed the enhanced proces-
sor demand test. This is because all such newly-introduced
blocking was already accounted for in the analysis that re-
sulted in Inequality (10). Specifically, every task’s execu-
tion was accounted for in the LHS of Inequality (10), ei-
ther as a potential blocker or as a contributor to the sum-
mation term. Increasing deadlines can change a task’s con-
tribution from the summation term to a role as a potential
blocker; however, such change can only decrease (or leave
unchanged) the total contribution of the task to the LHS of
Inequality (10) for any L. (Thus in the scenario described
above, job J2’s entire worst-case execution requirement,
and not just the length of its blocking critical section, would
have been included in the summation term on the LHS of
Inequality (10).) 2

6. Other task parameters: offsets and BCET’s

As stated in Section 2, an additional parameter that is some-
times defined for periodic tasks is the offset parameter Oi,
denoting the arrival time of the first job of τi. There are
two common reasons for using offsets in the system model:
(i) they represent features of the system being modelled,
for example precedence relations, and (ii) they are intro-
duced to enhance the schedulability of the system. Ex-
amples of schedulability tests that take account of offsets
includes the exact fixed-priority-test of Leung and White-
head [14] that we briefly discussed in Section 4, and the
exact EDF-schedulability test proposed by Leung and Mer-
rill [13]. Both these tests simulate the system over the time
interval [0, 2H+max{Oi}), and declare the system schedu-
lable if no deadlines are missed (recall that H denotes the
hyper-period).

Schedulability tests that use the offset parameter are not
sustainable: A system may be schedulable with a partic-
ular set of offsets but become unschedulable with either a
decrease or increase in any of these values. Furthermore,
periodic task systems with non-zero offsets that are deemed
to be schedulable may miss deadlines if task periods are

increased. This is illustrated in the following example.

Example 2 Consider the periodic task system comprised
of the two tasks τ1 and τ2. Task τ1’s parameters are
O1 = 0, C1 = D1 = 1, T1 = 2, and task τ2’s parame-
ters are O2 = 1, C2 = D2 = 1, T2 = 2. Both tasks have
zero release jitter (J1 = J2 = 0). It may be verified that
this system is deemed schedulable by both the fixed-priority
test [14] and the EDF test [13]: tasks τ1 and τ2 execute in
alternate time-slots.

However, if T2 is now increased from 2 to 3, both tasks
will generate jobs with execution-requirement one each at
time-instant 4; one of these jobs necessarily misses its dead-
line at time-instant 5. 2

Thus the presence of non-zero offsets may compromise
a system’s schedulability with respect to not just changing
offsets, but increasing periods as well. This effect on the
exact schedulability tests of [13, 14] is formalized in the
following theorem:

Theorem 11 The exact fixed-priority and EDF- schedula-
bility tests for periodic task systems with offsets presented
in [13, 14] are not sustainable with respect to the period
parameter.

Thus offsets seem inherently incompatible with sustain-
ability: introducing offsets during system design time in or-
der to enhance feasibility risks rendering the system unsus-
tainable even if the values of the offset parameters are kept
constant. The only safe way to analyse offsets seems to be
to ignore them; i.e. assume that they are all equal to zero.
(This is of course an unreasonable approach if the whole
point of using offsets was to obtain schedulability – if that
be the case, then it seems that sustainability is not an attain-
able goal.)

An additional parameter that is sometimes defined for
periodic and sporadic tasks is the best-case5 execution time
(BCET) of either the entire job, or a portion thereof. These
parameters are used, for example, in [17] to determine
bounds on the maximum amount by which lower-priority
jobs may block higher-priority ones when non-preemptable
resources must be shared between jobs. Best-case execution
time parameters, too, seem inherently incompatible with
sustainability: feasible systems may become infeasible if
not just the best-case execution time parameters change,
but also if other parameters such as the deadline change for
the better. As with offsets, it seems that the only safe way
to analyse systems with best-case execution times is to ig-
nore them (i.e., assume that all these parameters are equal
to zero).

5The term “best” is used in this context as a synonym for “minimum.”



7. Conclusions and related work
Schedulability tests are currently characterized as being
necessary and/ or sufficient. This paper has introduced
an additional characteristic: sustainablility. Sustainable
schedulability tests ensure that a system that has been suc-
cessfully verified will meet all its deadlines at run-time even
if its operating parameters change for the better during sys-
tem run-time. The parameters of interest for a periodic or
sporadic task are its execution time and release jitter (that
can be reduced) and its deadline and period (that can be
increased). It seems difficult to obtain schedulability tests
that are necessary, sufficient, and sustainable for non-trivial
task models; this paper has argued that from an engineer-
ing standpoint, sufficient and sustainable tests are more use-
ful than the classic sufficient and necessary tests. EDF and
Fixed Priority scheduling tests have been investigated for
their sustainability: the evidence indicates that although
some exact tests are not sustainable, response-time analy-
sis and processor demand criteria tests do indeed have the
important property of sustainability.

In related work, Mok and Poon [16] have studied similar
issues in nonpreemptive scheduling of periodic task systems
in which all tasks have their relative deadline and period pa-
rameters equal – they refer to the concept of sustainability as
“robustness.” Recently, Buttazzo [9] has identified sources
of potentially anomolous behavior in real-time systems ex-
ecuting upon variable-speed processors. On multiprocessor
systems, Ha and Liu [10] have defined and studied a prop-
erty of scheduling algorithms that they call “predictability;”
informally, a scheduling algorithm is predictable if any task
system that is scheduled by it to meet all deadlines will con-
tinue to meet all deadlines if some jobs arrive earlier, or
have later deadlines.

References

[1] K. Altisen, G. Gößler, A. Pnueli, J. Sifakis, S. Tripakis, and
S. Yovine. A framework for scheduler synthesis. In IEEE
Real-Time Systems Symposium, pages 154–163, 1999.

[2] K. Altisen, G. Gößler, and J. Sifakis. Scheduler modeling
based on the controller synthesis paradigm. Real-Time Sys-
tems, 23(1-2):55–84, 2002.

[3] T. P. Baker. Stack-based scheduling of real-time processes.
Real-Time Systems: The International Journal of Time-
Critical Computing, 3, 1991.

[4] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In Proceed-
ings of the 11th Real-Time Systems Symposium, pages 182–
190, Orlando, Florida, 1990. IEEE Computer Society Press.

[5] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y.-S. Kim, I. Lee,
and H. Xie. A process algebraic approach to the schedu-
lability analysis of real-time systems. Real-Time Systems,
15(3):189–219, 1998.

[6] G. Bernat and A. Burns. Combining (n, m)-hard deadlines
and dual priority scheduling. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 46–57, 1997.

[7] A. Burns. Preemptive priority based scheduling: An appro-
priate engineering approach. In S. H. Son, editor, Advances
in Real-Time Systems, pages 225–248. Prentice- Hall, 1994.

[8] A. Burns, K. Tindell, and A. J. Wellings. Effective anal-
ysis for engineering real-time fixed priority schedulers.
IEEE Transactions On Software Engineering, 21(5):475–
480, 1995.

[9] G. Buttazzo. Achieving scalability in real-time systems.
IEEE Computer, pages 54–59, May 2006.

[10] R. Ha and J. W. S. Liu. Validating timing constraints in multi-
processor and distributed real-time systems. In Proceedings
of the 14th IEEE International Conference on Distributed
Computing Systems, Los Alamitos, June 1994. IEEE Com-
puter Society Press.

[11] M. Joseph and P. Pandya. Finding response times in a real-
time system. The Computer Journal, 29(5):390–395, Oct.
1986.

[12] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive real-
time systems. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 160–171, 1991.

[13] J. Leung and M. Merrill. A note on the preemptive schedul-
ing of periodic, real-time tasks. Information Processing Let-
ters, 11:115–118, 1980.

[14] J. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2:237–250, 1982.

[15] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[16] A. K. Mok and W.-C. Poon. Non-preemptive robustness un-
der reduced system load. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 200–209, 2005.

[17] R. Pellizzoni and G. Lipari. Feasibility analysis of real-time
periodic tasks with offsets. Real-Time Systems: The Inter-
national Journal of Time-Critical Computing, 30(1–2):105–
128, May 2005.

[18] R. Rajkumar. Synchronization In Real-Time Systems – A Pri-
ority Inheritance Approach. Kluwer Academic Publishers,
Boston, 1991.

[19] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

[20] A. Wellings, M. Richardson, A. Burns, N. Audsley, and
K. Tindell. Applying new scheduling theory to static prior-
ity pre-emptive scheduling. Software Engineering Journal,
8:284–292, 1993.

[21] A. Zuhily. Optimality of (D-J)-monotonic priority assign-
ment. Technical Report YCS404, Department of Computer
Science, University of York, 2006.


