Implementing Mixed Criticality Systems in Ada

Sanjoy Baruah and Alan Burns*

Department of Computer Science, The University of North Carolina, USA
*Department of Computer Science, University of York, UK

Abstract. Many safety-critical embedded systems are subject to certification re-
quirements. However, only a subset of the functionality of the system may be
safety-critical and hence subject to certification; the rest of the functionality is non
safety-critical and does not need to be certified, or is certified to a lower level. The
resulting mixed criticality system offers challenges both for static schedulability
analysis and run-time monitoring. This paper considers both of these issues and
indicates how mixed criticality applications can be implemented in Ada. In partic-
ular, code is produced to illustrate how the necessary run-time mode changes can
be supported. This support makes use of a number of the new features introduced
into Ada 2005.

1 Introduction

One of the ways that standard real-time systems has been extended in recent years is the
removal of the assumption that all tasks in the system have the same level of criticality.
Models have been produced that allow mixed criticality levels to co-exist on the same
execution platform. For systems that contain components that have been given different
criticality designations there are two, mainly distinct, issues: run-time robustness [7]
and static verification [12, 3].

Run-time robustness is a form of fault tolerance that allows graceful degradation
to occur in a manner that is mindful of criticality levels: informally speaking, in the
event that all components cannot be serviced satisfactorily the goal is to ensure that
lower-criticality components are denied their requested levels of service before higher-
criticality components are.

Static verification of mixed-criticality systems is closely related to the problem
of certification of safety-critical systems. The current trend towards integrating multi-
ple functionalities on a common platform (for example in Integrated Modula Avionics,
IMA, systems) means that even in highly safety-critical systems, typically only a rela-
tively small fraction of the overall system is actually of critical functionality and needs
to be certified. In order to certify a system as being correct, the certification authority
(CA) must make certain assumptions about the worst-case behavior of the system dur-
ing run-time. CA’s tend to be very conservative, and hence it is often the case that the
assumptions required by the CA are far more pessimistic than those the system designer
would typically use during the system design process if certification was not required.
However, while the CA is only concerned with the correctness of the safety-critical part
of the system the system designer wishes to ensure that the entire system is correct,
including the non-critical parts.

In this paper, we consider some of the scheduling issues involved in static verifi-
cation. But we consider in more detail the run-time robustness requirements and show
how they can be supported in Ada.

2 System Model

A system is defined as a finite set of components IC. Each component has a defined
level of criticality, L. Each component contains a finite set of tasks. Each task, 7;, is
defined by period, deadline, computation time and criticality level: (T;, D;, C;, L;).
These parameters are however not independent, in particular the following relations are
assumed to hold (for the same task) between L and the other parameters in any valid
mixed criticality system:

— The worst-case computation time, C;, will be derived by a process dictated by the
criticality level. The higher the criticality level, the more conservative the verifica-
tion process and hence the greater will be the value of C;.

— The deadline of the task may also be a function of the criticality level. The higher
the criticality level, the greater the need for the task to complete well before any
safety-critical timing constraint and hence the smaller the value of D,.

— Finally, though less likely, the period of a task could depend on criticality. The
higher the criticality level, the tighter the level of control that may be needed and
hence the smaller the value of T;.

These relations are formalised with the following axioms: if a component is reclas-
sified so that task, 7; is moved to criticality level L} from criticality level L? then

L} >L?=C} >C?
L} >L?= D} <D}
LI>L2=T<T?

At run-time a task will have fixed values of 7', D and L. Its actual computation time
is however unknown; it is not directly a function of L. The code of the task will execute
on the available hardware, and apart from catching and/or dealing with overruns the
task’s actual criticality level will not influence the behaviour of the hardware. Rather
the probability of failure (executing beyond deadline) will reduce for higher levels of L
(due to C' monotonically increasing with L).

In a mixed criticality system further information is needed in order to undertake
schedulability analysis. Tasks can depend on other tasks with higher or lower levels of
criticality. In general a task is now defined by: (T, D, C, L), where C is a vector of
values — one per criticality level, with the constraint:

L1>12=CH >k

for any two criticality levels L1 and L2.

The general task 7; with criticality level L; will have one value from its C; vector
that defines its representative computation time. This is the value corresponding to L;,
ie. C,L-L i. This will be given the normal symbol C;.

Definition 1 (Behaviors) During different runs, any given task system will, in general,
exhibit different behaviors: different jobs may be released at different instants, and may
have different actual execution times. Let us define the criticality level of a behavior to
be the smallest criticality level such that no job executed for more than its C' value at
this criticality level.

As previously stated, two distinct issues have been addressed concerning the schedul-
ing of mixed-criticality systems: static verification, and run-time robustness.

Static verification. From the perspective of static verification, the correctness criterion
expected of an algorithm for scheduling mixed-criticality task systems is as follows: for
each criticality level ¢, all jobs of all tasks with criticality > ¢ will complete by their
deadlines in any criticality-f behavior.

Run-time robustness. Static verification is concerned with certification — it requires
that all deadlines of all tasks 7; with L; > ¢ are guaranteed to be met, provided that
no job executes for more than its level-¢ worst-case execution time (WCET). Run-time
robustness, in addition, seeks to deal satisfactorily with transient overloads due either to
errors in the control system or to the environment behaving outside of the assumptions
used in the analysis of the system. Even in behaviors that have a high criticality level
by Definition 1 above, it may be the case that all jobs executing beyond their WCET’s
at some lower criticality level did so only for a short duration of time (i.e., a transient
overload can be thought to have occurred from the perspective of the lower criticality
level). A robust scheduling algorithm would, informally speaking, be able to “recover”
from the overload once it was over, and go back to meeting the deadlines of the lower-
criticality jobs as well. This is illustrated in the latter half of the paper.

3 Scheduling Analysis for Fixed Priority Scheduling

The distinctive feature of mixed criticality as opposed to partitioned criticality is that
schedulability is obtained from optimising the temporal characteristics of the tasks
rather than their important parameters.

Consider the common fixed priority deadline-monotonic scheduling scheme. Here
the key operational parameter priority (P) is derived solely from the deadlines of the
tasks. For any two tasks 7; and 7;: D; < D; = P; > P;. As noted earlier there will
be a natural tendency for high criticality tasks to have shorter deadlines, but this is not
a strong enough rule to result in a partitioning of deadlines (and hence priorities) via
criticality levels.

In general therefore we must consider mixed criticality systems in which a task may
suffer interference from another task with a higher priority but a lower criticality level.
A phenomenon that could be referred to as criticality inversion.

To test for schedulability, the standard Response Time Analysis (RTA) [9, 1] ap-
proach first computes the worst-case completion time for each task (its response time,
R) and then compares this value with the task’s deadline D (ie. tests for R; < D; for all
tasks 7;). The response time value is obtained from the following (where hp(7) denotes
the set of tasks with priority higher that than of task 7;):

Ri=Ci+ Fﬂ C; (M)
T;€hp(2)

This is solved using a recurrence relation.

Three cases need to be considered depending on whether the arbitrary higher prior-
ity task 7; has an equal, higher or lower criticality. For each case the correct value of
C'; must be ascertained:

1. If L; = L; then the tasks are at the same level of criticality and the normal repre-
sentative value C; is used.

2. If L; < L;j then it is not necessary to use the large value of computation time
represented by C';, rather the smaller amount corresponding to the criticality level
of C; should be used (as this is the level of assurance needed for this task). Hence
eqn (1) should use C’JL

3. If L; > L; then we have criticality inversion. One approach here would be to again
use C’f", but this is allowing 7; to execute for far longer than the task is assumed
to do at its own criticality level. Moreover, it would require all low criticality tasks
to be verified to the highest levels of importance, which would be prohibitively
expensive (and in many ways undermine one of the reasons for having different
criticality levels in the first place). Rather we should employ C';, but the run-time
system must ensure that 7; does indeed not execute for more than this value.

The latter point is crucially important. Obviously all the shared run-time software
must be verified to the highest critically level of the application tasks. One aspect of
this is the functionality that polices the execution time of tasks and makes sure they do
not ask for more resource that was catered for during the analysis phase of the system’s
verification. We note that Ada 2005 provides this functionality as illustrated in Section
5.

The response time equation (eqn 1) can be rewritten as:

R | min(L:,L;)
Ry =Ci+ > {TW C; 2
jchp(i) ' 7

Note that this use of minimum implies that values of C' are only required for the
task’s criticality level and all lower criticality levels (ie. not for higher).

3.1 Shared Objects

With a more realistic system model, tasks will not be independent but will exchange
data via shared objects protected by some mutual exclusion primitive or access control
protocol (as in Ada’s protected objects).

If an object is only used by tasks from the same component then it itself can be
assigned the criticality level of the component. More generally if a shared object is
used to exchange data between tasks from different components with different criticality
level then the object must be produced and analysed at the ceiling criticality level of the
components that use it.

As a consequence of the use of shared objects, a blocking term must be introduced
into the scheduling equation:

J

o= G By || G

J
7;€hp(i)

where B; is the blocking term; its value is the maximum execution time of any operation
on a shared object that has a ceiling priority equal or higher than the priority of task 7,
and which is also used by a task of lower priority.

3.2 Optimal Priority Ordering for Fixed Priority Scheduling

Using the analysis outlined above it is possible to allocate priorities to tasks in a way
that optimises schedulability whilst being aware of criticality levels. Vestal [12] was the
first to address this issue by assigning priorities to the tasks using Audsley algorithm [2].
That is, it first identifies some task which may be assigned the lowest priority; having
done so, this task is removed from the task system and a priority assignment is recur-
sively obtained for the remaining tasks. If the tasks are ‘tested’ in lowest criticality first
order then, if the system is indeed schedulable, a priority ordering is found that deliv-
ers a schedulable task set and is as close as possible to being in criticality order (ie.
lower criticality tasks are given lower priorities as often as possible). Vestal’s claim of
optimality for the algorithm was recently proved by Dorin et al [8].

Once a priority ordering is found then an implementation in Ada is straightforward.
Tasks are assigned static priorities and a standard, even Ravenscar compliant, program
can be developed. However, the run-time behaviour of a mixed-criticality system is not
as straightforward. This issue is considered in the rest of this paper.

4 Managing Overruns and Increasing Robustness

As indicated in the introduction one of the important uses of criticality levels is to
increase the robustness of the run-time behaviour of a system. This dynamic use of
criticality levels can control overloads, either those that are derived from component
failure or from excessive work load. The latter could involve a ‘best effort’ system that
must deal with some level of work, but the environment cannot be constrained to never
exceed this level. Whatever the level, the system should try and cope. Its main weapon
for doing so is to drop less critical work and assign this capacity to the more critical
tasks.

The golden rule here is that an overrun by a task at criticality M should not impact
on tasks of higher criticality, but can steal resource from tasks with lower criticality.

The problem with this rule of course is that for schedulability the priority of a high
criticality task may be below that of the M crit task.

To make run-time trade-offs between tasks of different criticality, it is important
to define more precisely the measurement scale of the ‘criticality’ metric [10]. In the
literature on mixed criticality systems there is no evidence to use anything other than an
ordinal scale. Hence one task of criticality [is worth more than any number of tasks
at criticality M (with H > M). It follows that a task, 7; can execute for no longer than
C; (which is the value corresponding to its criticality level) unless it exploits slack in
the system or steals execution time from strictly lower criticality tasks.

There could be a number of implementation schemes that could ensure this ‘shar-
ing’ of computation time - ie. allow a task to use capacity statically allocated to lower
criticality tasks. For example the use of execution time servers [5, 6, 4]. However all of
these schemes have considerable run-time complexity and are not currently supportable
on high integrity systems. Therefore here we exploit a simple scheme that only involves
changes to task priorities. As a change to a task priority will impact on all aspects of the
system’s schedulability we identify this behaviour as a mode change.

The mode change to a more criticality aware priority ordering is triggered by the
identification of an overrun of a task’s execution time. For a long running system it
is likely that the overload situation will eventually pass, and hence it is necessary to
return to the original priority ordering. A mode change back to the original ordering
must, however, be taken with care as it could cause a high criticality task to miss its
deadline if undertaken prematurely. The simplest, and safest, protocol to undertake for
this priority change is to wait until there is an idle tick and only switch priority at this
time [11]. At this point all effects of the old mode are concluded and the new mode can
proceed. The ‘idle’ tick can actually be of zero duration, but it must be a genuine point
at which there is no existing load.

5 Implementation of the Run-time Protocol in Ada

To illustrate the run-time behaviour described above, and to demonstrate that the pro-
posal is implementable, a simple example is programmed in Ada. The example uses
just four tasks and two criticality levels (H and L). The details of the task set are given
in Table 1.

Task|L;| T; | D; |C;|C;(overload)
71 |H|[100| 25|12

1o | L [100| 50 |10 50

T3 | L [100]| 70 |15

T4 |H|[100(100|25

Table 1. Example Task Set

The C' values for each task relate to their criticality levels. On the assumption that
the two lower critical tasks do not execute for more than their C values, the system is

schedulable with the static priorities in the order (highest first) 71, 72, 73 and then 74. In
this example task 75 is allowed to enter an overloaded state in which its execution time
is not 10 but rises to 50. This breaks the schedulability constraint, and hence a mode
change is required in which the priority ordering changes to one that is more criticality
based, ie 71, 74, 73 and then 7.

5.1 Implementation details

This section describes a prototype implementation of the priority changing protocol.
The compiled code executed on a bare machine implementation. All priorities are
changed from within a protected object (Pri_Changer). This object is called by a
handler for a Timer object, and by the background task. It makes use of the dynamic
priorities package. It therefore needs to record the task IDs of the system’s tasks, and
the specific priorities to be used in the two modes. These values are embedded in the
code but in a real implementation would by taken from an external source. The priority
changer is specified in the following package:

with System;
with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Execution_Time; use Ada.Execution_Time;
with Ada.Execution_Time.Timers; use Ada.Execution_Time.Timers;
with Ada.Text_TIO; use Ada.Text_I0;
with Ada.Integer_Text_I0; use Ada.Integer_Text_IO;
with Ada.Real_Time; use Ada.Real_Time;
with Ada.Dynamic_Priorities; use Ada.Dynamic_Priorities;
package Overload_Control is

Max_Tasks : constant natural := 4;

type Mode is (Normal, Overload);

type Task_Ids is array(l..Max_Tasks) of Task_ID;

protected Pri_Changer is
pragma Priority (Min_Handler_ Ceiling);
procedure Change (M : Mode);
—— called by background task
procedure Changer (TM : in out Timer);
—-— called by a Timer
procedure Register (N : Natural);
—— called once by each of the four system tasks
private
Current_Mode : Mode := Normal;
IDs : Task_Ids;
end Pri_Changer;
end Overload_Control;

The body of this package is as follows:

package body Overload_Control is
Task_Pris : array(l..Max_Tasks, Mode) of positive;
protected body Pri_Changer is
procedure Change (M : Mode) is
begin
if not (M = Current_Mode) then
put ("Mode_Change_to_"); put ("Normal"); new_line;

Current_Mode := M;
for I in 1..Max_Tasks loop
Set_Priority(Task_Pris (I,Normal),IDs(I));
end loop;
end if;
end Change;
procedure Changer (TM : in out Timer) is

begin
if Current_Mode = Normal then
put ("Mode,_Change_to_"); put ("Overload"); new_line;
Current_Mode := Overload;

for I in 1..Max_Tasks loop
Set_Priority(Task_Pris (I,Overload),IDs(I));
end loop;
end if;
end Changer;
procedure Register (N : Natural) is
begin
IDs (N) := Current_Task;
end Register;
end Pri_Changer;

begin
—-— the following static values represent the required
—-- priorities in the two modes

Task_Pris (1, Normal) := 10; Task_Pris (1, Overload) = 10;
Task_Pris (2, Normal) := 9; Task_Pris (2, Overload) = 4;
Task_Pris (3, Normal) := 8; Task_Pris (3, Overload) = 8;
Task_Pris (4, Normal) := 7; Task_Pris (4, Overload) = 9;

end Overload_Control;

The main part of the program contains a task type for the four application tasks and
a single background task. The task type uses discriminates to set its temporal character-
istics:
task type Periodic(Id, Pri, Period, Deadline, WCET, LifeSpan : Natural);
LifeSpan is used to give a finite duration to the execution of the program.

The ‘work’ of each task is simulated by a busy loop that executes for the required
time, using an execution time clock:

procedure Work (Initial : CPU_Time; C : natural) is

X : integer := 0;
begin
loop
X 1= X + 1;
exit when Clock - Initial > Milliseconds (C);
end loop;
end Work;

The start of each of the tasks is coordinated by a ‘starter’ protected object:

protected Starter is

pragma Priority (12);

procedure Get_Start_Time (T : out Time);
private

First : boolean := true;
St : Time;
end Starter;

protected body Starter is
procedure Get_Start_Time(T : out Time) is
begin
if First then
St := Clock;
First := false;
end if;
T := St;
end Get_Start_Time;
end Starter;

The background task has a low priority and whenever its get to run it calls Change
in protected object Pri_Changer and attempts to return the system to the normal
mode. For most executions of the task this will be a ‘null op’ as the system will be
in this mode. However execution time is not wasted as this task only runs when the
system is otherwise idle. Note an entry cannot be used for this interaction; if the task
called an entry (and was blocked) then as soon as the mode is changed to Overload
and the barrier made True then the blocked task would execute and set the mode back
to Normall!

If a more efficient version of the protocol is needed, so that other non-real-time
tasks can execute at the lowest priority level in the normal mode, then this background
task would need to be prevented from executing when the mode is Normal. A further
action to take when the overload occurs would be the release (from suspension) of the
‘background’ task.

task Background is
pragma Priority(1l);
end Background;

task body Background is

Epoc : constant Duration := 4.5;
End_Time : Time := Clock + Seconds (30);
begin

delay Epoc;
—-— needs to delay until tasks have registered
loop
Pri_Changer.Change (Normal) ;
exit when Clock > End_Time;
end loop;
end Background;

The code for each periodic task has the usual form. It gets a (common) start time,
waits 5 seconds to allow all initialisation to occur. It then sets up its temporal parame-
ters. For all but the second task (which is involved with the overload) the repeating code
is essentially:

loop
Work (CPU, WCET) ;
if Clock > Next_Release + Relative_Deadline then

put ("Task_"); put (Id); put (" _missed_a, deadline"); new_line;
else
put ("Task_"); put (Id); put (" _met_a, deadline"); new_line;
end if;
Next_Release := Next_Release + Release_Interval;
exit when Next_Release > End_Time;
CPU := Clock;
delay until Next_Release;
end loop;

For the second task a Timer is set (and canceled if it does not fire). Also the dura-
tion of the work is extended for 3 iterations of the loop:

loop
Count := Count + 1;
Set_Handler (Overrun, Milliseconds (WCET), Pri_Changer.Changer’Access);
if Id=2 and (Count > 4 and Count < 8) then
Put ("Overload_in_Task_"); put (Id); new_line;
Work (CPU,WCET=*5) ;
else
Work (CPU, WCET) ;
end if;
Cancel_Handler (Overrun, TempB);
... —— as other tasks
end loop;

Note for completeness, all tasks have Timers set, but they are not called on to exe-
cute in the example executions (as execution time is less than WCET by construction).
The full code for the main program is continued in the Appendix.

5.2 Example execution

The task set runs for a number of iterations and meets all its deadlines. The overload
then occurs in task 75 for three consecutive jobs. After that the task returns to its ‘nor-
mal’ behaviour. If no changes are made to the system then deadlines are missed in tasks
To, T3 and 74; 71, still has the highest priority and therefore is not impacted by the
overload. A sample run of the code, on a bare board single processor platform, for this
situation is as follows:

Main Started

Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline

Task 2
Task 3
Task 4
Task 1
Overload in Task
Task 2
Task 3
Task 1
Overload in Task
Task 2
Task 3
Task 4
Task 1
Overload in Task
Task 2
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task
Task

Bs WP s WM P S sWN P s W

met a deadline

met a deadline

met a deadline

met a deadline
2

missed a deadline
missed a deadline
met a deadline
2
missed a deadline
missed a deadline
missed a deadline
met a deadline
2
missed a deadline
missed a deadline
missed a deadline
met a deadline
met a deadline
met a deadline
missed a deadline
met a deadline
deadline
deadline
deadline
deadline
deadline
deadline
deadline
deadline
deadline

3
[0}
Iad
(AU VR TR O R

After the overload and nine missed deadlines the system does eventually return to a
stable situation in which all deadlines are met.

To implement the mode change protocol, a Timer is defined for task 75 that is
executed only when the task executes for more than its WCET (10). The handler calls
a protected object that changes the priorities of all tasks to the ‘overload’ setting. A
background, low priority, task is used to change the system back to the ‘normal’ priority
settings. This task will only execute if there is slack in the system, in which case it is
appropriate to reinstate the original priorities. An example run of the system when the
protocol is engaged is as follows:

Main Started

Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Overload in Task 2

Mode Change to Overload

Task 4 met a deadline
Task 3 met a deadline
Task 1 met a deadline
Task 4 met a deadline
Task 3 met a deadline
Task 2 missed a deadline
Overload in Task 2

Task 1 met a deadline
Task 4 met a deadline
Task 3 met a deadline
Task 2 missed a deadline
Overload in Task 2

Task 1 met a deadline
Task 4 met a deadline
Task 3 met a deadline
Task 2 missed a deadline
Task 2 missed a deadline
Mode Change to Normal

Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline
Task 2 met a deadline
Task 3 met a deadline
Task 4 met a deadline
Task 1 met a deadline

As evident in this print out, all tasks apart from 75 meet their deadlines even when
there is an overload. Of course 75 misses a series of four deadlines but once it has
‘caught up’ and the priorities changed by the background task then all tasks behave
correctly.

6 Conclusion

In this paper we have considered some of the issues involved in supporting the produc-
tion of mixed criticality systems. A type of system that is increasingly being considered
in a wide range of applications. To verify such systems an extended form of scheduling
analysis is needed and a somewhat more complex method of assigning priorities is re-
quired. Both of which are now available; and neither of which presents any significant
problems for implementation languages such as Ada.

The required run-time characteristics are however beyond what is available in, say,
a Ravenscar compliant real-time kernel. As tasks with low criticality may be executing
with priorities higher than tasks with higher criticality it is imperative that tasks are
not allowed to execute for more than their allotted execution time. Fortunately Ada
2005 allows task execution times to be monitored and code executed when bounds
are violated. Such code can manipulate priorities so that critical tasks are protected.
In this paper we have illustrated how such a protocol can be supported in Ada. An
illustrative prototype multi-tasking program has been produced and executed on a bare-
board single processor platform. Example executions of this code illustrate the required
isolation between the ‘failing’ low criticality task and all higher criticality tasks. The
code patterns provided by this prototype are such that their use in real industrial high-
integrity applications should be seriously evaluated.

References

10.

11.

12.

N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new
scheduling theory to static priority preemptive scheduling. Software Engineering Journal,
8(5):284-292, 1993.

. N.C. Audsley. On Priority Assignment in Fixed Priority Scheduling. Information Processing

Letters, 79(1):39-44, 2001.

. S.K. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with multiple criticality

specifications. In ECRTS, pages 147-155, 2008.

. G. Bernat, I. Broster, and A. Burns. Rewriting history to exploit gain time. In Proceedings

Real-time Systems Symposium, pages 328-335, Lisbon, Portugal, 2004. Computer Society,
IEEE.

. G. Bernat and A. Burns. Multiple servers and capacity sharing for implementing flexible

scheduling. Real-Time Systems Journal, 22:49-75, 2002.

. M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun control. In Proceedings

21th IEEE Real-Time Systems Symposium, 2000.

. D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-criticality real-

time task sets. In Proceedings of the IEEE Real-Time Systems Symposium, pages 291-300,
20009.

. F Dorin, P. Richard, M. Richard, , and J. Goossens. Schedulability and sensitivity analysis

of multiple criticality tasks with fixed-priorities. Real-Time Journal, 2010.

. M. Joseph and P. Pandya. Finding response times in a real-time system. BCS Computer

Journal, 29(5):390-395, 1986.

D. Prasad, A. Burns, and M. Atkin. The measurement and usage of utility in adaptive real-
time systems. Journal of Real-Time Systems, 25(2/3):277-296, 2003.

K. Tindell and A Alonso. A very simple protocol for mode changes in priority preemptive
systems. Technical report, Universidad Politecnica de Madrid, 1996.

S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of exe-
cution time assurance. In Proceedings of the IEEE Real-Time Systems Symposium, pages
239-243, 2007.

Appendix -Example Code

The full code of the example used in this paper is as follows (note the package Overload.-
Control is as given earlier).

pragma Task_Dispatching Policy (FIFO_Within Priorities);
pragma Locking Policy (Ceiling_Locking);

with System;

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Execution_Time; use Ada.Execution_Time;

with Ada.Execution_Time.Timers; use Ada.Execution_Time.Timers;
with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

with Ada.Real_Time; use Ada.Real_Time;

with Ada.Dynamic_Priorities; use Ada.Dynamic_Priorities;
with Overload_Control; use Overload_Control;

procedure Mixedcrit is

task type Periodic(Id, Pri, Period, Deadline, WCET, LifeSpan : Natural)
pragma Priority (Pri);
end Periodic;

task Background is
pragma Priority(1l);
end Background;

protected Starter is
pragma Priority(12);
procedure Get_Start_Time (T : out Time);
private
First : boolean := true;
St : Time;
end Starter;

procedure Work (Initial : CPU_Time; C : natural) is

X : integer := 0;
begin
loop
X 1= X + 1;
exit when Clock - Initial > Milliseconds(C);
end loop;
end Work;

task body Periodic is
Epoc : constant Time_Span := Seconds (5);
Next_Release, Start_Time, End_Time : Time;
Release_Interval : constant Time_Span := Milliseconds (Period);
Relative_Deadline : constant Time_Span := Milliseconds (Deadline);
CPU, CPU_New : CPU_Time;
T_ID : aliased Task_ID := Current_Task;
Overrun : Timer (T_ID’Access);
TempB : Boolean;
Count : integer := 0;
begin
Starter.Get_Start_Time (Start_Time) ;

Pri_Changer.Register (Id);

Next_Release := Start_Time + Epoc;
End_Time := Start_Time + Epoc + Seconds (LifeSpan);
delay until Next_Release;
CPU := Clock;
loop
Count := Count + 1;

Set_Handler (Overrun, Milliseconds (WCET), Pri_Changer.Changer’Access);
if Id=2 and (Count > 4 and Count < 8) then
Put ("Overload,_in_Task_"); put (Id); new_line;
Work (CPU,WCET=*5) ;
else
Work (CPU, WCET) ;
end if;
Cancel_Handler (Overrun, TempB);
if Clock > Next_Release + Relative_Deadline then

put ("Task_"); put(Id); put("_missed_a_deadline"); new_line;
else

put ("Task_"); put(Id); put("_met_a_deadline"); new_line;
end if;
Next_Release := Next_Release + Release_Interval;
exit when Next_Release > End_Time;
CPU := Clock;

delay until Next_Release;
end loop;
end Periodic;

task body Background is

Epoc : constant Duration := 4.5;

End_Time : Time := Clock + Seconds (30);
begin

delay Epoc;

loop

Pri_Changer.Change (Normal) ;
exit when Clock > End_Time;
end loop;
end Background;

protected body Starter is
procedure Get_Start_Time(T : out Time) is
begin
if First then
St := Clock;
First := false;
end if;
T := St;
end Get_Start_Time;
end Starter;

A : Periodic(1,10,100,25,12,1); B : Periodic(2,9,100,50,10,1);
C : Periodic(3,8,100,70,15,1); D : Periodic(4,7,100,100,25,1);
begin

put_line ("Main_Started");
end Mixedcrit;

