
An Extended Fixed Priority Scheme for Mixed
Criticality Systems

S. Baruah
Department of Computer Science,
University of North Carolina, US.

Email: baruah@cs.unc.edu

A. Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

R.I. Davis
Department of Computer Science,

University of York, UK.
Email: rob.davis@york.ac.uk

Abstract—This paper considers a novel implementation scheme
for fixed priority (FP) uniprocessor scheduling of mixed criticality
systems. The scheme requires that jobs have their execution times
monitored. If system behavior inconsistent with lower criticality
levels is detected during run-time via such monitoring, (i) tasks of
lower criticalities are discarded (this is already done by current
FP mixed-criticality scheduling algorithms); and (ii) the priorities
of the remaining tasks may be re-ordered. Evaluations illustrate
the benefits of this scheme.

I. INTRODUCTION

Although the formal study of mixed criticality systems
(MCSs) is a relatively new endeavor, starting with the paper
by Vestal (of Honeywell Aerospace) in 2007 [11], a standard
execution model for mixed-criticality recurrent real-time sys-
tems is emerging (see for example [8]). For dual criticality
systems this standard model may be described as follows:
• Each task τi is characterized by its criticality χi ∈
{LO, HI}, the minimum inter-arrival time of its jobs
(period denoted by Ti), deadline (relative to the release
of each job, denoted by Di), and worst-case execution
times (one per criticality level), denoted by Ci(HI) and
Ci(LO). It is assumed that Ci(HI) ≥ Ci(LO).

• A mixed criticality system is defined to execute in either
of two “modes”: a HI-criticality mode and a LO-criticality
mode. The system starts in the LO–criticality mode,
and remains in that mode as long as all jobs execute
within their low criticality execution times (Ci(LO)). If
any job executes for its Ci(LO) execution time without
completing then the system immediately moves to the
HI-criticality mode.

• The correctness criterion for the system is as follows:
all job deadlines should be met in LO-criticality mode,
but in HI-criticality mode it is only required that jobs of
HI-criticality tasks meet their deadlines1.

In this paper, we are concerned with the fixed-priority (FP)
scheduling of such dual criticality task systems. There is a
general consensus concerning the implementation model of FP
scheduling for “regular” (i.e. not mixed-criticality) systems:
which is that at any instant during run-time, the highest

1This is a bit of an over-simplification: strictly speaking, the model does
not require deadlines of LO-criticality jobs to be met even in LO-criticality
mode if the system is definitely going to move to HI-criticality mode in the
future.

priority active job is selected for execution. In mixed-criticality
systems, however, matters are not quite as straightforward:
• The original work of Vestal [11] assumes exactly the

same standard execution model that is used for FP
scheduling of regular task systems.

• The model subsequently considered in [5] (and many
other works dealing with non-FP mixed-criticality
scheduling), however, incorporates a more general execu-
tion model, that allows for the aborting and subsequent
discarding of LO-criticality tasks once the system moves
to HI-criticality mode. It was shown [5] that this general-
ization results in a significant improvement in schedula-
bility, in the sense that many task systems that cannot be
scheduled correctly under the standard execution model
can be scheduled correctly if LO-criticality tasks may be
discarded upon a mode-change.

• By allowing that certain tasks be discarded upon the
occurrence of a mode-change, the model of [5] and others
requires a considerable re-organization of the run-time
structure of the system when a mode-change occurs.
In this paper, we therefore explore whether further im-
provements in schedulability can be achieved by allowing
for one more change upon the system transiting to HI-
criticality mode. Specifically, we consider the effect of
allowing a re-ordering of the priorities assigned to tasks
upon a transition to HI-criticality mode.

We will see (Section V) that in our proposed approach
both sets of priorities, those used initially and those to be
used in the event of a mode-change to HI-criticality mode,
are precomputed prior to run-time. Since implementing the
algorithms in [5] already requires that the run-time queue of
ready jobs be reorganized upon a mode-change, the additional
changes to the run-time execution model that we require over
and above the changes required in order to implement the
algorithms in [5] are slight and do not, in our opinion, impose
significant additional challenges or overheads.

Organization. The remainder of this paper is organized as fol-
lows. In Section II we briefly review some prior work from [5]
that is most closely related to the algorithms we will derive
here. In Section III we explore an approach different from
the one considered in [11], [5], for determining priorities for
the FP scheduling of mixed-criticality sporadic task systems.



This approach is based on a recently-proposed EDF-based
algorithm called EDF-VD [3] for scheduling mixed-criticality
sporadic systems. In Section IV we show there is indeed a
benefit to re-ordering priorities upon transiting to HI-criticality
mode. This motivates us to improve the algorithm derived in
Section III by incorporating priority-changing; the improved
algorithm is presented in Section V. We provide an empirical
evaluation of this improved algorithm in Section VI.

II. RELATED WORK

We are concerned here with the schedulability analysis
of mixed criticality (MC) constrained-deadline sporadic task
systems that are being scheduled by the standard fixed pri-
ority (FP) preemptive dispatcher on a single processor. This
topic has previously been considered in [11], [5]; a priority-
assignment algorithm called Adaptive Mixed Criticality (AMC)
was introduced in [5], and shown to strictly dominate the
algorithm in [11] (which was referred to as Static Mixed
Criticality, or SMC, in [5]). We now provide a brief summary
of AMC.

Under AMC2, priority assignment is done according to
Audsley’s Optimal Priority Assignment algorithm [1]. That
is, some task is identified that is schedulable if assigned
the lowest priority; this task is assigned lowest priority and
removed from consideration; and the process is recursively
applied to the remaining tasks.

To completely specify the priority assignment strategy, it
remains to describe how the lowest-priority task is identified.

It was shown in [5], using results from [9] that within each
criticality level (i.e., when comparing different LO-criticality
tasks or different HI-criticality tasks), tasks can be assigned
priorities in deadline-monotonic (DM) partial order. Hence
in seeking to determine the lowest-priority task it suffices
to consider only the LO-criticality task with largest relative
deadline, and the HI-criticality task with largest relative dead-
line. This is done by determining (an upper bound on) the
worst-case response time of a task τk if it were assigned the
lowest priority, and checking whether this is no larger than the
relative deadline parameter of the task. If τk is a LO-criticality
task (i.e., χk = LO), then we seek to bound its worst-case
response time if all jobs execute for no more than their own
LO-criticality WCETs; if τk is a HI-criticality task (χk = HI),
then we must bound its worst-case response time when some
jobs may execute for up to their HI-criticality WCETs.

In somewhat greater detail, let LLO (LHI, respectively)
denote an upper bound on the length of the longest busy
interval during any LO-criticality (HI-criticality, resp.) behavior
of τ . It is evident that any LO-criticality task τi satisfying
Di ≥ LLO may be assigned the lowest priority: since no LO-
criticality behavior can span the entire interval between the
release of any job of τi and its deadline, no such job will miss
its deadline if τi is assigned the lowest priority. Similarly, any
HI-criticality task τi satisfying Di ≥ LHI may be assigned the
lowest priority.

2Two different schemes, AMC-rtb and AMC-max were described in [5].
We restrict our attention here to AMC-rtb.

So we first compute LLO. Based on results from Response-
Time Analysis (RTA) [2] it is straightforward to observe that
LLO can be set equal to the smallest positive value of t
satisfying the response-time formula:

t =
∑
∀j

d t
Tj
eCj(LO). (1)

We seek to determine LHI next. Without loss of generality,
let us suppose that the longest busy interval in any HI-
criticality behavior occurs for a sequence of jobs of τ in which
the first job arrives at time zero. Let t1 denote the time-instant
at which the mode-change occurs. That is, t1 is the first instant
at which a job of some task τi does not signal completion
despite having received Ci(LO) units of execution. No job of
any LO-criticality task will receive any execution after time-
instant t1. Hence for any τj with χj = LO, at most d t1Tj

e jobs
of τj may execute in this longest busy interval.

Since LLO is, by definition, an upper bound on the length
of the largest busy interval in any LO-criticality behavior, it
follows that t1 ≤ LLO. Hence the total amount of execution
by jobs of LO-criticality tasks in this longest busy interval
of any HI-criticality behaviour is bounded from above by∑
j:χj=LO

(
dLLO/Tje · Cj(LO)

)
. And for any value of t, the

total amount of execution of HI-criticality jobs over the interval
[0, t) in any HI-criticality behaviour is bounded from above by∑
j:χj=HI

(
dt/Tje · Cj(HI)

)
. It therefore follows that LHI, an

upper bound on the length of the longest HI-criticality busy
interval, can be set equal to the smallest value of t that is
≥ L(LO), satisfying:

t =
∑

j:χj=LO

dLLO

Tj
eCj(LO) +

∑
j:χj=HI

d t
Tj
eCj(HI). (2)

Plugging the value for LLO obtained by solving (1) into the
recurrence relation given by (2), we can determine the value of
LHI by using standard techniques for determining fixed-points.

III. A NEW PRIORITY-ASSIGNMENT SCHEME

The AMC algorithm, described in Section II above, per-
forms priority-assignment by concurrently considering both
LO-criticality and HI-criticality modes: Equation (1) computes
the response time in LO-criticality mode while (2) computes
the response time in HI-criticality mode, and a priority as-
signment is made only if both values are acceptable (i.e., no
larger than the relative deadline). We now propose a somewhat
different two-step approach to priority assignment:

1) In the first step, we assign priorities by only considering
LO-criticality mode and check all deadlines are met in
LO-criticality mode.

2) In the second step, we then check whether the priority
assignment so obtained will also meet all deadlines if the
system behavior were to transit to HI-criticality mode.

In Section V we build upon this approach: given an execution
model where priorities may be re-assigned in the event of
a mode-change to HI-criticality mode, we describe how this
second set of priorities may be computed.



-
6

a t∗
?

a+Ri

?

a+Di

-� Di −Ri
-� Xi

Fig. 1. A job of HI-criticality task τi arrives at time a, and has a LO-criticality
response time bound a+Ri. Its deadline is at a+Ti. Criticality level change
is triggered at t∗. We define Xi as follows: Xi = a+Ri − t∗.

In the first step, we assign priorities to the tasks as we
would in a regular (not mixed-criticality) task system, using
the LO-criticality WCET of each task as its WCET for this
purpose. Since deadline-monotonic (DM) priorities are known
to be optimal, we may assign these priorities in DM order3.

Some notation: for each i, 1 ≤ i ≤ n, let Ri denote the
worst-case response time of task τi in LO-criticality mode
under this priority assignment. These Ri values are easily
computed using the standard response-time analysis (RTA)
recurrence relation.

In the second step, we need to determine whether the
priority-assignment determined above continues to meet all
deadlines if some job executes beyond its LO-criticality
WCET, thereby triggering a change to HI-criticality mode. Let
t∗ denote the time-instant at which this happens (see Figure 1).
Let τi denote any HI-criticality task. Suppose that the current
job of τi at time-instant t∗ — the job (if any) of τi that arrives
during the interval (t∗ − Ti, t∗] — arrives at time a ≤ t∗. We
note that if t∗ > a+Ri, then this current job of τi must have
signaled that it has completed execution prior to time-instant
t∗, since τi’s job is guaranteed to complete by time-instant
a+Ri in LO-criticality mode.

Consider now the situation when t∗ ≤ a+Ri (see Figure 1).
Since the current job of τi would have completed by time-
instant a + Ri in a LO-criticality behavior, it must have
executed for at least an amount max (0, Ci(LO)−Xi) prior
to time-instant t∗. Therefore in the HI-criticality behavior, the
amount of execution remaining to be done over the interval
[t∗, a+Di] is

≤ Ci(HI)−max (0, Ci(LO)−Xi)

= min (Ci(HI), Ci(HI)− Ci(LO) +Xi) (3)

Hence, the worst-case behavior of this task after time-instant
t∗ is represented by this job with an execution requirement
of at most min (Ci(HI), Ci(HI)− Ci(LO) +Xi) and relative
deadline Di − Ri + Xi, followed by arrivals of jobs with an
execution requirement of Ci(HI) at all instants a+kTi, k ≥ 1.
What value of Xi would maximize this worst-case behavior?
We observe that

1) setting Xi ← Ci(LO) results in the first job having WCET
Ci(HI) and relative deadline Di −Ri + Ci(LO);

3In our experiments, reported in Section VI, we have chosen to instead
use Audsley’s Optimal Priority Assignment algorithm [1], and favor LO-
criticality tasks with longer deadlines for assigning lower priorities whenever
that approach reveals that there is a choice of multiple tasks that may be
assigned the lowest priority. This decision was made based on experimental
observations indicating that such an approach results in more systems being
deemed schedulable when compared to the straightforward DM approach.

Step 1: Assign priorities to the regular sporadic task system
(and check schedulability)⋃

∀i

{(
Ci(LO), Di, Ti

)}
Step 2: Determine whether the regular sporadic task system

with release jitter⋃
χi=HI

{(
Ri − Ci(LO), Ci(HI), Di, Ti

)}
is scheduled correctly according to the priorities de-
termine in Step 1, where R1 denotes the worst-case
response time of τi in LO-criticality mode

Fig. 2. Priority-assignment algorithm of Section III

2) Making Xi larger than Ci(LO) increases the relative
deadline without increasing the WCET; and

3) Making Xi smaller than Ci(LO) by an amount ∆ reduces
both the WCET and the relative deadline by this same
amount ∆. This cannot lead to a “worse” scenario than
setting Xi ← Ci(LO)), since
• τi’s interference on lower-priority tasks decreases

when this happens, whereas
• the interference τi suffers from higher-priority tasks

does not change (hence if the job of τi had received
its WCET by its deadline, it must have received
WCET-minus-∆ by deadline-minus-∆).

Therefore, the worst-case situation is when Xi ← Ci(LO).
As we saw above, in this situation the first job has WCET
Ci(HI) and regular deadline Di −Ri + Ci(LO); equivalently,
we can think of this job as having a release jitter equal to(
Ri − Ci(LO)

)
and WCET Ci(HI), relative deadline Di and

period Ti.
The execution requirement of the HI-criticality task τi after

time-instant t∗ may therefore be modeled by a sporadic-with-
release-jitter task (denoted by the 4-tuple (Ji, Ci, Di, Ti); with
Ji the release jitter of the task) characterised by

(
Ri −

Ci(LO), Ci(HI), Di, Ti
)
. To determine if all HI-criticality tasks

will meet all their deadlines after time-instant t∗, we must
therefore check whether the regular (i.e., not mixed-criticality)
sporadic task system⋃

χi=HI

{(
Ri − Ci(LO), Ci(HI), Di, Ti

)}
,

is deemed FP-schedulable according to the assigned priorities.
The entire algorithm is listed in Figure 2.

IV. CHANGING PRIORITIES

The fixed-priority scheduling model assumed in Sections II-
III above requires that each task is assigned a single priority
value, which determines its priority relative to other tasks
during run-time. We now ask: can we obtain improved schedu-
lability (in the sense of being able to make more systems



schedulable) if we are allowed to re-assign priorities upon
the system’s transition to the HI-criticality mode? We argue
that this is a minor (and reasonable) generalization to the
model considered in [5], and continues an evolving trend of
minor generalizations. It also has some parallels with the EDF
schemes that allow effective deadlines to change after the
mode change [4], [10]:

• The original model of Vestal [11] is restricted to off-line
analysis only; it does not allow changes to the run-time
algorithm that is used in implementing FP scheduling.

• The model considered in [5] (and many other works
dealing with non-FP mixed-criticality scheduling) allow
a limited change to the run-time algorithm: they all
allow for the aborting and subsequent discarding of LO-
criticality tasks if the transition to HI-criticality mode
occurs.

• The model we are now proposing allows both the aborting
of LO-criticality tasks, and a re-ordering of the priorities
of the remaining (HI-criticality) tasks, if the transition to
HI-criticality mode occurs.

The following theorem asserts that this additional generaliza-
tion enhances system schedulability:

Theorem 1: There are mixed-criticality sporadic task sys-
tems that can be scheduled correctly by a FP algorithm that
can re-assign priorities upon a mode change, that cannot
be scheduled by a FP algorithm that may never re-assign
priorities.
Proof: Consider the three-task system that is given below:

τi χi Ci(LO) Ci(HI) Di Ti

τ1 HI 1 2 10 10
τ2 HI 1 2 12 12
τ3 LO 4 - 5 5

Suppose we had to use the same priorities in both modes.
It is evident that τ3 must be assigned one of the two highest
priorities, in order to meet its deadline in LO-criticality mode.
So, consider both possibilities; for each, consider the following
behavior in a synchronous arrival sequence.

1) τ1 > τ3 > τ2: τ1 executes over [0, 1], τ3 over [1, 5]
and then over [5, 9]. τ2 executes over [9, 10], but fails
to signal completion – the system therefore transits to
the HI-criticality mode. A job of τ1 arrives and executes
for its HI-criticality WCET of 2, thereby causing τ2’s first
job to miss its deadline.

2) τ2 > τ3 > τ1: τ2 executes over [0, 1], τ3 over [1, 5]
and then over [5, 9]. τ1 executes over [9, 10], but fails
to signal completion – the system therefore transits to
the HI-criticality mode. Since 10 is the deadline of τ1’s
first job, this job has missed its deadline.

Now if we were to initially assign priorities τ1 > τ3 > τ2, but
immediately switch to the ordering τ2 > τ1 upon determining
the criticality change, we see that both τ1 and τ2 continue to
meet their deadlines:

• τ1 > τ3 > τ2: τ1 executes over [0, 1], τ3 over [1, 5]
and then over [5, 9]. τ2 executes over [9, 10], but fails
to signal completion – the system therefore transits to
the HI-criticality mode. Now τ2 has the highest priority
so it continues to run in [10, 11] and meets its deadline.
After that τ1 needs two units of execution in every 10
and τ2 needs two units of execution in every 12, which
is easily accommodated.

We invite the reader to re-visit this example after reading
Section V below, as the above example also illustrates the
priority allocation scheme defined in the algorithm presented
in that section. If we compute the response time of the
HI-criticality tasks in the LO-criticality mode then we get
(for priority ordering τ1 > τ3 > τ2): R1(LO) = 1 and
R2(LO) = 10. The deadline-minus-jitter values for the two
tasks are therefore (10-1+1) = 10 for τ1 and (12-10+1) = 3
for τ2 . So D−J priority ordering results in τ2 > τ1 after the
mode change – exactly as the proof above required.

V. IMPROVED ALGORITHM: WHEN PRIORITIES MAY
CHANGE – PMC

If priorities are allowed to change upon the system transiting
from LO-criticality mode to HI-criticality mode, we may
modify the priority-assignment algorithm of Section III to
compute two sets of priorities.

1) The first set of priorities are computed as in the first
step of the algorithm described in Section III. These
are the priorities that are initially used by the run-time
dispatcher, and continue to be used while the system is
in LO-criticality mode.

2) The second set of priorities are designed to be used if the
system transits to HI-criticality mode. As shown during
the discussion of the second step of the algorithm in Sec-
tion III, the HI-criticality tasks that need to be scheduled
upon the system transiting to HI-criticality mode may be
modeled as a collection of regular tasks with release jitter.
Since we may assign these HI-criticality tasks priorities
different from those they were assigned in the first step,
we will assign priorities according to the Deadline minus
Jitter (D-J)-monotonic priority assignment scheme [12];
as proved in [12], this priority assignment is optimal for
the fixed-priority scheduled constrained-deadline sporadic
task systems with release jitter. The regular (i.e., not
mixed-criticality) sporadic task system⋃

χi=HI

{(
Ri − Ci(LO), Ci(HI), Di, Ti

)}
should be deemed FP-schedulable according to the test
of [12].

VI. EVALUATION

In this section, we present an empirical investigation, ex-
amining the effectiveness of our PMC scheme.



A. Taskset parameter generation

The taskset parameters used in our experiments were ran-
domly generated as follows:
• Task utilisations (Ui = Ci/Ti) were generated using the

UUnifast algorithm [7], giving an unbiased distribution
of utilisation values.

• Task periods were generated according to a log-uniform
distribution with a factor of 100 difference between the
minimum and maximum possible task period.

• Task deadlines were set equal to their periods.
• Ci(LO) = Ui/Ti.
• Ci(HI) = CF ·Ci(LO) where the criticality factor CF

is a fixed multiplier e.g., CF = 2.0.
• The probability that a generated task was a high criticality

task was given by the parameter CP (e.g. CP = 0.5).

B. Schedulability tests investigated

We investigated the performance of the following techniques
and associated schedulability tests.
• UB-H&L: A composite upper bound on any fixed priority

mixed-criticality scheduling technique described in [5].
• AMC-max: Method 2 described in [5].
• AMC-rtb: Method 1 described in [5].
• SMC (Static Mixed Criticality): the approach described

in [5].
• SMC-NO: the SMC approach without run-time monitor-

ing (i.e., the approach published by Vestal [11]).
• CrMPO: Criticality Monotonic Priority Ordering de-

scribed in [5].
• PMC: The method developed in this paper, and discussed

in Section V.
Note, UB-H&L is not a schedulability test, it is an upper bound
on any such test. It is included to illustrate the effectiveness,
or not, of the other schemes.

C. Experiments

In our experiments, the taskset utilisation was varied from
0.025 to 0.9754. For each utilisation value, 1000 tasksets were
generated and the schedulability of those tasksets determined
using the seven algorithms / schedulability tests. The graphs
are best viewed online in colour.

Fig 3 plots the percentage of tasksets generated that were
deemed schedulable for a system of 20 tasks, with on average
50% of those tasks having high criticality (CP = 0.5) and each
task having a high criticality execution time that is 2.0 times
its low criticality execution time (CF = 2.0).

We observe that the PMC schedulability test has similar
performance to the AMC-rtb test, yet the two tests are incom-
parable.

In the following figures we show the weighted schedulabil-
ity measure Wy(p) [6] for schedulability test y as a function
of parameter p. For each value of p, this measure combines
results for all of the tasksets τ generated for all of a set of

4Utilisation here is computed from the C(LO) values only.

0%

20%

40%

60%

80%

100%

120%

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sc
he

du
la

bl
e 

Ta
sk

se
ts

Utilisation

UB-H&L
AMC-max
AMC-rtb
PMC
SMC
SMC-NO
CrMPO

 

Fig. 3. Percentage of Schedulable Tasksets

equally spaced utilization levels (0.025 to 0.975 in steps of
0.025).

Let Sy(τ, p) be the binary result (1 or 0) of schedulability
test y for a taskset τ with parameter value p:

Wy(p) = (
∑
∀τ

u(τ) · Sy(τ, p))/
∑
∀τ

u(τ) (4)

where u(τ) is the utilization of taskset τ .
The weighted schedulability measure reduces what would

otherwise be a 3-dimensional plot to 2 dimensions [6]. Weight-
ing the individual schedulability results by taskset utilization
reflects the higher value placed on being able to schedule
higher utilization tasksets.

Fig 4 varies the criticality factor, Fig 5 varies the percentage
of tasks with high criticality and Fig 6 varies the size of the
task set. A number of points are illustrated by these figures:
• CrMPO preforms very badly as priority ordering it uses

is far from optimal.
• Figs 4 and 5 show a decline in schedulability for high

criticality factors or high percentage of HI-critical tasks;
but this is due to utilisation being calculated via the
C(LO) values only. In effect utilisation goes up (and
hence schedulability goes down) as the parameter of the
figure increases.

• PMC and AMC-rtb have similar but incomparable per-
formance; however, PMC has slightly better performance
as the number of tasks increases giving more scope for
the change in priorities to make a difference.

It is interesting to note that the new method PMC has
weak performance, worse than SMC-NO, when there is a
large proportion of high criticality tasks. This can easily be
seen by considering its behavior on a taskset that is composed
entirely of high criticality tasks. Here, PMC effectively adds



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 1.5 2 2.5 3 3.5 4 4.5 5

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Criticality Factor

UB-H&L
AMC-max
AMC-rtb
PMC
SMC
SMC-NO
CrMPO

 

Fig. 4. Varying the Criticality Factor

in some (in this case unnecessary) jitter and then checks the
schedulability of the high criticality tasks, obtaining worse
results than AMC-rtb which would include no additional jitter.
On the other hand, if there are a large number of tasks of
high priority, but low criticality, then the AMC-rtb test (see
Equation (7) in [5]) can potentially become markedly inferior
to the PMC method, which excludes any contribution from
these low criticality tasks other than as jitter on the high critical
tasks (the jitter could in some cases have no effect).

Overall the key observation of these figures, representing an
extensive set of experiments, is that the relationship between
the six lines on the graphs remains relatively stable, and that
both AMC and PMC are very effective yet incomparable
means of scheduling mixed criticality systems.

VII. CONCLUSIONS

In this paper we have presented an extension to the ‘stan-
dard’ model that has emerged for fixed priority scheduling of
mixed criticality systems. Rather than have a single priority per
task that is used in all criticality modes, higher priority tasks
are assigned a new priority when there is a criticality mode
change. This new priority reflects the impact that the previous
lower criticality level has on the new higher criticality mode
by recognising that the task has, in effect, experienced release
jitter. We are therefore able to exploit an existing optimal
priority ordering policy for tasks with release jitter.

Evaluations show that the new scheme performs better
than many previously published approaches, and has similar
performance to the AMC scheme. Neither approach dominate
the other, and hence having both approaches available to

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Percentage of tasks with high criticality

UB-H&L
AMC-max
AMC-rtb
PMC
SMC
SMC-NO
CrMPO

 

Fig. 5. Varying the Criticality Mix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

8 24 40 56 72 88

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Taskset size

UB-H&L
AMC-max
AMC-rtb
PMC
SMC
SMC-NO
CrMPO

 

Fig. 6. Varying the Number of Tasks

systems engineers increases the likelihood of a specific task
set being deemed schedulable (by AMC or PMC).

This paper, like many on Mixed Criticality has adopted a
dual-criticality assumption. Extension of the PMC approach
to multiple criticality levels is an area for future work.

REFERENCES

[1] N. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings.
Applying new scheduling theory to static priority preemptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.



[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In Proc. of
ECRTS, Pisa, pages 145–154, 2012.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. Mixed-criticality scheduling of sporadic
task systems. In Proc. of the 19th Annual European Symposium on
Algorithms (ESA 2011) LNCS 6942, Saarbruecken, Germany, pages
555–566, 2011.

[5] S. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed
criticality systems. In IEEE Real-Time Systems Symposium (RTSS),
pages 34–43, 2011.

[6] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption
and migration delays: Empirical approximation and impact on schedu-
lability. In Proc. of Sixth International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, pages 33–44, 2010.

[7] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Journal of Real-Time Systems, 30(1-2):129–154, 2005.

[8] A. Burns and R. Davis. Mixed criticality systems: A re-
view. Technical Report MCC-1(b), available at http://www-
users.cs.york.ac.uk/burns/review.pdf, Department of Computer Science,
University of York, 2013.

[9] R. Davis and A. Burns. Robust priority assignment for fixed priority
real-time systems. In Proc. of IEEE Real-Time Systems Symposium
(RTSS), 2007.

[10] P. Ekberg and W. Yi. Bounding and shaping the demand of generalized
mixed-criticality sporadic sprodic tasks. Journal of Real-Time Journal,
2013.

[11] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the IEEE
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

[12] A. Zuhily and A. Burns. Optimal (D-J)-monotonic priority assignment.
Information Processing Letters, 103(6):247–250, 2007.


