
Fixed-priority scheduling of dual-criticality systems
S.K. Baruah

Department of Computer Science,
University of North Carolina, US.

Email: baruah@cs.unc.edu

A. Burns
Department of Computer Science,

University of York, UK.
Email: burns@cs.york.ac.uk

Abstract—In modern embedded platforms, safety-critical func-
tionalities that must be certified correct to very high levels of as-
surance may co-exist with less critical software that is not subject
to certification requirements. One seeks to satisfy two, sometimes
contradictory, goals upon such mixed-criticality platforms: (i)
certify the safety-critical functionalities under very conservative
assumptions, and (ii) achieve high resource utilization during run-
time, when actual behavior does not live up to the pessimistic
assumptions under which certification was made. This paper
makes two contributions: (i) it surveys different fixed-priority
scheduling algorithms that have been proposed, that seek to
balance these two requirements, and (ii) it completes prior work
that performs a comparative evaluation of these different fixed-
priority scheduling algorithms. It particularly focuses upon the
period transformation technique for dual-criticality scheduling,
since this technique has received relatively less attention in prior
work.

I. INTRODUCTION

In mixed-criticality (MC) systems, functionalities of differ-
ent degrees of importance (or criticalities) are implemented
upon a common platform. Such MC implementations are be-
coming increasingly common in embedded systems – consider,
for example, Integrated Modular Avionics (IMA) in avia-
tion [15] and the AUTOSAR initiative (www.autosar.org)
for automotive systems.

The safety-critical functionalities of systems in many safety-
critical application domains (including the aerospace and
automotive domains) are subject to certification by statutory
certification authorities (CAs). However, this increasing trend
towards platform integration means that even in highly safety-
critical systems it is typically the case that only a relatively
small fraction of the overall system is actually of high
criticality and subject to certification. The remainder of the
system — the non safety-critical parts — do not need to pass
certification by the CAs, although the system designer would
nevertheless like to validate that all functionalities, including
the non safety-critical ones, will perform correctly. Dealing
with such mixed criticalities upon shared platforms have been
identified as a central requirement for the emerging domain of
cyber-physical systems (CPS), and solutions to the problems
associated with validating and certifying the high-criticality
parts of such systems are gaining wide recognition as being
foundational enabling technologies for CPS.

Recurrent task models may be used to model event-driven
phenomena that occur repeatedly: each event gives rise to a
job that needs to be executed. The sporadic tasks model [14] is
widely used for modeling such recurrent tasks. In this model,

each task τi is characterized by a worst-case execution time
(WCET) Ci, a relative deadline Di, and a minimum inter-
arrival separation Ti (for historical reasons, Ti is often called
the period of the task). Such a task is assumed to generate
an unbounded sequence of jobs at run-time, with successive
job-arrivals separated by at least Ti time units and each job
needing to execute for at most Ci time units by a deadline
that is Di time units after its arrival time.

Analysis of a system during design time is made under
certain assumptions about the run-time behavior of the system.
Certification Authorities (CAs) tend to be very conservative,
and hence it is often the case that the assumptions demanded
by the CA for obtaining certification are far more pessimistic
than those the system designer would use during the system
design process if certification was not required. In particular,
Vestal [17, page 239] suggested that “the more confidence
one needs in a task execution time bound [...] the larger and
more conservative that bound tends to become.” Accordingly,
mixed-criticality systems were modeled in [17] as collections
of sporadic tasks, with each task designated as being either
a LO-criticality task or a HI-criticality one1. Each task was
characterized by two WCET parameters rather than just one: a
larger value denoting the CA’s assessment as to what the task’s
WCET should be and a smaller one representing the system
designer’s less pessimistic estimate. It was not known prior to
run-time which set of WCET estimates were the correct ones:
this information could only be gleaned by actually executing
the system and observing when the jobs complete execution.
The challenge was to design a scheduling policy possessing the
property that all jobs of all tasks would meet their deadlines
during run-time if the system designers’ WCET estimates
turned out to be the correct ones, whereas all jobs of HI-
criticality tasks would meet their deadlines (although jobs of
LO-criticality tasks may miss theirs) if the system designers’
WCET estimates turned out to be incorrect (some job executed
for more than its WCET as estimated by the system designer)
but the CA’s estimates were respected (no job executed for
more than its WCET as estimated by the CA).

Vestal [17] studied preemptive uniprocessor fixed-priority
(FP) scheduling algorithms for scheduling mixed-criticality

1Vestal [17] considered more than two criticality levels, and did not use
the terms LO and HI — for pedantic reasons, we restrict our discussion for
now to two criticality levels and in general, we are not using the notation and
terminology used in [17]. We explain later how the ideas presented in this
paper extend to more than two criticality levels.



systems of such sporadic tasks. Among his results, he showed
that the deadline-monotonic priority assignment strategy [12]
is not optimal for mixed-criticality systems: this stands in
contrast to “regular” (non mixed-criticality) systems where
deadline-monotonic priorities are known to be optimal for
constrained-deadline sporadic task systems. One of the reasons
for this non-optimality is that the deadline-monotonic priority
assignment is criticality-agnostic: in assigning priorities to
tasks, the criticality of the tasks – whether they are HI-
criticality or LO-criticality – is not taken into consideration.
This can lead to less critical tasks that are assigned higher
priority causing more critical tasks to miss their deadlines.
To avoid such possibilities, Vestal explored the use of the
technique of period transformation (PT) [16], which uses time-
slicing to schedule the more critical task as though it had a
smaller period and deadline (thereby enhancing its priority
under deadline-monotonic priority assignment). Vestal also
proposed, and evaluated, another FP scheme that was based
on an application of Audsley’s technique for priority assign-
ment [3], [2], and that did not require period transformation.

Subsequent research gave rise to several non-FP algorithms
for scheduling mixed-criticality systems of such sporadic tasks
(see, e.g., [6], [8], [9], [4] — this list is not meant to be
exhaustive). Huang et al. [10] have conducted a very thorough
and detailed comparison of these different approaches, from
various perspectives including their relative effectiveness, ease
of implementation, overhead costs, etc.

The fixed priority scheduling of mixed-criticality sporadic
task systems was revisited in [5], and the schemes studied
by Vestal [17] classified, generalized, and extended. A new
priority-assignment algorithm called AMC for Adaptive Mixed
Criticality was also proposed. (The scheme based on the Aud-
sley technique that Vestal proposed in [17] is referred to here
as SMC, for Static Mixed Criticality.) It was shown in [5] that
on preemptive uniprocessors, AMC strictly dominates SMC in
the sense that any task system that is correctly scheduled by
SMC is also correctly scheduled by AMC while the converse is
not true: there are task systems that can be scheduled by a FP
scheduler using AMC priorities but not by SMC priorities. As
is routine in real-time scheduling theory his result was proved
assuming an idealized scheduling model (e.g., no scheduling or
preemption overhead); in addition, results of simulation studies
that incorporated overhead considerations were reported in [5],
that provide further validation of this conclusion even when
the idealized scheduling assumptions do not hold.

Much of the comparison between the different approaches
that was presented in [10] was based on extensive simulations.
We believe that such implementation and simulation compar-
isons provide a wealth of useful information, and applaud
the authors of [10] for having done that work. In addition,
however, we believe that such simulation-based comparisons
should be complemented by analyses based upon an idealized
scheduling model and relatively simple example task systems,
that serve to highlight the various advantages and disadvan-
tages of the different approaches. It has been our experience
that such studies provide great insight into the inner workings

and inherent characteristics of the studied algorithms, and
may lead to breakthroughs in the form of new and improved
algorithms.

In this paper, we seek to provide such a comparison of the
period transformation (PT) approach of [17] and the AMC
scheduler of [5]. If implementation overheads are ignored, we
show that the two schemes are incomparable: there are mixed-
criticality sporadic task systems that can be FP-scheduled on
a preemptive uniprocessor by each scheme, that the other
scheme cannot schedule. However, it is well known that
implementing PT can incur severe overhead, since the number
of “jobs” that are being scheduled may increase significantly.
(It is this fact that is primarily responsible for PT not becoming
widely adopted in FP scheduling of non mixed-criticality
real-time systems in practice, despite its pleasing theoretical
property of offering 100% processor utilization.)

Organization. The mixed-criticality model studied in this
paper is formally defined in Section II; a framework for
fixed-priority (FP) scheduling of mixed-criticality systems
is described in Section III. Three different FP scheduling
approaches —Criticality Monotonic, Period Transformation,
and Adaptive Mixed Criticality (AMC)— are described in Sec-
tions IV–VI. Section VII compares the different approaches.

II. SYSTEM MODEL AND DEFINITIONS

As described in Section I above, certification authorities
(CAs) and system designers typically make different assump-
tions about the worst-case behavior of a system: the CA’s
assumptions are usually more conservative than those of
the system designer. The system model that we assume is
cognizant of the differences in the assumptions of the CA
and the system designer and incorporates these differences.

We now formally define the mixed-criticality (henceforth
often referred to as MC) workload model that is used in this
paper, and explain terms and concepts used throughout the
remainder of this document. As with traditional (i.e., non MC)
real-time systems, we will model a MC real-time system τ as
consisting of a finite specified collection of MC sporadic tasks,
each of which will generate a potentially unbounded sequence
of MC jobs.

MC jobs. Each job is characterized by a 5-tuple of parameters:
Ji = (ai, di, χi, ci(LO), ci(HI)), where
• ai ∈ R+ is the release time.
• di ∈ R+ is the deadline. We assume that di ≥ ai.
• χi ∈ {LO, HI} denotes the criticality of the job. A HI-

criticality job (a Ji with χi = HI) is one that is subject
to certification, whereas a LO-criticality job (a Ji with
χi = LO) is one that does not need to be certified.

• ci(LO) specifies the worst case execution time (WCET)
estimate of Ji that is used by the system designer (i.e.,
the WCET estimate at the LO-criticality level).

• ci(HI) specifies the worst case execution time (WCET)
estimate of Ji that is used by the CA (i.e., the WCET
estimate at the HI-criticality level). We assume that
ci(HI) ≥ ci(LO) (i.e., the WCET estimate used by the



system designer is never more pessimistic than the one
used by the CA).

Behaviors. The MC job model has the following semantics.
Job Ji is released at time ai, has a deadline at di, and needs
to execute for some amount of time γi. However, the value
of γi is not known beforehand, but only becomes revealed by
actually executing the job until it signals that it has completed
execution. If Ji signals completion without exceeding ci(LO)
units of execution, we say that it has exhibited LO-criticality
behavior; if it signals completion after executing for more than
ci(LO) but no more than ci(HI) units of execution, we say that
it has exhibited HI-criticality behavior. If it does not signal
completion upon having executed for ci(HI) units, we say that
its behavior is erroneous.

MC sporadic tasks. Each sporadic task in the MC
model is characterized by a 5-tuple of parameters: τk =
(χk, Ck(LO), Ck(HI), Dk, Tk), with the following interpreta-
tion. Task τk generates a potentially unbounded sequence of
jobs, with successive jobs being released at least Tk time units
apart. Each such job has a deadline that is Dk time units after
its release. The criticality of each such job is χk, and it has LO-
criticality and HI-criticality WCET’s of Ck(LO) and Ck(HI)
respectively.

A MC sporadic task system is specified as a finite collection
of such sporadic tasks. As with traditional (non-MC) systems,
such a MC sporadic task system can potentially generate
infinitely many different MC instances (collections of jobs),
each instance being obtained by taking the union of one
sequence of jobs generated by each sporadic task.

An implicit-deadline MC sporadic task system satisfies the
additional property that each task in the system has its relative
deadline parameter equal in value to its period parameter:
Dk = Tk for all tasks τk in the systems. In the remainder
of this paper we will, for ease of exposition, usually restrict
our discussion to implicit-deadline sporadic task systems,
although our techniques and results are easily extended to
apply to constrained-deadline sporadic task systems (systems
in which Dk ≤ Tk for all tasks τk).

Scheduling MC sporadic task systems. A particular implicit-
deadline sporadic task system may generate different in-
stances of jobs during different runs. Furthermore, during
any given run each job comprising the instance may exhibit
LO-criticality, HI-criticality, or erroneous behavior. We define
an algorithm for scheduling implicit-deadline sporadic task
system τ to be correct if it is able to schedule every instance
generated by τ such that
• If all jobs exhibit LO-criticality behavior, then all jobs

receive enough execution between their release time and
deadline to be able to signal completion; and

• If any job exhibits HI-criticality behavior, then all HI-
criticality jobs receive enough execution between their
release time and deadline to be able to signal completion.

Note that if any job exhibits HI-criticality behavior, we
do not require any LO-criticality jobs (including those that

may have arrived before this happened) to complete by their
deadlines. This is an implication of the semantics of certifi-
cation: informally speaking, the system designer fully expects
that all jobs will exhibit LO-criticality behavior, and hence
is only concerned that they behave as desired under these
circumstances. The CA, on the other hand, allows for the
possibility that some jobs may exhibit HI-criticality behavior,
and requires that all HI-criticality jobs nevertheless meet their
deadlines.

III. FIXED-PRIORITY SCHEDULING OF MC SYSTEMS

We are concerned here with the schedulability analysis of
mixed criticality (MC) implicit-deadline sporadic task systems
that are being scheduled by the standard fixed priority (FP)
preemptive dispatcher on a single processor.

The notion of FP dispatching is pretty well understood in the
context of non-MC task systems: each task is assigned a dis-
tinct priority and during run-time at each instant the currently
active job generated by the task with the greatest priority is
chosen for execution. For non-MC implicit-deadline sporadic
task systems, it is known [13] that the Rate-Monotonic (RM)
priority assignment strategy is optimal in the sense that if
priorities can be assigned to a given task system such that
all jobs of all tasks will always meet their deadlines, then
all jobs of all tasks will also always meet their deadlines if
priorities are assigned to tasks in rate-monotonic order: tasks
with smaller period are assigned higher scheduling priority.

In discussing the scheduling of MC systems, some addi-
tional implementation details must be made explicit: in partic-
ular, what kind of support for mixed-criticality implementation
is provided by the platform upon which the system is being
implemented. An important form of platform support is the
ability to monitor the execution of individual jobs, i.e., being
able to determine how long a particular job has been executing.
If such support is available, then the run-time dispatcher is able
to determine if and when the behavior of an executing job
transits from LO-criticality to HI-criticality behavior. A strong
case can be made for this ability to be part of the standard
mechanisms for safety-critical applications. Such functionality
is already commonly available on many real-time platforms
and is widely assumed in, for example, many implementations
of servers (e.g., [1]), or in real-time “open” environments that
support the policing of individual jobs or of collections of
jobs.

Depending on whether support for run-time monitoring
and/or policing is available or not (and if available, what
use is made of it), three different FP scheduling schemes
were evaluated in [5]: Criticality Monotonic (CM), a standard
scheme that is widely used in industrial practice; Static Mixed
Criticality (SMC); and Adaptive Mixed Criticality (AMC).
In Criticality Monotonic, all HI-criticality tasks are assigned
higher priority than all LO-criticality tasks. The other two
schemes, SMC and AMC, allow the priorities of different
criticality tasks to be interleaved – it was shown in [17], [5]
that such interleaving improves schedulability. One variant of
the static scheme (SMC) polices job executions: it does not



allow jobs of any LO-criticality task τi more than Ci(LO) units
of execution. The adaptive scheme (AMC) goes further and
does not allow LO-criticality jobs to execute at all if some job
of any task τi seeks to execute for more than Ci(LO) time
units.

IV. CRITICALITY MONOTONIC SCHEDULING

In Partitioned Criticality, commonly called Criticality
Monotonic (CM), scheduling, all HI-criticality tasks are as-
signed higher priority than all LO-criticality tasks. Within each
criticality, priorities may be assigned according to the rate
monotonic (RM) priority assignment scheme [13], which is
known to be optimal for implicit-deadline regular – non-MC
– task systems.

This partitioned approach has the advantage that the
scheduling of HI-criticality jobs is not impacted in any manner
by LO-criticality jobs. No additional run-time support (beyond
that needed by a standard fixed-priority dispatcher in order to
implement a fixed-priority scheduler in “regular” – non-MC –
systems) is required for implementing such a FP scheduling
scheme. However, these advantages come at a significant cost
in terms of schedulability, in the sense that CM fails to
correctly schedule very many systems that can be correctly
FP-scheduled using some other priority assignment scheme.
Consider the following example:

Example 1: Let τ denote a task system with two tasks τ1
and τ2, with parameters as follows:

τi χi Ci(LO) Ci(HI) Ti
τ1 HI 5 10 20
τ2 LO 2 2 4

CM priority-assignment would require that τ1 be assigned
higher priority, and τ2’s jobs could miss deadlines even if no
jobs execute beyond their LO-criticality WCET’s (consider,
e.g., the scenario in which jobs of both tasks arrive simulta-
neously). It may be verified that assigning τ2 higher priority
yields a correct scheduling strategy.

The efficacy of CM scheduling may be shown to be arbitrar-
ily pessimistic by increasing the period of τ1 in this example.

V. PERIOD TRANSFORMATION

The technique of period transformation (PT) [16] may be
applied to avoid the kind of schedulability loss observed
in Example 1 when other factors (in this case, criticalities)
prohibit the assignment of priorities in rate-monotonic (RM)
order. Below we first illustrate the use of PT by applying it
to Example 1. We then describe the technique as presented
in [16], and its application to mixed-criticality systems as
described in [17]. We conclude this section with a discussion
regarding the benefits and drawbacks of PT that have been
identified in the scheduling of regular (not mixed-criticality)
task systems.

To obtain a priority ordering for the task system of Exam-
ple 1 that is compliant with both periods and criticalities, the
PT technique would reduce task τ1’s period to 4, by scaling
down by a factor 20/4 = 5; the WCET’s would similarly be
scaled by a factor of 5 so that C1(LO) = 1 and C1(HI) = 2:

τi χi Ci(LO) Ci(HI) Ti
τ ′1 HI 1 2 4
τ2 LO 2 2 4

The CM priority assignment for this system is now consis-
tent with the rate-monotonic priority assignment.
PT for mixed-criticality tasks. The general technique pre-
sented in [17] is as follows. Let Tj denote the smallest period
of any LO-criticality task. Each HI-criticality task τi with
Tj > Ti is ‘transformed” by having its parameters scaled down
by a factor dTi/Tje. Since dTi/Tje ≤ (Ti/Tj), the period T ′i
of the transformed task satisfies

T ′i =
Ti

dTi/Tje
≤ Ti
Ti/Tj

≤ Tj

and a rate-monotonic priority assignment would assign τi
greater priority than τj .

And how would a mixed-criticality FP run-time dispatcher
schedule the transformed task system during run-time? Let
us revisit Example 1 and consider a job of τ1 that arrives at
time-instant 0; in the transformed system this is represented
by five jobs of τ ′1 arriving at time-instants 0, 4, 8, 12, and 16
(see Figure 1).

Now according to the semantics of the mixed-criticality
model as described in Section II above, this job of τ1 must
execute for more than five units of execution before we
can determine that its behavior is a HI-criticality one (which
would mean that jobs of the LO-criticality task τ2 need not
be executed correctly). With regards to the transformed task
system, we cannot however conclude that the behavior is a HI-
criticality one simply if the first job of τ ′1 executes for more
than one time unit without signaling completion – indeed, even
the LO-criticality assumption is that this job will execute for
up to five time units. Hence, the first few jobs of τ ′1 must each
be allowed to execute for up to their HI-criticality WCET’s; it
is only if the third job – the one released at time-instant 8 –
executes beyond one time unit without signaling completion
that we will know that the behavior is a HI-criticality one.
Hence the first few jobs of the transformed task τ ′1 will be
executed for a duration equal to their HI-criticality WCETs
even if the overall behavior of the system is a LO-criticality
one. (On the other hand, the last few jobs of τ ′1 will require
no execution at all in a LO-criticality behavior.)

Discussion. The technique of period transformations (PT)
had originally been introduced [16] with the goal of enhanc-
ing schedulability by making a (regular – i.e., not mixed-
criticality) task system harmonic2. The benefit of applying
such a transformation derives from the result [11] that any
harmonic implicit-deadline sporadic task system with total
utilization ≤ 1 is scheduled correctly by RM, where the
utilization U(τ) of an implicit-deadline sporadic task system
τ is defined to be the sum over all the tasks in the system of

2A task system is said to be harmonic if it is the case that for any pair of
tasks the period of one is an integer multiple of the other.



-
0 2 4 6 8 10 12 14 16 18 20

6 6 6 6 6 6

Fig. 1. PT schedule for the task system of Example 1. A job of τ1, with scheduling window [0, 20) is modeled as five jobs of τ ′1, with scheduling windows
[0, 4), [4, 8), [8, 12), [12, 16), and [16, 20) respectively. The original job would signal a transition to HI-criticality behavior by executing for more than five
time units; the third job of the transformed task must execute for more than one time unit for the same information to be revealed. During a LO-criticality
behavior, therefore, the jobs released at time-instants 12 and 16 have an execution requirement equal to zero.

the ratio of the task’s WCET to its period parameter:

U(τ)
def
=
∑
τi∈τ

Ci
Ti

Since U(τ) ≤ 1 is a necessary condition for τ to be schedu-
lable on a unit-speed processor by any scheduling algorithm,
the result of [11] implies that RM is an optimal scheduling
algorithm for task systems that happen to be harmonic.

Now, PT can be used to make any sporadic task system a
harmonic one, by simply reducing the periods of all the tasks
to the greatest common divisor (gcd) of the original tasks’
periods. Why then is it not widely used? Why is it gener-
ally accepted that while RM scheduling has benefits, it has
substantial drawbacks as well,3 perhaps the most significant
one being this utilization loss? After all, PT could be applied
to render the task system harmonic and thereby ensure that
RM is optimal from the utilization perspective. The reason is
overheads: by splitting a single job up into multiple smaller
ones, PT can significantly increase the scheduling overhead
by increasing the number of scheduling decisions that must be
made during run-time, the number of preemptions and context
switches that occur, etc.

To summarize: if overheads are ignored then PT can be ap-
plied to make RM an optimal scheduling discipline. However,
overheads exist in real systems, which explains why, despite
its nice theoretical properties, the use of PT has not really
become wide-spread in practice.

Due to this overheads issue, the application of PT to dual
criticality systems (as presented in [17]) only transforms the
HI-criticality tasks, and only so that their periods become
equal to the shortest LO-criticality task. So LO-criticality tasks
are not transformed, and the shorter periods of HI-criticality
task are not used to determine the greatest common divisor
for the transformations. As a result, the utilisation bound of
1 is no longer attained, but there are less transformations and
hence less overhead.

VI. ADAPTIVE MIXED CRITICALITY - AMC

We now describe the adaptive dispatching scheme intro-
duced in [5]. This scheme is adaptive in the sense that it
monitors the execution of jobs during runtime; if any job
executes for a duration greater than the LO-criticality WCET
of the task that generated it, it immediately drops all LO-
criticality jobs and only executes HI-criticality ones.

3See [7] for an interesting discussion regarding the relative benefits and
drawbacks of RM and EDF scheduling.

An adaptive dispatcher. The algorithm used for run-time
dispatching of jobs is provided with a mixed-criticality spo-
radic task system along with an assignment of unique distinct
priorities to the tasks in the system. Dispatching of jobs for
execution occurs according to the following rules:

1) The dispatcher maintains a criticality level indicator Γ,
initialized to LO.

2) While (Γ ≡ LO), at each instant the waiting job generated
by the task with highest priority is selected for execution.

3) If a job executes for more than its LO-criticality WCET
without signaling that it has completed execution, then
Γ← HI.

4) Once (Γ ≡ HI), LO-criticality jobs will not be executed.
Henceforth, therefore, at each instant the waiting job gen-
erated by the HI-criticality task with the highest priority
is selected for execution.

5) An additional rule could specify the circumstances when
Γ gets reset to LO. This could happen, for instance, if
no HI-criticality jobs are active at some instant in time.
(We will not discuss the process of resetting Γ← LO any
further in this paper.)

Priority assignment. We now describe the AMC priority-
assignment scheme for assigning the priorities that are used
by the adaptive dispatcher described above. This priority
assignment is done according to the Audsley Optimal Priority
Assignment strategy [2]. That is, some task is identified that
may be assigned the lowest priority; this task is assigned
lowest priority and removed from consideration; and the
process is recursively applied to the remaining tasks.

To completely specify the priority assignment strategy, it
remains to describe how the lowest-priority task is identified.4

It was shown in [5] that within each criticality level (i.e.,
when comparing different LO-criticality tasks or different HI-
criticality tasks), tasks can be assigned priorities in RM order.
Hence in seeking to determine the lowest-priority task it suf-
fices to consider only the largest-period LO-criticality task, and
the largest-period HI-criticality one. This is done by essentially
determining (an upper bound on) the worst-case response time
of a task τk if it were assigned lowest priority, and checking
whether this is no larger than the period parameter of the task.
If τk is a LO-criticality task (i.e., χk = LO), then we seek
to bound its worst-case response time if all jobs execute for
no more then their own LO-criticality WCETs; if τk is a HI-
criticality task (χk = HI), then we must bound its worst-case

4Two different schemes, AMC-rtb and AMC-max were described in [5].
We restrict our attention here to AMC-rtb.



response time when some jobs may execute for up to their
HI-criticality WCETs.

In somewhat greater detail, let LLO (LHI, respectively)
denote an upper bound on the length of the longest busy
interval during any LO-criticality (HI-criticality, resp.) behavior
of τ . It is evident that any LO-criticality task τi satisfying
Ti ≥ LLO may be assigned lowest priority: since no LO-
criticality behavior can span the entire interval between the
release of any job of τi and its deadline, no such job will
miss its deadline if τi is assigned lowest priority. Similarly,
any HI-criticality task τi satisfying Ti ≥ LHI may be assigned
lowest priority.

So we first compute LLO. Based on results from Response-
Time Analysis (RTA) [18] it is straightforward to observe
that LLO can be set equal to the smallest positive value of
t satisfying the response-time formula

t =
∑
∀j

⌈
t

Tj

⌉
Cj(LO) (1)

We seek to determine LHI next. Without loss of generality,
let us suppose that the longest busy interval in any HI-
criticality behavior occurs on a sequence of jobs of τ in
which the first job arrives at time zero. Let t1 denote the
time-instant at which the criticality level indicator Γ sees its
value changed from LO to HI. (That is, t1 is the first instant
at which a job of some task τi does not signal completion
despite having received Ci(LO) units of execution. No job of
any LO-criticality task will receive any execution after time-
instant t1. Hence for any τj with χj = LO, at most dt1/Tje
jobs of τj may execute in this longest busy interval.

Since LLO is, by definition, an upper bound on the length
of the largest busy interval in any LO-criticality behavior, it
follows that t1 ≤ LLO. Hence the total amount of execution
by jobs of LO-criticality tasks in this longest busy interval
of any HI-criticality behaviour is bounded from above by∑
j:χj=LO

(
dLLO/Tje · Cj(LO)

)
. And for any value of t, the

total amount of execution of HI-criticality jobs over the interval
[0, t) in any HI-criticality behaviour is bounded from above by∑
j:χj=HI

(
dt/Tje · Cj(HI)

)
. It therefore follows that LHI, an

upper bound on the length of the longest HI-criticality busy
interval, can be set equal to the smallest value of t that is
≥ L(LO), satisfying

t =
∑

j:χj=LO

⌈
LLO

Tj

⌉
Cj(LO) +

∑
j:χj=HI

⌈
t

Tj

⌉
Cj(HI) (2)

Plugging the value for LLO obtained by solving Equation 1
into recurrence Equation 2, we can determine the value of LHI

by using standard techniques for determining fixed-points.
The algorithm for determining a lowest-priority task is

summarized in Figure 2.

VII. COMPARING AMC AND PT
We now show that, unlike in the case of regular (non-

MC) implicit-deadline sporadic task systems, for which the
100% utilization bound of PT implies optimality, there are

• Determine LLO as the smallest positive value of t satis-
fying Equation 1. If there is some LO-criticality task τi
with Ti ≥ LLO, assign it lowest priority.

• Else determine LHI as the smallest positive value of t
satisfying Equation 2. If there is some HI-criticality task
τi with Ti ≥ LHI, assign it lowest priority.

• Else declare failure.

Fig. 2. AMC: Determining the lowest-priority task.

MC implicit-deadline sporadic task systems that are FP-
schedulable under AMC but are not FP-schedulable with PT.
And since this result runs contrary to that for non-MC systems,
we will only be able to show this result by exploiting those
unique attributes of mixed-criticality systems that are not
found in regular systems.

Consider once again the task system of Example 1, a PT
schedule for which is illustrated in Figure 1. Modify this task
system just a little bit, by increasing the WCETs of τ2 by an
arbitrarily small amount ε > 0:

τi χi Ci(LO) Ci(HI) Ti
τ1 HI 5 10 20
τ2 LO 2 + ε 2 + ε 4

Since the periods of the tasks are the same, PT would result
in exactly the same transformation as described in Section V;
the resulting schedule for the HI-criticality task τ1 would again
be as shown in Figure 1. It is evident that if a job of τ2 were
to arrive concurrently with one of τ1 then τ2’s job would miss
its deadline in such a schedule; this system is therefore not
FP schedulable under PT.

In attempting to assign priority under AMC (see the pseu-
docode in Figure 2), we would first determine LLO as the
smallest positive value of t satisfying

t =

⌈
t

4

⌉
(2 + ε) +

⌈
t

20

⌉
5.

It is evident that under the assumption that ε < 1/3, the small-
est positive value of t satisfying this recurrence is (11 + 3ε).
Since this is larger than the period of the LO-criticality task τ2,
we conclude that τ2 may not be assigned lowest scheduling
priority.

We next seek to determine LHI; this is the smallest positive
value of t satisfying

t =

⌈
11 + 3ε

4

⌉
(2 + ε) +

⌈
t

20

⌉
10,

which, it may be verified, is (16 + 3ε). Since (16 + 3ε) < 20,
we conclude that τ1 may indeed be assigned lowest schedul-
ing priority; accordingly under AMC τ2 is assigned higher
scheduling priority than τ1.

This example proves the following result:
Lemma 1: There are MC implicit-deadline sporadic task

systems that are FP-schedulable under AMC that are not
schedulable under PT.



What about the other direction? — are there implicit-
deadline sporadic task systems that are FP-schedulable with
PT but that cannot be scheduled using AMC? Recall from
Section V that the technique of period transformations can be
used to make RM-schedulable systems that would not be fixed-
priority schedulable if PT were not used; indeed, if run-time
overheads are ignored we had seen that the application of PT
results in RM becoming an optimal algorithm for scheduling
regular (non mixed-criticality) task systems.

Vestal [17] had proposed the use of PT in mixed-criticality
scheduling only for the purpose of making the criticality-
monotonic priority ordering consistent with the rate-monotonic
one. However, under an idealized scheduling model (in which
overheads are ignored) there is no particular reason why we
could not go further and use PT to also enhance schedulability.
That is, rather than using PT only to reduce the periods of HI-
criticality tasks and thereby make a rate-monotonic priority
assignment consistent with a criticality-monotonic one, one
could also apply additional period transformations to reduce
all the tasks’ periods to the greatest common divisor of their
original periods, and thereby make the system harmonic —
doing so increases the utilization bound of the system in both
LO-criticality and HI-criticality behaviors.

By making use of this aspect of PT, it is possible to construct
MC task systems that are schedulable using PT but not by
AMC: consider the following example.

Example 2: Let τ be comprised of the following two tasks:

τi χi Ci(LO) Ci(HI) Ti
τ1 HI 5 5 10
τ2 LO 2 2 4

(Note that since each task’s LO-criticality and HI-criticality
WCET’s are equal, i.e., Ci(LO) = Ci(HI) for all τi, this task
system happens to be a non-MC system being represented
using mixed-criticality notation.)

PT would reduce the periods of both tasks to gcd(4, 10) =
2, and the resulting harmonic system has utilization equal to 1
and is therefore RM-schedulable. However, no FP scheduling
algorithm (and hence, not AMC) can schedule this system
without transforming the periods: this can be seen according
to the following argument.

• Since RM is known to be an optimal priority assign-
ment [13], if any FP scheduling algorithm can schedule
this system then so can RM.

• Under RM, task τ1 would have lower priority.
• The worst-case response time of τ1’s jobs is then given

by the smallest value of t satisfying

t = 5 +

⌈
t

4

⌉
2

which is 11 (see Figure 3).

This example of a task system that is FP schedulable
only after period transformation serves to prove the following
result:

-
0 2 4 6 8 10 12

6 6 6

Fig. 3. Illustrating the response time of τ1.

Lemma 2: There are MC implicit-deadline sporadic task
systems that are FP-schedulable under PT that are not schedu-
lable without PT (and hence, not under AMC).

Lemma 1 an Lemma 2 together prove the following theo-
rem.

Theorem 1: The two implementation schemes, PT and
AMC, are incomparable. Neither dominates the other.

We would like to highlight that the enhanced capabilities of
PT in FP scheduling that was illustrated in Example 2 above
holds for regular task systems, not just mixed-criticality ones
(indeed, as pointed out above, the task system in Example 2
is not really a mixed-criticality one). Hence this benefit of
period transformation is orthogonal to mixed criticalities — it
is a direct consequence of the fact that PT has resulted in a
harmonic system and has consequently raised the utilization
bound in both LO-criticality and HI-criticality behaviors.

This gives rise to the question: does PT help when it does
not result in an increase in utilization bound? The answer
appears to be “no”, in the sense that if the system is already
harmonic then if PT can schedule the system then so can AMC
- there is no further advantage that PT provides. We prove this
conjecture for a two task systems.

Theorem 2: If a harmonic two task system is schedulable
under PT then it is also schedulable under AMC.

Proof: The two tasks are defined using the usual symbols:

τi χi Ci(LO) Ci(HI) Ti
τ1 HI C1(LO) C1(HI) T1
τ2 LO C2(LO) - T2

with T1 = nT2 (n is a positive integer).
For schedulability in the LO mode:

C1(LO)/T1 + C2(LO)/T2 ≤ 1,

i.e.

C1(LO)/n+ C2(LO) ≤ T2.

So if C2(LO) is fixed then

C1(LO) ≤ n(T2 − C2(LO)) (3)

For period transformation define τ
′

1 to have period T2 and
computation time C1(HI)/n. This task now has highest pri-
ority and same period as τ2 and hence the maximum possible
value of C2(LO) is T2 − C1(HI)/n ie

C2(LO) ≤ T2 − C1(HI)/n (4)



Under AMC assume τ2 has to have highest priority for its
schedulability. It makes available to τ1: T2 − C2(LO) every
T2. To satisfy its LO-crit requirement, τ1 will require I slots:

I =

⌈
C1(LO)

T2 − C2(LO)

⌉
So during a mode change there will be I jobs of τ2 before the
mode change is signalled. The response time of τ1 during the
mode change is therefore given by:

R1 = IC2(LO) + C1(HI)

For schedulability R1 ≤ T1 = nT2. So

R1/n =
IC2(LO)

n
+
C1(HI)

n
≤ T2

Substituting for C1(HI)/n from eq (4) gives

IC2(LO)

n
+ (T2 − C2(LO)) ≤ T2

ie
IC2(LO)

n
≤ C2(LO)

and hence
I/n ≤ 1 (5)

The maximum value of I comes when C1(LO) is maximum,
so from definition of I and equation (3):

Imax =

⌈
n(T2 − C2(LO))

T2 − C2(LO)

⌉
= dne = n

Inequality (5) becomes:

I/n ≤ Imax/n = 1 ≤ 1

which is clearly true. So R1 ≤ T1 and hence the system is
schedulable by AMC.

In future work we will attempt to extend this proof to
an arbitrary number of tasks with mixed levels of criticality.
However, the theorem does seem to imply that the advantage
PT has comes entirely from its ability to generate harmonic
tasks sets. Which, of course, it can only do optimally if
overheads are ignored.

VIII. CONCLUSION

Obtaining certification for safety-critical applications in
mixed-criticality systems is particularly challenging due to
potential interference by lower-criticality applications. Ap-
proaches based on preventing such interference by enforcing
strict isolation amongst applications of different criticalities
can lead to poor resource utilization, thereby defeating one of
the major objectives of platform-sharing.

Recently, some exciting research has been done on de-
signing scheduling strategies that are easy to certify and that
simultaneously ensure efficient use of platform resources. In
this paper we focus our attention upon a subset of these
strategies: those that seek to do fixed-priority scheduling

on preemptive uniprocessors. First, we survey the different
approaches to fixed-priority scheduling that have previously
been proposed. Next, we continue the comparative evaluation
of these different fixed-priority scheduling algorithms that has
been reported in [10], [5]. We particularly focus upon the
period transformation (PT) technique, since this technique
seems to have received relatively less attention in prior work.
We compare this technique with AMC - Adaptive Mixed
Criticality.

We have demonstrated that these two approaches are in-
comparable; neither techniques dominates the other. We also
show that the benefits that come from period transformation
are due to its ability to turn any task set into one that has
harmonic periods and hence has a utilization bound of 1. This
advantage is however largely undermined by the overheads
involved in implementing period transformation. Certainly
for a large number of high criticality tasks with arbitrary
periods the greatest common divisor of the periods is likely
to be very small (perhaps 1/100 of some periods) and hence
would require an excessive number of context switches (in
addition to the necessary task monitoring and enforcement of
these switches). The other technique, AMC, is not without its
overheads (as low criticality task computation times need to
be monitored) but this overhead is more likely to scale with
the number of tasks.

Although PT seems to be of limited practical application, it
does have the useful property that the high criticality tasks are
given the high priorities. And as a result no wayward behaviour
of low criticality tasks can ever impact on the performance of
high criticality tasks. This support for isolation is an important
asset for implementing mixed criticality systems.

Our results are easily generalized in several directions; we
briefly list a couple of these extensions below.

Constrained-deadline sporadic task systems. To keep the
discussion simple, we have chosen to restrict our attention
here to implicit-deadline sporadic task systems: task systems
in which the relative-deadline and period parameters of a
task are equal, for all the tasks in the system. Most of
our results generalize for constrained-deadline systems (the
relative deadline of a task is no larger than its period). We
have not considered arbitrary task systems (those that are not
constrained-deadline).

More than two criticality levels. In this paper we have
assumed two criticality levels, denoted LO and HI. In many
safety-critical application domains, there may be more than
two levels specified. For instance, the DO-178B standard spec-
ifies five criticality levels, while the IEC 61508 international
standard for industrial use recommends four different Safety
Integrity Levels (SILS). Our techniques may be extended to
deal with multiple criticality levels, by separately considering
the transition between each adjacent pair of criticality levels.

ACKNOWLEDGEMENTS

This research has been supported in part by NSF grants
CNS 0834270, CNS 0834132, and CNS 1016954; ARO



grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-0549;
AFRL grant FA8750-11-1-0033 and EPSRC(UK) grant MCC
(EP/K01 1626/1).

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proceedings of the Real-Time Systems Symposium,
pages 3–13, Madrid, Spain, December 1998. IEEE Computer Society
Press.

[2] N. Audsley. On priority assignment in xed priority scheduling. Infor-
mation Processing Letters, 79(1):39–44, 2001.

[3] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical report, The University
of York, England, 1991.

[4] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In Proceed-
ings of the 2012 24th Euromicro Conference on Real-Time Systems,
ECRTS ’12, Pisa (Italy), 2012. IEEE Computer Society.

[5] S. Baruah, A. Burns, and R. Davis. Response-time analysis for mixed
criticality systems. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), Vienna, Austria, 2011. IEEE Computer Society
Press.

[6] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In Proceedings of the EuroMicro
Conference on Real-Time Systems, Prague, Czech Republic, July 2008.
IEEE Computer Society Press.

[7] G. Buttazzo. Rate-monotonic vs. EDF: Judgement day. Real-Time Sys-
tems: The International Journal of Time-Critical Computing, 29(1):5–26,
2005.

[8] D. de Niz, K. Lakshmanan, and R. R. Rajkumar. On the scheduling
of mixed-criticality real-time task sets. In Proceedings of the Real-
Time Systems Symposium, pages 291–300, Washington, DC, 2009. IEEE
Computer Society Press.

[9] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient
scheduling for certifiable mixed criticality sporadic task systems. In
Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Vienna,
Austria, 2011. IEEE Computer Society Press.

[10] H.-M. Huang, C. Gill, and C. Lu. Implementation and evaluation of
mixed-criticality scheduling algorithms for periodic tasks. In Proceed-
ings of the 2012 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, RTAS ’12, Beijing (China), 2012. IEEE Computer
Society.

[11] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive real-time
systems. In Proceedings of the IEEE Real-Time Systems Symposium,
pages 160–171, 1991.

[12] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance Evaluation, 2:237–
250, 1982.

[13] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[14] A. Mok. Fundamental Design Problems of Distributed Systems for The
Hard-Real-Time Environment. PhD thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1983. Available as
Technical Report No. MIT/LCS/TR-297.

[15] P. J. Prisaznuk. Integrated modular avionics. In Proceedings of the IEEE
1992 National Aerospace and Electronics Conference (NAECON 1992),
volume 1, pages 39–45, May 1992.

[16] L. Sha, J. Lehoczky, and R. Rajkumar. Solutions for some practical
problems in prioritized preemptive scheduling. In Proceedings of the
Real-Time Systems Symposium. IEEE Computer Society Press, Dec.
1986.

[17] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of the
Real-Time Systems Symposium, pages 239–243, Tucson, AZ, December
2007. IEEE Computer Society Press.

[18] A. Wellings, M. Richardson, A. Burns, N. Audsley, and K. Tindell. Ap-
plying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8:284–292, 1993.


