
Generating Evidence for Certification of Modern Processors for use
in Safety-Critical Systems

Iain Bate, Philippa Conmy, John McDermid
Department of Computer Science

University of York, York, YO10 5DD, UK.

{ijb, philippa, jam}@cs.york.ac.uk

Abstract
This paper investigates the implications of using a

modern super-scalar processor in the safety-critical
domain. Firstly, a description of current certification
practice and devices is given as background. This is
followed by an assessment of how the certification
argument and its supporting evidence are affected by
the use of a super-scalar processor. Two types of
modern processor are considered, a Commercial Off
The Shelf (COTS) processor and a purpose designed
bespoke device. The respective benefits and
drawbacks of both are examined. We then identify
some key areas where change in current certification
practice is necessary to allow for modern processors.

1 Introduction

Safety-critical systems typically use well-
established, well-understood scalar processors such
as the Motorola 680x0 range. However, this
generation of processor is generally no longer in
production or is incapable of meeting performance
requirements, leaving companies that build safety-
critical systems with limited options for new
development. One solution to this problem is to
make a lifetime buy of the remaining processors
and keep them in storage. However, the supply
could be exhausted through use in production runs
and also through storage degradation. In addition,
there are difficulties in preserving the development
environment over, say, a thirty-year life span (such
longevity is not unusual in the aerospace domain).
Although this approach is currently used in
practice, it is increasingly being called into
question.

An alternative solution is to design and
manufacture a purpose built processor, so that in
the future the changing commercial market does not
affect the company. This solution would necessitate
the development of bespoke support tools, e.g. a
compiler. A cheaper alternative is to use a COTS
super-scalar processor such as the PowerPC.

The latter two options are considered in this paper

in order to determine their relative benefits and
drawbacks, and their effect on the certification
process. Although the two types of processor would
have many similar features, such as a pipeline and
cache, a COTS processor is likely to be built for
optimum average case performance. In contrast, the
bespoke processor would be designed to ease the
certification process (e.g. to ensure predictability).
Typical types of evidence required for certification
are worst-case execution time of instructions,
hardware reliability and information on systematic
design flaws in the processor. We consider all these
issues but, for brevity, focus on timing behaviour.

This paper is structured in the following way.
Section 2 gives some background on current
systems and their certification process, focusing on
the aerospace sector. Section 3 describes typical
features of modern processors and the implications
of designing and using them in the safety-critical
domain. In section 4 consideration is given to
certification of a system using a modern processor.
Section 5 examines some of the differences
between bespoke and COTS solutions. Finally, in
Section 6 we present our conclusions.

2 Background on Current Systems
Including their Certification Process

2.1 General Features of Currently Used
Processors

This section describes some basic features of
processors currently found in safety critical
systems.

2.1.1 Execution of Instructions

The execution of instructions on a scalar
processor takes place one at a time and in the same
order as the instructions appear in object code. The
processor may have multiple units (e.g. load/store
units and floating point units) that combine to
provide the necessary functionality, but these are
never used concurrently. The execution strategy is
therefore simple to understand and analyse. This is

particularly useful when performing timing
analysis. No matter what type of scheduling
mechanism is used, all forms of timing analysis
depend on knowing the maximum time a piece of
software takes to execute. This is usually known as
the Worst-Case Execution Time (WCET). WCET
analysis can be performed by splitting software into
blocks, where a block is a sequence of instructions
that has only one branch at the start or at the end.
Every feasible path through the blocks is then
examined in order to find the longest [1]. The
length is determined by simply adding up the
WCET of each individual instruction.

2.1.2 Memory Access

The principal storage area for data and
instructions is main memory. This is often
significantly slower than the processor. Although
faster memory is available, this is expensive and it
is only practical to use it where small quantities are
sufficient. Thus, some processors utilise cache
memory, which is relatively small and fast, as
temporary storage. A proportion of the memory
accesses will be made from the cache, rather than
accessing the slower main memory for each
instruction. A memory manager is used which
attempts to optimise the contents of the cache
memory for maximum throughput. However, using
a cache memory increases the complexity of
analysis. In particular:

• there are greater variations in the execution
times of the software [10],

• it is harder to deduce the actual WCET of the
software as the analysis would have to include
a model of the cache mechanism. It could be
assumed that all memory accesses result in a
cache miss but this gives results much greater
than the actual WCET, leading to wasted
resources [10],

• the more complex the processor is, the harder it
is to validate the models used and the higher
the likelihood of systematic design errors [12].

Therefore, if the processor has cache memory it is
often switched off for safety critical use. However,
if it is used then it is assumed that each memory
access results in a cache miss. The longest
execution path is then intuitively the worst-case.

2.2 Guidance for Gathering Evidence for
Processors from Safety Standards and
Reports

This section looks at a number of safety standards
and guidance documents, examining the types of
analysis and arguments relating to the processor.

2.2.1 UK Defence Standards

The UK defence standards (referred to as DEF-
STANs) give requirements and guidance for the
development of safety critical systems. DEF-STAN
00-54 [3] discusses Safety Related Electronic
Hardware and is similar in nature to the software
standard, DEF-STAN 00-55 [4]. DEF-STAN 00-54
requires a safety case for the system that “presents a
readable justification that the hardware is safe in its
specified context”. The context of a processor
includes both the application software and its
physical operating environment. Discussion of
operating environment limits and conditions is
outside the scope of this paper, but key issues
include temperature, pressure and humidity ranges.

Assurance of the probability of random hardware
failures is required, but can usually be derived from
historical data for other devices made in the same
technology. Knowledge of systematic design flaws
is also required. This may be derived from use of
the processor. However, this evidence is only
deemed credible if it is generated from usage in a
similar system. This is one reason why the same
type of processor is often found in many different
safety critical systems.

As part of the system safety case, justification
must be made for the use of a COTS component
such as a processor. An example justification could
be that the cost of designing and manufacturing a
bespoke processor outweighs the gain in integrity
over the use of a COTS processor.

DEF-STAN 00-55 requires both static code
analysis and software testing as part of the system
safety case. Static software analysis examines those
properties of the code which can be determined
prior to execution. Results of code analysis that are
affected by the processor are:

• the maximum execution time taken and the
amount of memory required by the software
should be bounded and statically determined,

• the software should be tolerant to and respond
to random failures of the hardware,

• the system should have built-in tolerance to
avoid overload and still be capable of running
in a degraded state, and

• any direct access from software to the
hardware needs to be analysed.

Software testing must include running the
software on the target hardware. Parts of the testing
may be undertaken using an emulator of the
hardware, but only if its correctness can be
demonstrated. Testing should be used to confirm
the results of static analysis. To confirm the
accuracy of software results, any calculations which
rely on processor units, e.g. floating point, should

be tested. It is noted specifically that the use of
floating point co-processors introduces the need for
additional validation.

2.2.2 Civil Avionics Guidance

The civil avionics arena uses guidance documents
rather than standards although, in practice, it would
be difficult to get approval for systems which did
not follow the guidance. The relevant guidance
documents are DO178B [5] for software and
DO254 [6] for hardware.

DO-178B requires the developers to produce an
accomplishment summary identifying the evidence
that the software meets its requirements (this is
analogous to the DEF STANs idea of a safety case).
It places much greater emphasis on testing and
human review than DEF STAN 00-55. The
summary includes evidence that the software is
compatible with the hardware – which implicitly
includes timing. It also requires the gathering of
certification evidence through hardware/software
integration testing. The testing should demonstrate
that high-level requirements are met for software
running on the target hardware, including timing
requirements where these are significant.

DO-178B considers the use of multiple dissimilar
processors with dissimilar software. It notes that
some of the required hardware evidence may be
replaced with evidence that equivalent output and
performance is achieved by both systems. Evidence
of hardware failures can also be reduced. For
example, if the processors are dissimilar in design it
can be argued that the likelihood of simultaneous
failure is lowered, reducing the amount of failure
rate evidence needed. For example the Boeing 777
Primary Flight Control System [7] uses different
types of processors in each of three computing
channels, with cross lane monitoring between each
channel.

DO254 has only just been issued, and we are not
aware of industrial experience in using these
guidelines. In our experience an accomplishment
summary similar to that used for software has been
produced1 for bespoke hardware.

2.2.3 Other Standards and Guidance

There are many other standards for software and
hardware in safety critical systems, including IEC
61508 [8]. This is an international “meta-standard”
from which sector specific standards are meant to
be developed.

Analysis of the published standards, for example
see [9] suggests that the underlying principles in the
majority of the standards are the same, although

1 The airworthiness authorities suggest using this
approach where exhaustive analysis is not possible.

there is significant variation in the details. However
few of the standards deal with the sorts of issues
identified here.

One useful source of advice is the Ada HRG
working group report [2] summarises the code
analysis techniques needed for software in high
integrity systems. The report is mainly concerned
with how this analysis is affected by the use of Ada.
However, the design of the processor affects the
manner in which analyses are performed and the
results obtained. The analyses are discussed in more
detail in Section 4.2 and in Table 1, but include
both static analysis techniques and dynamic testing
of software.

3 Key Features of a Super-Scalar
Processor

The principal influence on processor development
has been the general-purpose computing market
(e.g. personal computers, mobile ‘phones, etc),
driven by market forces and economy of scale. The
entire production run of a safety-critical system
may use a few thousand processors, whereas a
successful mobile ‘phone will use millions. In
general, non-safety-critical systems are more
concerned with good average-case performance,
even if this is at the expense of poor but rarely
encountered worst-case performance. This has led
to dramatic increases in the speed of processing
compared to memory speed (over 20 years, a factor
of 100,000 for processing times compared to 10 for
memory). Consequently, there are increasing
numbers of wait states inserted during instruction
execution whilst waiting for memory. A wait state
is the term used to describe the condition when
processing is halted for a clock cycle whilst waiting
for an event to occur, e.g. for a memory access to
complete.

The new features of modern processors are
described in the following subsections. It is
assumed that both a COTS and bespoke processor
have similar features, but that these may be
implemented in different ways.

3.1 Pipeline

Figure 1 illustrates the pipeline structure for the
PowerPC 603e, a typical example of a modern
processor. The figure shows that the execution of
instructions is split up into a number of stages and
that some of these stages (principally the execute
stage) have multiple units to support concurrent
execution of instructions. This approach allows
multiple instructions to be handled simultaneously
and means the processor can do something
productive if the currently executing instruction has
been delayed (e.g. from a cache miss).

The following list contains some features of the
pipeline mechanism. It should be noted that these
features cannot simply be “turned off” and the
programmer has little influence over their
operation.

Figure 1 - The Pipeline Structure of a Typical
Modern Processor - The PowerPC

1. Multiple Issue - The ability to fetch, dispatch and
complete a number of instructions per clock cycle.

2. Parallel Execution - From Figure 1 it can be seen
that there are four types of processing unit in the
execute stage; floating point, system register,
load/store and integer (possibly multiple).

3. Out of Order Execution – This can prevent the
pipeline stalling when an instruction takes a long
time to execute and/or there has been a cache
miss.

4. Speculative Execution – The pipeline mechanism
does not always wait for the result of a
comparison before processing the associated
branch instructions (and subsequent instructions
after the branch folding or falling through).
Instead the pipeline mechanism guesses which
branch is the likeliest to be taken using branch
prediction.

To simplify the design and verification of a bespoke
processor, and to ease the analysis of the software
that executes on it, the bespoke design would
probably only use a subset of these features, such as
parallel execution and multiple issue.

3.2 Cache

Due to the disparity in speed between processing
and memory, modern processors have become more
reliant on cache memory and some processors have
two levels of cache. The first level of cache is a
small but very fast “primary” cache on the actual
processor (typically with zero wait states). The
other is a larger “secondary cache” which has more
wait states than the primary cache, but less than
main memory. The methods for optimising the
contents of, and access to, the cache have also
changed significantly. One complication of having
cache is determining the impact of an interrupt /
pre-emption on the cache contents and hence on the
program flow. To simplify the design and

verification process, a bespoke design would
probably only use a primary cache and its contents
may be statically defined.

4 How the Change to a Modern
Processor Affects System Verification
and Design

The following section examines the changes that a
move to a modern generation of processor makes to
system verification and design. This section is
encapsulated in Table 1.

4.1 Hardware Issues

4.1.1 Errors in the Processor Design

For the older generation of processors it was
reasonable to assume that the majority of design
flaws had been found and documented e.g. for
widely used devices such as Motorola's 68020.
Even if these errors had not been fixed, design
engineers could tailor their system to avoid them.
However, a modern processor has a significantly
larger and more complex design – 28 million
transistors on the Pentium III in 1999 versus 68
thousand transistors on the 68020 in 1979. This
increase makes it less likely that all the design
errors have been found and documented, although
certain problems have been well publicised (e.g. the
problems with the Pentium's arithmetic unit [16]).
DEF STAN 00-54 notes that processors may have
several different variants in a year, each of which
may contain subtly different design features and
flaws. It can be confidently assumed that a COTS
product would not comply with the DEF STAN’s
requirements. However, the argument for using a
COTS processor can be given weight by using a
supplier with a reputation for well-designed
products. In this case the given processor would
have to adhere to the suppliers usual standards of
quality. In any case the certification argument
would have to assume the existence of known and
unknown errors.

The use of dissimilar processors within a system
can reduce the amount of evidence required
regarding design errors in each. However, the
argument will only be convincing if the processors
are sufficiently different in design to avoid flaws
being replicated in the same place. When dissimilar
processors are used a separate compiler has to be
used for each. Whilst it can be argued that this
means that systematic failures are unlikely to occur
in the same place it could also be argued that the
frequency of failure across all processors may
increase. This option has the significant
disadvantage that fault tolerance is more difficult
since processors cannot be run in lockstep.

If a function within the processor is known to

have a design flaw then it may be desirable to
ensure it is not used, validating this through object-
code inspection. As verification of object code
against source code is often currently undertaken by
visual inspection, this becomes a more complex
process, requiring specific knowledge of the
processor hardware. In order to ease inspection it
might be desirable to use a programming language
sub-set, designed to prevent the use of a particular
feature if is deemed to be unsafe, and/or difficult to
analyse. Other alternatives would be to adapt the
compiler to avoid the feature or modify the object
code after compilation.

4.2 Software Evidence

A selection of the software verification techniques
described in the Ada HRG working group report is
considered in this section. A complete assessment is
given in Table 1.

4.2.1 Worst-Case Execution Time Analysis

The timing analysis of the system, and WCET
analysis, becomes a much more complex task for a
pipelined processor. This is a crucial activity, as
most safety critical systems are dependent on real-
time deadlines being guaranteed as met. It has
already been stated, in section 3.1, that ignoring
features of the processor when calculating WCET
leads to pessimistic results. An alternative to
WCET analysis is to extensively test the system to
obtain a measured value for timing. For lower
integrity systems this may be an acceptable
solution. However, for the highest integrity level it
is necessary to perform analysis in order to
guarantee timeliness. Simply testing the system
cannot guarantee the absence of timing overruns
[10].

Developing WCET analysis for modern
processors is complicated as it relies on accurate
models for the types of features discussed in section
3. However, producing a completely accurate
model may not be possible due to the lack of
information that can be verified. Verification is
difficult because most of the processor’s
mechanisms are not externally observable. In our
experience, processor manuals do contain errors
that would easily lead to incorrect analysis.
Accurate models also have limited portability. In
fact producing a software model for WCET
analysis that completely emulates a processor
would simply take too great a time to obtain results
for any reasonable size of code [10]. However, a
simple model may be hard to validate because it is
sufficiently different to the actual processor.

To further complicate the issue, not accurately
modelling all the processor’s features may
introduce anomalies [11] and unmanageable
pessimism into the results. An example of an

anomaly is illustrated in Figure 2 where a cache hit
results in a longer overall execution time than a
cache miss i.e. the opposite of what is expected.
Figure 2 shows two instructions that are dispatched
simultaneously where instruction (A) that is due to
execute first has a shorter execution time than the
other instruction (B), both instructions use different
execute units (e.g. FPU and IU) that can be used
concurrently. If A suffers a cache miss then it
results in B being executed before it, i.e. out of
order. In this case, both instructions complete
earlier than if they instruction A had not suffered a
cache miss and they had been executed in their
original order. Therefore the WCET analysis model
needs to take into account potential anomalies.
Otherwise, all possible paths would have to be
analysed rather than those that could be expected to
be the worst-case. Again for realistic software sizes,
this would be intractable. Hence a balance must be
struck between the pessimism of the results, the
computational complexity of obtaining results and
the difficulty in validating the model.

A

B

A

B

0 2 4 6 8
time

cache
hit

cache
m

iss

cache
miss

penalty

Figure 2 - Example of a Timing Anomaly

There is already a great deal of analysis available
including [7, 9], and Engblom provides a useful
survey of these analyses in [12]. These approaches
can be tailored for our use by taking advantage of
the fact that software is written in a particularly
disciplined way for the safety critical domain. For
example, the software is written to make control
flow analysis easier to perform, and/or conforms to
a restricted subset (e g. SPARK Ada [14]). Such
assumptions allow some simplification in the way
that the analysis is performed.

Some of fundamental issues for WCET analysis
of a super-scalar processor are summarised here:

• Re-targetable Analysis - Producing analysis in a
generic fashion means that it can be instantiated
for a particular platform with a minimal amount
of rework. To achieve this aim a WCET analysis
language has been defined at York which allows
the WCET analysis software to parse platform-
specific information and hence to customise the
analysis. For example, the number of cache lines
can be defined, as can the number of sets the
cache is organised into, and so on.

• Validity of the Analysis – Producing a valid
WCET is reliant on correct information from the
manufacturer. It can be assumed that a COTS
processor has not been produced or documented
to the standard required for the certification of
the system. Assuming that the processor does not
need to be re-engineered, a validation strategy is
needed. Some work has been performed on this
subject [13].

• Anomalies within the Analysis - The analysis has
to allow for the effect of cache misses and
branch predictions without leading to anomalies
which understate the worst case.

• Data Cache Analysis - Data and instruction
cache analysis mechanisms are similar. The key
difference being that instructions always have a
static location in memory whereas data does not.
Examples of data accesses that do not have a
static location include; pointers and stack
variables. Data cache analysis is the subject of
future work.

A suitable strategy for WCET analysis is to
produce a simplified model of a modern processor
that can easily be tailored to a specific processor.
This accepts some pessimism whilst guaranteeing
that the results are safe, e.g. the predicted WCET is
greater than the actual WCET.

4.2.2 Other Issues

The accuracy of calculation units, such as floating
point, needs to be demonstrated, e.g. when
rounding floating point variables. Hardware
validation could be used to demonstrate the
processor correctness.

Control flow analysis is used to ensure that
software is executed in the correct order, whilst
data flow analysis should ensure variables are not
used prior to being set a value. The analysis is
normally performed at the source code level based
on the assumption that the software semantics are
preserved when executing on the hardware
platform. A limited amount of flow analysis is
performed at the object code level to show the
results are consistent with the software executing
on the actual processor. When moving to a modern
processor further object level verification may be
needed to deal with the advanced features of the

processor. This all adds to cost. Also hardware
validation needs to be included and has to show that
the results are consistent within the processor itself
and at its outputs.

4.3 Changes in System Design

4.3.1 The Use of Memory Partitioning

In order to take full advantage of fast execution
times and expanded memory it is desirable to share
processing resources between more than one
application. Sharing memory requires a partitioning
mechanism that can guarantee that a number of
applications (possibly with multiple criticality
levels) can share the same memory resource
without risk of data corruption [18]. This involves
the detection of attempted memory violations by an
application. The Memory Management Unit
(MMU) in many processors provides functionality
to create interrupts when an illegal memory access
occurs. To use this feature it would need to be
demonstrated that the MMU would reliably provide
interrupts when detecting an attempted violation
and that the system software could deal with these
interrupts.

4.3.2 Designing Systems to be More Portable

To ease the problems of porting software to
different platforms, an intermediate language such
as ANDF (Architecture Neutral Definition Format)
can be used [14]. This approach compiles
application source code into ANDF rather than to
object code. The ANDF code is then translated for
the target hardware using an installer. The
advantages are that analysis of the software can be
performed at the ANDF level rather than at the
object code level, thus porting software to another
platform only needs a new installer to be produced.
However, the compilation of application code to
ANDF would need to be trusted if the analysis were
to be conducted at the ANDF level [15]. Using a
specified sub-set of ANDF can also ensure features
of the processor are avoided which are not trusted.

Increasing the portability of software doesn’t ease
the difficulty of validating a modern processor, but
does help solve the problem of hardware
obsolescence.

5 How the Change to a Bespoke
Processor Affects the System Design
and Certification

This section explores the ways in which a
bespoke processor design could differ from a COTS
processor. The observations are again summarised
in Table 1.

5.1 Hardware Issues

5.1.1 Errors in the Processor Design

One of the key areas of concern with a bespoke
processor is that of design errors. It is often
assumed that any bespoke processor proposed for
safety-critical systems has been designed to more
rigorous standards and that the design is simpler.
Whilst the latter assumption is almost certainly true,
the same cannot be said of the rigorous standards
assumption. A hardware manufacturer, such as
Intel, has a great deal invested in the correctness of
their hardware including the value of their
reputation not to mention the cost of mistakes,
particularly when they lead to product recalls. Since
the Pentium floating point arithmetic error was
uncovered, the importance of hardware correctness
has received a higher profile. Significant effort has
been applied to formally proving parts of the design
[17].

It is arguable that the use of a bespoke processor
would increase the need for hardware testing.
Whilst a COTS processor may not have had all
possible flaws detected, a bespoke processor would
have had significantly lower operational usage
which means there is an even greater likelihood that
design faults have not been found.

A further complication to the process is that the
designer of the bespoke processor may not have a
track record in the design of complex micro-
electronics. This, along with the lack of operational
usage may necessitate a greater level of certification
evidence to be generated.

Upon first considerations, it is not apparent that
dissimilar processors would be employed when the
system uses bespoke processors. However, by
initially using the bespoke processor in combination
with COTS processors, confidence can be gained in
the bespoke processor’s integrity and also integrity
of the overall system design.

5.2 Software Evidence

5.2.1 Worst-Case Execution Time Analysis

The use of a bespoke processor would mean that
the processor model used during WCET analysis
could be made significantly simpler than for a
COTS processor. The processor could be designed
without features such as speculative and out-of-
order execution. This could also eliminate
anomalies. Assessing the WCET would then be
within the capability of existing tools.

5.3 Changes in System Design

5.3.1 Memory Partitioning

The use of a bespoke compiler and processor
could make the provision of memory protection

significantly easier as:

• the use of scoping of rules of the high-level
language, combined with confidence that these
are enforced within the compiler, would mean
that the impact of systematic design errors
could be contained, and

• various tactics for protection against random
hardware failures could be employed, such as
storing each variable in two sufficiently
separated memory locations.

5.3.2 Bespoke Compiler

A key consideration to this approach is that a
bespoke processor also necessitates the production
of bespoke compilers and tools to support the
software production process. Many of the issues
discussed in this section, such as lack of track
record and ensuring the integrity of a new product,
apply equally to these. A major concern is that the
first-time effort needed to produce the processor
and all the necessary support could be greater than
for the actual safety-critical system itself. However,
the compiler could be designed to simplify analysis,
e.g. not using features such as optimisation and
multi-platform support. This would simplify many
of the analysis problems encountered with a COTS
processor.

Further simplification in analysis could be
achieved if the compiler provided suitable outputs,
e.g. information concerning mutually exclusive
paths and loop bounds that are helpful during
WCET analysis. Other information that could be
preserved for use during this analysis is data flow
and control flow information as well as information
from the symbol table. The compiler could also
enforce static memory locations for data items (i.e.
local variables would have a fixed location and a
stack would not be used) which would make data
cache analysis significantly simpler.

When designing the compiler, particularly the
back-end, design decisions could be made that
would not concentrate on optimum average-case
performance but instead on good worst-case
performance as well as easing object-code
verification.

6 Conclusions

To summarise, the following list indicates some
of the key areas of change a super-scalar processor
would make to current certification practice:

1. Calculation of WCET – this analysis is the
most significantly affected. COTS processors
are designed with average case performance in
mind, at the expense of worst-case
performance and predictability. The validity of

complex pipeline models for the analysis is
questionable but simplification leads to overly
pessimistic results.

2. Flow analyses (Data/Control) – pipeline
features such as out of order execution affects
the results of this analysis. Validation is needed
to ensure this cannot cause unpredictable
results.

3. Object code analysis – this becomes more
complex and requires specialist knowledge of
the hardware to avoid, for example, the use of a
hardware feature with a known design flaw.
The use of programming language sub-sets
may ease this analysis.

4. Hardware failure rates and design flaws – the
increased complexity of the processor and the
number of different designs and can lead to
greater incidence of failure. It is also more
difficult to provide evidence of integrity from
usage in similar systems; for example, the
integrity of cache, pipeline and registers has to
be shown in the event of interrupts.

5. Shared resource usage – to take advantage of
the increase in processing power it is desirable
to share resources between multi-criticality
components. For this, evidence is required for
partitioning mechanisms e.g. using the MMU.

When considering the choice of bespoke and
COTS processor, there are clear benefits in both.
The bespoke processor approach means that
obsolescence is now under the system designer’s
control rather than external suppliers, and the
processor can be designed to ease certification.
However the cost of development may be high and,
the lack of operational usage would make arguing
integrity more difficult. The advantage of the COTS
approach is cost – ignoring the high cost of first-
time use. However, systems are still susceptible to
obsolescence. It is also more difficult to
demonstrate the integrity of the resultant system
due to the lack of processor design information and
the difficulty in predicting performance.

7 References

[1] Static Timing Analysis and Program Proof, R.
Chapman, Department of Computer Science,
University of York, PhD Thesis, YCST-95-05,
1995.

[2] Guide for the Use of the Ada Programming
Language in High Integrity Systems, ISO/IEC
PDTR 15952, 1998.

[3] Requirements for Safety Related Electronic
Hardware in Defence Equipment, Ministry of
Defence, UK, 00-54, March 1999.

[4] Requirements for Safety Related Software in
Defence Equipment, Ministry of Defence, UK,
00-55, August 1997.

[5] Software Considerations in Airborne Systems and
Equipment Certification, RTCA/EUROCAE,
DO-178B/ED-12B, December 1992.

[6] Design Assurance Guidelines for Airborne
Electronic Hardware, RTCA/EUROCAE, DO-
254B, 2000.

[7] Dependability of the 777 Primary Flight Control
System, Y.C. (Bob) Yeh, Boeing Commercial
Airplane Group, USA, 5th IFIP Conference on
Dependable Computing for Critical Applications.
IFIP, 1995.

[8] Functional safety of electrical/electronic/
programmable electronic safety related systems,
International Electrotechnical Commission, IEC
61508, Draft, 1998.

[9] The Potential for a generic Approach to the
Certification of Safety-Critical Systems in the
Transportation Sector, Y. Papadopoulos, J
McDermid, Reliability Engineering and System
Safety, 63(1), pp. 47-66, 1999.

[10] Static Cache Simulations and its Applications, F.
Mueller, Department of Computer Science,
Florida State, PhD Thesis, 1994.

[11] Timing Anomalies in Dynamically Scheduled
Microprocessors, T. Lundqvist, P. Stenström,
Proceedings of the 20th IEEE Real-Time Systems
Symposium (RTSS'99), pp. 12-21, December
1999.

[12] Worst-Case Execution Time Analysis for
Optimized Code, J. Engblom, MSc Thesis
Uppsala University, DoCS 97/94, September
1997. 104 pages.

[13] Effectiveness Evaluation of the Buffer-Oriented
Microarchitecture Validation, N. Utamaphethai,
R.D. Blanton, J. P. Shen, Proceedings of the
Second International Workshop on
Microprocessor Test and Verification, Atlantic
City, September 1999

[14] TDF Specification, I. E. Currie, Defence
Evaluation Research Agency, United Kingdom,
Version 4, DRA/CIS(SE2)/CR/94/36/4.0, June
1995.

[15] Portable Code for Complex Systems, N. Audsley,
I. Bate, A. Grigg, Proceedings of the 6th

International Conference on Real-Time
Computing Systems and Applications, pp. 111-
119, December 1999.

[16] Statistical Analysis of Floating Point Flaw, Intel
White Paper, November 1994

[17] Formally Verifying IEEE Compliance of Floating
Point Hardware, Intel Technology Journal, 1st

Quarter, 1999
[18] Assessing the Safety of Integrity Level

Partitioning in Software, John A McDermid and
David J Pumfrey, Proceedings of the Eighth
Safety-critical Systems Symposium,
Southampton, UK, 2000

Type of
Evidence

Level of
analysis

Information being
gathered/ Purpose

Method for collection Affect of transition to a COTS
processor

Affect of transition to a bespoke
processor

Static Analysis
Control Flow Source

Code
Source code is examined
for sequence of execution,
any unreachable code,
and termination of
loops/recursion etc.

Static Analysis tools e.g
SPARK Ada Examiner.
Unaffected by scalar
processor.

Some object code verification
may be required to examine
pipelined execution of code

Some object code verification may
be required to examine pipelined
execution of code

Data Flow Source
Code

Source code is examined
to ensure no variables are
used before they have
been set a value

Static Analysis tools e.g
SPARK Ada Examiner.
Unaffected by scalar
processor.

Some object code verification
may be required to examine
pipelined execution of code

Some object code verification may
be required to examine pipelined
execution of code

Range
Checking

Source
code

Code is examined for
overflow / underflow,
rounding errors, array
bounds, and data ranges

Static analysis tools e.g
SPARK Ada Examiner.
Unlikely to depend on
hardware as FPU can be
switched off

The code may be dependent on
specific hardware e.g. for
floating point calculation, the
accuracy of this needs to be
checked for the application

The code may be dependent on
specific hardware e.g. for floating
point calculation, the accuracy of
this needs to be checked for the
application

Stack Usage
Analysis

Object
Code

Examines the size of
stack required, to ensure
no stack/heap collision

Static analysis tools e.g
SPARK Ada Examiner

Stack usage is affected by the
MMU and data caching
mechanisms which should be
verified

The bespoke compiler and
processor could be designed
without dynamic memory
allocation so that the stack is only
used where necessary.

Timing
Analysis

Object
Code

Calculation of Worse
Case Execution Time

Simple addition of object
code instruction
execution times

A complex model should be
built for the processor with
branch prediction, cache and
pipelining, this can be used to
calculate WCET

The processor could be designed
to simplify the model needed for
WCET analysis and the compiler
could provide support for WCET
analysis. The problem of model
validation would be significantly
reduced.

Shared
Resource
Analysis
(OMU)

Object
Code

To demonstrate lack of
interference between
object code components
when accessing a shared
resource

Static analysis tools e.g
SPARK Ada Examiner

May be partially dependent on
hardware enforcement to
prevent interference e.g. MMU,
therefore the HW software
interactions must be modelled

Hardware/compiler techniques
could be employed to simplify the
verification of correct use of
shared resources.

Object Code
Analysis

Object
Code

Compare source code to
object code to ensure
correct translation

Visual inspection of
source code and object
code

This may become more
complex if object code makes
specific use of hardware feature

Having a bespoke compiler would
significantly reduce the analysis
that needs to be performed on
object code.

Software Testing
Requirements
Based Testing

Object
Code /
Hardware

To ensure execution is
compatible with high-
level requirements

Executing object code,
including execution on
target platform or on
verified emulator with
test cases generated from
requirements

More of the testing may need to
be performed on the target
platform due to increased
hardware dependencies and
difficulty in producing a
verified emulator

More of the testing may need to
be performed on the target
platform due to lack of operation
usage for the processor.

Hardware/
Software
Interactions
for Interrupts
etc.

Object
Code /
Hardware

To ensure system is
robust in presence of
errors etc. and still meets
high-level requirements

Executing object code,
including execution on
target platform or on
verified emulator with
test cases designed to
enduce faults

More of the testing may need to
be performed on the target
platform due to increased
hardware dependencies and
difficulty in producing a
verified emulator

More of the testing may need to
be performed on the target
platform due to lack of operation
usage for the processor.

Hardware testing
Operating
Environment

Hardware To examine the
performance of processor
in context e.g. for
tolerance to temperature
ranges

By testing processor in
given environment or by
using a specially
designed processor for
specific operating
environment

COTS processor may not be
built for appropriate operating
environment and must be tested

Bespoke processor can be
fabricated for the specific
operating environment.

Operating
Design Limits

Hardware/
Object
Code

To examine the
performance of processor
in context e.g. for
overload to ensure meets
high-level requirements

Using information from
manufacturers and
dynamic testing

Unchanged, although the
amount of evidence may
increase due to increase in
complexity of the processor

Unchanged, although the amount
of evidence may increase due lack
of operation usage for the
processor.

Hardware
Failure Rates

Hardware To gather probabilities
per fixed period of a
hardware failure

Evidence gathered from
thorough usage of the
processor in similar
situations

Unchanged, but maybe less
convincing due to larger
number of chip components

Unchanged, but maybe less
convincing due to larger number
of chip components and lack of
operational usage.

Systematic
Design Flaws

Hardware To gather information on
systematic design flaws to
compensate for them in
complete system

Evidence could be
gathered from thorough
usage of the processor,
and if specially designed
by formal proof of the
design

Evidence is viewed as less
convincing (and incomplete)
due to slight differences in
families of design and
increasing complexity of
processor

Evidence is viewed as less
convincing (and incomplete) due
to lack of operation usage for the
processor.

Table 1 – Examination of Effect on Evidence Gathering of Move to a Modern Processor

