
Architecture Trade-off Analysis and the Influence on Component Design
Iain Bate and Neil Audsley

Department of Computer Science
University of York, York, YO10 5DD, UK.

{iain.bate, neil.audsley}@cs.york.ac.uk

1 Introduction
The production and assurance of systems that are
safety-critical and/or real-time is recognised as being
costly, time-consuming, hard to manage, and difficult
to maintain. This has lead to research into new methods
whose objectives include:
• Modular approaches to development, assurance and

maintenance to enable:
 Increased reuse;
 Increased robustness to change and reduced

impact of change.
• Integration strategies that allow systems to be

procured and produced by multiple partners, and
then efficiently integrated;

• Ways of determining the approach likely to be the
“best” (the best can only be found with hindsight);

• Techniques for identifying and managing risks.
Many of the component-based engineering techniques
are considered relatively mature for developing
dependable components and ensuring correctness
across their interfaces when combined with other
components, e.g. approaches based on rely-guarantees
[1]. This paper addresses the following key remaining
issues:
• how the system’s objectives should be decomposed

and designed into components (i.e. the location and
nature of interfaces); and

• what functionality the components should provide
to achieve the system’s objectives.

The paper develops a method for:
1. derivation of choices – identifies where different

design solutions are available for satisfying a goal.
2. manage sensitivities – identifies dependencies

between components such that consideration of
whether and how to relax them can be made. A
benefit of relaxing dependencies could be a reduced
impact to change.

3. evaluation of options – allows questions to be
derived whose answers can be used for identifying
solutions that do/do not meet the system properties,
judging how well the properties are met and
indicating where refinements of the design might
add benefit.

4. influence on the design – identifies constraints on
how components should be designed to support the
meeting of the system’s overall objectives.

Our approach satisfies the objectives by building on

existing approaches, i.e. Goal Structuring Notation
(GSN) which is used for safety arguments [2], and
UML which is used for modelling systems [3].
However, a key fact is that the methodology proposed
is not dependent on the specific techniques advocated.
The approach only needs a component -based model of
the system’s design with data flow coupling between
the components and there being a way of reasoning
about properties (and their inter-relationships),
constraints, and assumptions associated with the
coupling. (A coupling is considered as a connection
between components.) The approach we are proposing
would be used within the nine-step process of the
Architecture Trade-Off Analysis Method (ATAM) [4].
The differences between our strategy and other existing
approaches, e.g. ATAM, include the following.
1. the techniques used in our approach are already

accepted and widely used (e.g. nuclear propulsion
system and missile system safety arguments) [2],
and as such processes exist for ensuring the
correctness and consistency of the results obtained.

2. the techniques offer strong traceability and the
ability to capture design rationale.

3. information generated from their original intended
use can be reused, rather than repeating the effort.

4. the method is equally intended as a design technique
to assist in the evaluation of the architectural design
and implementation strategy as it is for evaluating a
design at a particular fixed stages of the process.

The method is described further in section 2. This is
followed by a demonstration of the approach through
the case study presented in section 3. Section 4
considers how the architecture trade-off analysis can be
used to influence the way in which components are
designed.

2 Trade-Off Analysis Method
2.1 Overview of the Trade-Off Analysis Method
Figure 1 provides a diagrammatic overview of the
method. Stage (1) of the trade-off analysis method is
producing a model of the system to be assessed. This
model should be decomposed to a uniform level of
abstraction. Currently our work uses UML for this
purpose, however it could be applied to any modelling
approach that clearly identifies components and their
couplings. Arguments are then produced in stage (2)
for each coupling to a corresponding (but lower so that
impact of later choices can be made) abstraction level

than the system model. (An overview of GSN is given
in section 2.2.) The arguments are derived from the
top-level properties of the particular system being
developed. The properties often of interest are lifecycle
cost, dependability, and maintainability. Clearly these
properties might be broken down further, e.g.
dependability may be decomposed to reliability, safety,
timing etc.. In practice, the arguments should be
generic or based on patterns where possible. Stage (3)
then uses the information in the argument to derive
options and evaluate particular solutions. Part of this
activity uses representative scenarios (e.g. what
happens when change X is performed) to evaluate the
solutions. The use of scenarios is not discussed in this
paper.
Based on the findings of stage (3), the design is
modified to fix problems that are identified – this may
require stages (1)-(3) to be repeated to show the
revised design is appropriate. When this is complete
and all necessary design choices have been made, the
process returns to stage (1) where the system is then
decomposed to the next level of abstraction using
guidance from the goal structure. Components reused
in other context could be incorporated as part of the
decomposition. Only proceeding when design choices
and problem fixing are complete is preferred to
allowing trade-offs across components at different
stages of decomposition because the abstractions and
assumptions are consistent easing the multiple-criteria
optimisation problem.

Stage 1 – Modelling
the system

Stage 2 – Arguing about key
properties

Stage 3(b) - Extracting
questions from the arguments

Stage 3(c) – Evaluating
whether claims are satisfied

Stage 3(a) – Elicitation
and evaluation of choices

Mak
e D

es
ign

Cho
ice

s

By M
ult

ipl
e-C

rite
ria

Opti
misa

tio
n Improve

Design

Refine

Design

SCENARIOS

Figure 1 - Overview of the Method

2.2 Background on Goal Structuring Notation
The arguments are expressed in the GSN [2] that is
widely used in the safety-critical domain for making
safety arguments. In brief, any safety case can be
considered as consisting of requirements, argument,
evidence and definition of bounding context. GSN - a
graphical notation - explicitly represents these elements
and (perhaps more significantly) the relationships that
exist between these elements (i.e. how individual
requirements are supported by specific arguments, how
argument claims are supported by evidence and the
assumed context that is defined for the argument).
The principal symbols in the notation are shown in
Figure 2 (with example instances of each concept). The
principal purpose of a goal structure is to show how
goals (claims about the system) are successively
broken down into sub-goals until a point is reached

where claims can be supported by direct reference to
available evidence (solutions). As part of this
decomposition, using the GSN it is also possible to
make clear the argument strategies adopted (e.g.
adopting a quantitative or qualitative approach), the
rationale for the approach (assumptions,
justifications) and the context in which goals are
stated (e.g. the system scope or the assumed
operational role). Further details are found in [2].

System tolerates
single failures

Sub-systems
independent

Fault
Tree for
Hazard

H1

A

Goal Solution

Assumption

All Identified
System
Hazards

Context

Undeveloped Goal
(to be developed)

Solved
By

In Context
OfChoice

Figure 2 - Principal Elements of GSN

3 Case Study – Simple Control System
The example being considered is a continuous control
loop that has health monitoring to check for whether
the loop is complying with the defined correct
behaviour (i.e. accuracy, responsiveness and stability)
and then takes appropriate actions if it does not.

Sensor
-value
-health

+read_data()
+send_data()

Calculations
-sensor_data
-actuator_data
-health
+read_data()
+send_data()
+transform_data()

Actuator
-value
-health

+read_data()
+send_data()

Health Monitoring
-system_health
+read_data()
+calculate_health()
+perform_health()
+update_maintainenance_state()

Figure 3 - Class Diagram for the Control Loop
At the highest level of abstraction the control loop (the
architectural model of which is shown in Figure 3)
consists of three elements; a sensor, an actuator and a
calculation stage. It should be noted that at this level,
the design is abstract of whether the implementation is
achieved via hardware or software. The requirements
(key safety properties to be maintained are signified by
(S), functional properties by (F) and non-functional
properties by (NF), and explanations, where needed, in
italics) to be met are:
• the sensors have input limits (S) (F);
• the actuators have input and output limits (S) (F);
• the overall process must allow the system to meet

the desired control properties, i.e. responsiveness
(dependent on errors caused by latency (NF)),
stability (dependent on errors due to jitter (NF) and
gain at particular frequency responses (F)) [6] (S);

• where possible the system should allow components
that are beginning to fail to be detected at an early
stage by comparison with data from other sources
(e.g. additional sensors) (NF). Early recognition
would allow appropriate actions to be taken
including the planning of maintenance activities.

In practice as the system development progresses, the

component design in Figure 3 would be refined to
show more detail. For reasons of space only the
calculation-health monitor coupling is considered.
Stage 2 is concerned with producing arguments to
support the meeting of objectives. The first one
considered here is an objective obtained from
decomposing an argument for dependability (the
argument is not shown here due to space reasons) that
the system’s components are able to tolerate timing
errors (goal Timing). From an available argument
pattern, the argument in Figure 4 was produced
reasoning that “Mechanisms in place to tolerate key
errors in timing behaviour” where the context of the
argument is health monitor component. Figure 4 shows
how the argument is split into two parts. Firstly,
evidence has to be obtained using appropriate
verification techniques that the requirements are met in
the implementation, e.g. when and in what order
functionality should be performed. Secondly, the health
monitor checks for unexpected behaviour. There are
two ways in which unexpected behaviour can be
detected (a choice is depicted by a black diamond in
the arguments) – just one of the techniques could be
used or a combination of the two ways. The first way is
for the health-monitor component to rely entirely on
the results of the internal health monitoring of the
calculation component to indicate the current state of
the calculations. The second way is for the health-
monitor component to monitor the operation of the
calculation component by observing the inputs and
outputs to the calculation component.
In the arguments, the leaf goals (generally at the
bottom) have a diamond below them that indicates the
development of that part of the argument is not yet
complete. An argument is complete when all leaves
have been fully developed such that they are
terminated by solutions. The solutions are typically
requirements for the evidence to be provided. The
evidence provided is normally quantitative in nature,
e.g. results of timing analysis to show timing
requirements are met.

Timing
Mechanisms in place to

tolerate key errors in
timing behaviour

G0015
Timing

requirements are
specified

appropriately

G0016
System

implemented in
a predictable

way

G0017
Verification

techniques available
to prove the

requirements are met

C0009
Appropriate =

correct, consistent
and completeness

G0020
Sufficient information
about the bounds of

expected timing
operation is obtained

G0021
Operation is monitored

and unexpected
behaviour handled

C0010
Expected temporal

behaviour concerns when
and the order in which

functionality is performed

G0022
Health monitor
relies on health

information
provided to it

G0023
Health monitor

performs checks
based on provided

information

A

A0004

Appropriate steps taken
when system changes

C0010
Mechanism = Health-

monitoring
component

Figure 4 - Timing Argument

Next an objective obtained from decomposing an
argument for maintainability (again not shown here due
to space reasons) that the system’s components are
tolerant to changes is examined. The resultant

argument in Figure 5 depicts how it is reasoned the
“Component is robust to changes” in the context of the
health-monitor component. There are two separate
parts to this; making the integrity of the calculations
less dependent on when they are performed, and
making the integrity of the calculations less dependent
on the values received (i.e. error-tolerant). For the first
of these, we could either execute the software faster so
that jitter is less of an issue, or we could use a robust
algorithm that is less susceptible to the timing
properties of the input data (i.e. more tolerant to jitter
or the failure of values to arrive).

G0011
Make operations integrity
less susceptible to time

variations

G0002
Component is

robust to changes

G0012
Make operations

integrity less
dependent on value

A

A0002

The integrity is related to
frequency, latency and

jitter

G0013
Perform functionality

faster than the
plant's fastest

frequency

G0014
Make calculations

integrity less
dependent on input

data's timing
properties

C0008
Robust

algorithms e.g.
H-infinity

C0007
Plant = system
under control

C0012
Component = health

monitoring

Figure 5 – Minimising Change Argument

The next stage (stage 3(a)) in the approach is the
elicitation and evaluation of choices. This stage
extracts the choices, and considers their relative pros
and cons. The results are presented in Table 1.

Content Choice Pros Cons
Goal G0022 -
Health monitor
relies on health
information
provided to it

Simplicity since
health monitor
doesn’t need to
access and
interpret another
component’s
state.

Can a failing/failed
component be
trusted to interpret
error-free data.

Goal G0021 -
Operation is
monitored and
unexpected
behaviour
handled

Goal G0023-
Health monitor
performs
checks based
on provided
information

Omission failures
easily detected
and integrity of
calculations
maintained
assuming data
provided is
correct.

Health monitor is
more complex and
prone to change due
to dependence on
the component.

Goal G0013 –
Perform
functionality
faster than the
plant’s fastest
frequency.

Simple
algorithms can be
used.
These algorithms
take less
execution time.

Period and deadline
constraints are
tighter.
Effects of failures
are more significant.Goal G0011 -

Make
operations
integrity less
susceptible to
time variations

Goal G0014 -
Make
calculations’
integrity less
dependent on
input data’s
timing
properties.

Period and
deadline
constraints
relaxed.
Effects of failures
may be reduced.

More complicated
algorithms have to
be used.
Algorithms may
take more execution
time.

Table 1 - Choices Extracted from the Arguments
Stage 3(b) then extracts questions from the argument

that can then be used to evaluate whether particular
solutions (stage 3(c)) meets the claims from the
arguments generated earlier in the process. Table 2
presents some of the results of extracting questions
from the arguments for claim G0011 and its
assumption A0002 from Figure 5. The table includes
an evaluation of a solution based on a PID
(Proportional Integration Differentiation) loop.

Question Importance Response Design Mod. Rati-
onale

Goal G0011 - Can
the integrity of the
operations be
justified?

Essential More design
information
needed

Dependent
on response
to questions

N/A

Assumption A0002 -
Can the dependency
between the
operation’s integrity
and the timing
properties be relaxed?

Value
Added

Only by
changing
control
algorithm
used

Results of
other trade-
off analysis
needed

N/A

Table 2 – Evaluation Based on Argument
Table 2 shows how questions for a particular coupling
have different importance associated (e.g. Essential
versus Value Added). These relate to properties that
must be upheld or those whose handling in a different
manner may add benefit (e.g. reduced susceptibility to
change). The responses are only partially complete
(design modification and rationale not at all) for the
solution considered due to the lack of other design
information. As the design evolves the level of detail
contained in the table would increase and the table
would then be populated with evidence from
verification activities, e.g. timing analysis.

4 Influence on Component-Based Design
The content of the arguments presented in section 3
can be used to influence the way components in the
system are designed and the way in which the
architecture is decomposed. This section discusses the
influences from some of the goals and in doing so
demonstrates the links between the architecture trade-
off analysis and component-based design.
From Table 1 it can be seen that some of the choices
that need to be made about individual components are
affected by choices made by other components within
the system. Two cases of influence are given below:
1. On Component’s Functionality – In Figure 5 goal

G0014 leads to a design option of having a more
complicated control algorithm that is more resilient
to changes and variations in the system’s timing
properties. However goal G0014 is in opposition to
goal G0023 from Figure 4 since it would make the
health-monitoring component more complex.

2. On Abstractions and Interfaces – Goal G0021 in
Figure 4 leads to a choice over where health
monitoring functionality is situated. These are;
entirely in the health monitor component, or
partially in the calculation component and the rest
in the health monitor component. The choice alters
the abstractions and interfaces between the two

components since all relevant data needs to be
passed between the components if the health
monitor component is entirely responsible. In
contrast if it is only partially responsible, then a
health level would be passed and maybe some data
to allow limited validation to be performed in the
health monitor component. The choice therefore
affects the components’ design as well as how
achievable objectives such as reuse and
maintainability are.

Other choices made may not influence the abstractions
and interfaces but may affect the components’ design.
This can be demonstrated through the choice
originating from goal G0011. Independent of how
calculations are performed, the health monitoring is
still based on whether the control loop meets the
requirements given in section 3. This requires data
concerning current sensor inputs and actuator outputs
to be passed from the calculation components to the
health monitoring. With this data it can be checked
whether the inputs and outputs are within limits as well
as determining the responsiveness and stability criteria
are being met [6]. Hence the abstraction and interface
is not affected, but the design of the calculation
component and the checks performed are affected.

5 Conclusions
This paper has addressed a method to support
architectural design and implementation strategy trade-
off analysis, one of the key parts of component-based
development. Specifically, the method presented
provides guidance when decomposing systems so that
the system’s objectives are met, deciding what
functionality the components should fulfil in-order to
achieve the remaining objectives, and showing how
this influences the design of components.
Further work could include performing different case
studies, to show how argument and design patterns can
be used to increase the efficiency of applying the
technique, to understand better the relationship
between system architecture and component design,
and to establish a means by reusing existing work for
performing the multiple-criteria optimisation.

6 References
[1] B. Meyer, Applying Design by Contract, IEEE

Computer, 25(10), pp. 40-51, October 1992.
[2] T. Kelly, Arguing Safety – A Systematic Approach to

Safety Case Management, DPhil Thesis, YCST-99-05,
Department of Computer Science, Univ. of York, 1998.

[3] B. Douglass, Real-Time UML, Addison Wesley, 1998.
[4] R. Kazman, M. Klein, P. Clements, Evaluating Software

Architectures – Methods and Case Studies, Addison
Wesley, 2001.

[5] J.-C. Laprie, Dependable Computing and Fault
Tolerance: Concepts and Terminology, in Proceedings
of the 15th International Symposium on Fault Tolerant
Computing (FTCS-15), pp. 2-11, 1985.

[6] R. Harbor and C Phillips, Feedback Control Systems, 4th
Edition, Prentice Hall, 2000.

