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1 Introduction 
The production and assurance of systems that are 
safety-critical and/or real-time is recognised as being 
costly, time-consuming, hard to manage, and difficult 
to maintain. This has lead to research into new methods 
whose objectives include: 
• Modular approaches to development, assurance and 

maintenance to enable: 
 Increased reuse; 
 Increased robustness to change and reduced 

impact of change. 
• Integration strategies that allow systems to be 

procured and produced by multiple partners, and 
then efficiently integrated; 

• Ways of determining the approach likely to be the 
“best” (the best can only be found with hindsight); 

• Techniques for identifying and managing risks. 
Many of the component-based engineering techniques 
are considered relatively mature for developing 
dependable components and ensuring correctness 
across their interfaces when combined with other 
components, e.g. approaches based on rely-guarantees 
[1]. This paper addresses the following key remaining 
issues: 
• how the system’s objectives should be decomposed 

and designed into components (i.e. the location and 
nature of interfaces); and 

• what functionality the components should provide 
to achieve the system’s objectives. 

The paper develops a method for: 
1. derivation of choices – identifies where different 

design solutions are available for satisfying a goal.  
2. manage sensitivities – identifies dependencies 

between components such that consideration of 
whether and how to relax them can be made. A 
benefit of relaxing dependencies could be a reduced 
impact to change. 

3. evaluation of options – allows questions to be 
derived whose answers can be used for identifying 
solutions that do/do not meet the system properties, 
judging how well the properties are met and 
indicating where refinements of the design might 
add benefit. 

4. influence on the design – identifies constraints on 
how components should be designed to support the 
meeting of the system’s overall objectives. 

Our approach satisfies the objectives by building on 

existing approaches, i.e. Goal Structuring Notation 
(GSN) which is used for safety arguments [2], and 
UML which is used for modelling systems [3]. 
However, a key fact is that the methodology proposed 
is not dependent on the specific techniques advocated. 
The approach only needs a component -based model of 
the system’s design with data flow coupling between 
the components and there being a way of reasoning 
about properties (and their inter-relationships), 
constraints, and assumptions associated with the 
coupling. (A coupling is considered as a connection 
between components.) The approach we are proposing 
would be used within the nine-step process of the 
Architecture Trade-Off Analysis Method (ATAM) [4]. 
The differences between our strategy and other existing 
approaches, e.g. ATAM, include the following.  
1. the techniques used in our approach are already 

accepted and widely used (e.g. nuclear propulsion 
system and missile system safety arguments) [2], 
and as such processes exist for ensuring the 
correctness and consistency of the results obtained. 

2. the techniques offer strong traceability and the 
ability to capture design rationale. 

3. information generated from their original intended 
use can be reused, rather than repeating the effort. 

4. the method is equally intended as a design technique 
to assist in the evaluation of the architectural design 
and implementation strategy as it is for evaluating a 
design at a particular fixed stages of the process. 

The method is described further in section 2. This is 
followed by a demonstration of the approach through 
the case study presented in section 3. Section 4 
considers how the architecture trade-off analysis can be 
used to influence the way in which components are 
designed. 

2 Trade-Off Analysis Method 
2.1 Overview of the Trade-Off Analysis Method 
Figure 1 provides a diagrammatic overview of the 
method. Stage (1) of the trade-off analysis method is 
producing a model of the system to be assessed. This 
model should be decomposed to a uniform level of 
abstraction. Currently our work uses UML for this 
purpose, however it could be applied to any modelling 
approach that clearly identifies components and their 
couplings. Arguments are then produced in stage (2) 
for each coupling to a corresponding (but lower so that 
impact of later choices can be made) abstraction level 



than the system model. (An overview of GSN is given 
in section 2.2.) The arguments are derived from the 
top-level properties of the particular system being 
developed. The properties often of interest are lifecycle 
cost, dependability, and maintainability. Clearly these 
properties might be broken down further, e.g. 
dependability may be decomposed to reliability, safety, 
timing etc.. In practice, the arguments should be 
generic or based on patterns where possible. Stage (3) 
then uses the information in the argument to derive 
options and evaluate particular solutions. Part of this 
activity uses representative scenarios (e.g. what 
happens when change X is performed) to evaluate the 
solutions. The use of scenarios is not discussed in this 
paper. 
Based on the findings of stage (3), the design is 
modified to fix problems that are identified – this may 
require stages (1)-(3) to be repeated to show the 
revised design is appropriate. When this is complete 
and all necessary design choices have been made, the 
process returns to stage (1) where the system is then 
decomposed to the next level of abstraction using 
guidance from the goal structure. Components reused 
in other context could be incorporated as part of the 
decomposition. Only proceeding when design choices 
and problem fixing are complete is preferred to 
allowing trade-offs across components at different 
stages of decomposition because the abstractions and 
assumptions are consistent easing the multiple-criteria 
optimisation problem. 

Stage 1 – Modelling 
the system 

Stage 2 – Arguing about key 
properties 

Stage 3(b) - Extracting 
questions from the arguments

Stage 3(c) – Evaluating 
whether claims are satisfied

Stage 3(a) – Elicitation 
and evaluation of choices 
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Figure 1 - Overview of the Method 

2.2 Background on Goal Structuring Notation 
The arguments are expressed in the GSN [2] that is 
widely used in the safety-critical domain for making 
safety arguments. In brief, any safety case can be 
considered as consisting of requirements, argument, 
evidence and definition of bounding context. GSN - a 
graphical notation - explicitly represents these elements 
and (perhaps more significantly) the relationships that 
exist between these elements (i.e. how individual 
requirements are supported by specific arguments, how 
argument claims are supported by evidence and the 
assumed context that is defined for the argument). 
The principal symbols in the notation are shown in 
Figure 2 (with example instances of each concept). The 
principal purpose of a goal structure is to show how 
goals (claims about the system) are successively 
broken down into sub-goals until a point is reached 

where claims can be supported by direct reference to 
available evidence (solutions). As part of this 
decomposition, using the GSN it is also possible to 
make clear the argument strategies adopted (e.g. 
adopting a quantitative or qualitative approach), the 
rationale for the approach (assumptions, 
justifications) and the context in which goals are 
stated (e.g. the system scope or the assumed 
operational role). Further details are found in [2]. 
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Figure 2 - Principal Elements of GSN 

3 Case Study – Simple Control System 
The example being considered is a continuous control 
loop that has health monitoring to check for whether 
the loop is complying with the defined correct 
behaviour (i.e. accuracy, responsiveness and stability) 
and then takes appropriate actions if it does not. 

Sensor
-value
-health

+read_data()
+send_data()

Calculations
-sensor_data
-actuator_data
-health
+read_data()
+send_data()
+transform_data()

Actuator
-value
-health

+read_data()
+send_data()

Health Monitoring
-system_health
+read_data()
+calculate_health()
+perform_health()
+update_maintainenance_state()  

Figure 3 - Class Diagram for the Control Loop 
At the highest level of abstraction the control loop (the 
architectural model of which is shown in Figure 3) 
consists of three elements; a sensor, an actuator and a 
calculation stage. It should be noted that at this level, 
the design is abstract of whether the implementation is 
achieved via hardware or software. The requirements 
(key safety properties to be maintained are signified by 
(S), functional properties by (F) and non-functional 
properties by (NF), and explanations, where needed, in 
italics) to be met are: 
• the sensors have input limits (S) (F); 
• the actuators have input and output limits (S) (F); 
• the overall process must allow the system to meet 

the desired control properties, i.e. responsiveness 
(dependent on errors caused by latency (NF)), 
stability (dependent on errors due to jitter (NF) and 
gain at particular frequency responses (F)) [6] (S); 

• where possible the system should allow components 
that are beginning to fail to be detected at an early 
stage by comparison with data from other sources 
(e.g. additional sensors) (NF). Early recognition 
would allow appropriate actions to be taken 
including the planning of maintenance activities. 

In practice as the system development progresses, the 



component design in Figure 3 would be refined to 
show more detail. For reasons of space only the 
calculation-health monitor coupling is considered. 
Stage 2 is concerned with producing arguments to 
support the meeting of objectives. The first one 
considered here is an objective obtained from 
decomposing an argument for dependability (the 
argument is not shown here due to space reasons) that 
the system’s components are able to tolerate timing 
errors (goal Timing). From an available argument 
pattern, the argument in Figure 4 was produced 
reasoning that “Mechanisms in place to tolerate key 
errors in timing behaviour” where the context of the 
argument is health monitor component. Figure 4 shows 
how the argument is split into two parts. Firstly, 
evidence has to be obtained using appropriate 
verification techniques that the requirements are met in 
the implementation, e.g. when and in what order 
functionality should be performed. Secondly, the health 
monitor checks for unexpected behaviour. There are 
two ways in which unexpected behaviour can be 
detected (a choice is depicted by a black diamond in 
the arguments) – just one of the techniques could be 
used or a combination of the two ways. The first way is 
for the health-monitor component to rely entirely on 
the results of the internal health monitoring of the 
calculation component to indicate the current state of 
the calculations. The second way is for the health-
monitor component to monitor the operation of the 
calculation component by observing the inputs and 
outputs to the calculation component. 
In the arguments, the leaf goals (generally at the 
bottom) have a diamond below them that indicates the 
development of that part of the argument is not yet 
complete. An argument is complete when all leaves 
have been fully developed such that they are 
terminated by solutions. The solutions are typically 
requirements for the evidence to be provided. The 
evidence provided is normally quantitative in nature, 
e.g. results of timing analysis to show timing 
requirements are met. 
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Figure 4 - Timing Argument 

Next an objective obtained from decomposing an 
argument for maintainability (again not shown here due 
to space reasons) that the system’s components are 
tolerant to changes is examined. The resultant 

argument in Figure 5 depicts how it is reasoned the 
“Component is robust to changes” in the context of the 
health-monitor component. There are two separate 
parts to this; making the integrity of the calculations 
less dependent on when they are performed, and 
making the integrity of the calculations less dependent 
on the values received (i.e. error-tolerant). For the first 
of these, we could either execute the software faster so 
that jitter is less of an issue, or we could use a robust 
algorithm that is less susceptible to the timing 
properties of the input data (i.e. more tolerant to jitter 
or the failure of values to arrive). 
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Figure 5 – Minimising Change Argument 

The next stage (stage 3(a)) in the approach is the 
elicitation and evaluation of choices. This stage 
extracts the choices, and considers their relative pros 
and cons. The results are presented in Table 1. 

Content Choice Pros Cons 
Goal G0022 - 
Health monitor 
relies on health 
information 
provided to it 

Simplicity since 
health monitor 
doesn’t need to 
access and 
interpret another 
component’s 
state. 

Can a failing/failed 
component be 
trusted to interpret 
error-free data.  

Goal G0021 - 
Operation is 
monitored and 
unexpected 
behaviour 
handled 

Goal G0023- 
Health monitor 
performs 
checks based 
on provided 
information 

Omission failures 
easily detected 
and integrity of 
calculations 
maintained 
assuming data 
provided is 
correct. 

Health monitor is 
more complex and 
prone to change due 
to dependence on 
the component. 

Goal G0013 – 
Perform 
functionality 
faster than the 
plant’s fastest 
frequency. 

Simple 
algorithms can be 
used. 
These algorithms 
take less 
execution time. 

Period and deadline 
constraints are 
tighter. 
Effects of failures 
are more significant.Goal G0011 - 

Make 
operations 
integrity less 
susceptible to 
time variations

Goal G0014 - 
Make 
calculations’ 
integrity less 
dependent on 
input data’s 
timing 
properties. 

Period and 
deadline 
constraints 
relaxed. 
Effects of failures 
may be reduced. 

More complicated 
algorithms have to 
be used. 
Algorithms may 
take more execution 
time. 

Table 1 - Choices Extracted from the Arguments 
Stage 3(b) then extracts questions from the argument 



that can then be used to evaluate whether particular 
solutions (stage 3(c)) meets the claims from the 
arguments generated earlier in the process. Table 2 
presents some of the results of extracting questions 
from the arguments for claim G0011 and its 
assumption A0002 from Figure 5. The table includes 
an evaluation of a solution based on a PID 
(Proportional Integration Differentiation) loop. 

Question Importance Response Design Mod. Rati-
onale

Goal G0011 - Can 
the integrity of the 
operations be 
justified? 

Essential More design 
information 
needed 

Dependent 
on response 
to questions 

N/A

Assumption A0002 - 
Can the dependency 
between the 
operation’s integrity 
and the timing 
properties be relaxed? 

Value 
Added 

Only by 
changing 
control 
algorithm 
used 

Results of 
other trade-
off analysis 
needed 

N/A

Table 2 – Evaluation Based on Argument 
Table 2 shows how questions for a particular coupling 
have different importance associated (e.g. Essential 
versus Value Added). These relate to properties that 
must be upheld or those whose handling in a different 
manner may add benefit (e.g. reduced susceptibility to 
change). The responses are only partially complete 
(design modification and rationale not at all) for the 
solution considered due to the lack of other design 
information. As the design evolves the level of detail 
contained in the table would increase and the table 
would then be populated with evidence from 
verification activities, e.g. timing analysis. 

4 Influence on Component-Based Design 
The content of the arguments presented in section 3 
can be used to influence the way components in the 
system are designed and the way in which the 
architecture is decomposed. This section discusses the 
influences from some of the goals and in doing so 
demonstrates the links between the architecture trade-
off analysis and component-based design. 
From Table 1 it can be seen that some of the choices 
that need to be made about individual components are 
affected by choices made by other components within 
the system. Two cases of influence are given below: 
1. On Component’s Functionality – In Figure 5 goal 

G0014 leads to a design option of having a more 
complicated control algorithm that is more resilient 
to changes and variations in the system’s timing 
properties. However goal G0014 is in opposition to 
goal G0023 from Figure 4 since it would make the 
health-monitoring component more complex. 

2. On Abstractions and Interfaces – Goal G0021 in 
Figure 4 leads to a choice over where health 
monitoring functionality is situated. These are; 
entirely in the health monitor component, or 
partially in the calculation component and the rest 
in the health monitor component. The choice alters 
the abstractions and interfaces between the two 

components since all relevant data needs to be 
passed between the components if the health 
monitor component is entirely responsible. In 
contrast if it is only partially responsible, then a 
health level would be passed and maybe some data 
to allow limited validation to be performed in the 
health monitor component. The choice therefore 
affects the components’ design as well as how 
achievable objectives such as reuse and 
maintainability are. 

Other choices made may not influence the abstractions 
and interfaces but may affect the components’ design. 
This can be demonstrated through the choice 
originating from goal G0011. Independent of how 
calculations are performed, the health monitoring is 
still based on whether the control loop meets the 
requirements given in section 3. This requires data 
concerning current sensor inputs and actuator outputs 
to be passed from the calculation components to the 
health monitoring. With this data it can be checked 
whether the inputs and outputs are within limits as well 
as determining the responsiveness and stability criteria 
are being met [6]. Hence the abstraction and interface 
is not affected, but the design of the calculation 
component and the checks performed are affected. 

5 Conclusions 
This paper has addressed a method to support 
architectural design and implementation strategy trade-
off analysis, one of the key parts of component-based 
development. Specifically, the method presented 
provides guidance when decomposing systems so that 
the system’s objectives are met, deciding what 
functionality the components should fulfil in-order to 
achieve the remaining objectives, and showing how 
this influences the design of components. 
Further work could include performing different case 
studies, to show how argument and design patterns can 
be used to increase the efficiency of applying the 
technique, to understand better the relationship 
between system architecture and component design, 
and to establish a means by reusing existing work for 
performing the multiple-criteria optimisation. 
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