
Architectural Considerations in the Certification of
Modular Systems

Iain Bate and Tim Kelly

Department of Computer Science
University of York, York, YO10 5DD, UK.

{iain.bate, tim.kelly}@cs.york.ac.uk

Abstract. The adoption of Integrated Modular Avionics (IMA) in the
aerospace industry offers potential benefits of improved flexibility in
function allocation, reduced development costs and improved
maintainability. However, it requires a new certification approach. The
traditional approach to certification is to prepare monolithic safety cases as
bespoke developments for a specific system in a fixed configuration.
However, this nullifies the benefits of flexibility and reduced rework claimed
of IMA-based systems and will necessitate the development of new safety
cases for all possible (current and future) configurations of the architecture.
This paper discusses a modular approach to safety case construction,
whereby the safety case is partitioned into separable arguments of safety
corresponding with the components of the system architecture. Such an
approach relies upon properties of the IMA system architecture (such as
segregation and location independence) having been established. The paper
describes how such properties can be assessed to show that they are met and
trade-off performed during architecture definition reusing information and
techniques from the safety argument process.

1 Introduction

Integrated Modular Avionics (IMA) offers potential benefits of improved flexibility
in function allocation, reduced development costs and improved maintainability.
However, it poses significant problems in certification. The traditional approach to
certification relies heavily upon a system being statically defined as a complete
entity and the corresponding (bespoke) system safety case being constructed.
However, a principal motivation behind IMA is that there is through-life (and
potentially run-time) flexibility in the system configuration. An IMA system can
support many possible mappings of the functionality required to the underlying
computing platform.
In constructing a safety case for IMA an attempt could be made to enumerate and
justify all possible configurations within the architecture. However, this approach is
unfeasibly expensive for all but a small number of processing units and functions.
Another approach is to establish the safety case for a specific configuration within
the architecture. However, this nullifies the benefit of flexibility in using an IMA
solution and will necessitate the development of completely new safety cases for
future modifications or additions to the architecture.

A more promising approach is to attempt to establish a modular, compositional,
approach to constructing safety arguments that has a correspondence with the
structure of the underlying system architecture. However, to create such arguments
requires a system architecture that has been designed with explicit consideration of
enabling properties such as independence (e.g. including both non-interference and
location ‘transparency’), increased flexibility in functional integration, and low
coupling between components. An additional problem is that these properties are
non-orthogonal and trade-offs must be made when defining the architecture.

2 Safety Case Modules

Defining a safety case ‘module’ involves defining the objectives, evidence,
argument and context associated with one aspect of the safety case. Assuming a
top-down progression of objectives-argument-evidence, safety cases can be
partitioned into modules both horizontally and vertically:
• Vertical (Hierarchical) Partitioning - The claims of one safety argument can

be thought of as objectives for another. For example, the claims regarding
software safety made within a system safety case can serve as the objectives of
the software safety case.

• Horizontal Partitioning - One argument can provide the assumed context of
another. For example, the argument that “All system hazards have been
identified” can be the assumed context of an argument that “All identified
system hazards have been sufficiently mitigated”.

In defining a safety case module it is essential to identify the ways in which the
safety case module depends upon the arguments, evidence or assumed context of
other modules. A safety case module, should therefore be defined by the following
interface:
1. Objectives addressed by the module
2. Evidence presented within the module
3. Context defined within the module
4. Arguments requiring support from other modules
Inter-module dependencies:
5. Reliance on objectives addressed elsewhere
6. Reliance on evidence presented elsewhere
7. Reliance on context defined elsewhere
The principal need for having such well-defined interfaces for each safety case
module arises from being able to ensure that modules are being used consistently
and correctly in their target application context (i.e. when composed with other
modules).

2.1 Safety Case Module Composition

Safety case modules can be usefully composed if their objectives and arguments
complement each other – i.e. one or more of the objectives supported by a module
match one or more of the arguments requiring support in the other. For example,

the software safety argument is usefully composed with the system safety argument
if the software argument supports one or more of objectives set by the system
argument. At the same time, an important side-condition is that the collective
evidence and assumed context of one module is consistent with that presented in
the other. For example, an operational usage context assumed within the software
safety argument must be consistent with that put forward within the system level
argument.
The definition of safety case module interfaces and satisfaction of conditions across
interfaces upon composition is analogous to the long established rely-guarantee
approach to specifying the behaviour of software modules. Jones in [1] talks of
‘rely’ conditions that express the assumptions that can be made about the
interrelations (interference) between operations and ‘guarantee’ conditions that
constrain the end-effect assuming that the ‘rely’ conditions are satisfied. For a
safety case module, the rely conditions can be thought of as items 4 to 7 (at the start
of section 2) of the interface whilst item 1 (objectives addressed) defines the
guarantee conditions. Items 2 (evidence presented) and 3 (context defined) must
continue to hold (i.e. not be contradicted by inconsistent evidence or context)
during composition of modules.
The defined context of one module may also conflict with the evidence presented in
another. There may also simply be a problem of consistency between the system
models defined within multiple modules. For example, assuming a conventional
system safety argument / software safety argument decomposition (as defined by
U.K. Defence Standards 00-56 [2] and 00-55 [3]) consistency must be assured
between the state machine model of the software (which, in addition to modelling
the internal state changes of the software will almost inevitably model the external
– system – triggers to state changes) and the system level view of the external
stimuli. As with checking the consistency of safety analyses, the problem of
checking the consistency of multiple, diversely represented, models is also a
significant challenge in its own right.

2.2 The Challenge of Compositionality

It is widely recognised (e.g. by Perrow [4] and Leveson [5]) that relatively low risks
are posed by independent component failures in safety-critical systems. However, it
is not expected that in a safety case architecture where modules are defined to
correspond with a modular system structure that a complete, comprehensive and
defensible argument can be achieved by merely composing the arguments of safety
for individual system modules. Safety is a whole system, rather than a ‘sum of
parts’, property. Combination of effects and emergent behaviour must be
additionally addressed within the overall safety case architecture (i.e. within their
own modules of the safety case). Modularity in reasoning should not be confused
with modularity (and assumed independence) in system behaviour.

2.3 Safety Case Module ‘Contracts’

Where a successful match (composition) can be made of two or more modules, a
contract should be recorded of the agreed relationship between the modules. This
contract aids in assessing whether the relationship continues to hold and the

(combined) argument continues to be sustained if at a later stage one of the
argument modules is modified or a replacement module substituted. This is a
commonplace approach in component based software engineering where contracts
are drawn up of the services a software component requires of, and provides to, its
peer components, e.g. as in Meyer’s Eiffel contracts [6].
In software component contracts, if a component continues to fulfil its side of the
contract with its peer components (regardless of internal component
implementation detail or change) the overall system functionality is expected to be
maintained. Similarly, contracts between safety case modules allow the overall
argument to be sustained whilst the internal details of module arguments (including
use of evidence) are changed or entirely substituted for alternative arguments
provided that the guarantees of the module contract continue to be upheld.

2.4 Safety Case Architecture

We define safety case architecture as the high level organisation of the safety case
into modules of argument and the interdependencies that exist between them. In
deciding upon the partitioning of the safety case, many of the same principles apply
as for system architecture definition, for example:
• High Cohesion / Low Coupling – each safety case module should address a

logically cohesive set of objectives and (to improve maintainability) should
minimise the amount of cross-referencing to, and dependency on, other
modules.

• Supporting Work Division & Contractual Boundaries – module boundaries
should be defined to correspond with the division of labour and organisational /
contractual boundaries such that interfaces and responsibilities are clearly
identified and documented.

• Isolating Change – arguments that are expected to change (e.g. when making
anticipated additions to system functionality) should ideally be located in
modules separate from those modules where change to the argument is less
likely (e.g. safety arguments concerning operating system integrity).

The principal aim in attempting to adopt a modular safety case architecture for
IMA-based systems is for the modular structure of the safety case to correspond as
far as is possible with the modular partitioning of the hardware and software of the
actual system.

2.5 Reasoning about Interactions and Independence

One of the main impediments to reasoning separately about individual applications
running on an IMA based architecture is the degree to which applications interact
or interfere with one another. The European railways safety standard CENELEC
ENV 50129 [7] makes an interesting distinction between those interactions between
system components that are intentional (e.g. component X is meant to
communicate with component Y) and those that are unintentional (e.g. the impact
of electromagnetic interference generated by one component on another). A further
observation made in ENV 50129 is that there are a class of interactions that are
unintentional but created through intentional connections. An example of this form

of interaction is the influence of a failed processing node that is ‘babbling’ and
interfering with another node through the intentional connection of a shared
databus.
Ideally ‘once-for-all’ arguments are established by appeal to the properties of the
IMA infrastructure to address unintentional interactions. For example, an argument
of “non-interference through shared scheduler” could be established by appeal to
the priority-based scheduling scheme offered by the scheduler.
It is not possible to provide “once-for-all” arguments for the intentional interactions
between components – as these can only be determined for a given configuration of
components. However, it is desirable to separate those arguments addressing the
logical intent of the interaction from those addressing the integrity of the medium
of interaction.
The following section describes how properties of the system architecture, such as
those discussed above, can be explicitly considered as part of the architecture
definition activity.

3 Evaluating Required Qualities During System Architecture
Definition

In defining system architecture it is important to consider the following activities:
1. derivation of choices – identifies where different design solutions are available

for satisfying a goal.
2. manage sensitivities – identifies dependencies between components such that

consideration of whether and how to relax them can be made. A benefit of
relaxing dependencies could be a reduced impact to change.

3. evaluation of options – allows questions to be derived whose answers can be
used for identifying solutions that do/do not meet the system properties, judging
how well the properties are met and indicating where refinements of the design
might add benefit.

4. influence on the design – identifies constraints on how components should be
designed to support the meeting of the system’s overall objectives.

A technique (the Architecture Trade-Off Analysis Method – ATAM [8]) for
evaluating architectures for their support of architectural qualities, and trade-offs in
achieving those qualities, has been developed by the Software Engineering
Institute. Our proposed approach is intended for use within the nine-step process of
ATAM. The differences between our strategy and other existing approaches, e.g.
ATAM, include the following.
1. the techniques used in our approach are already accepted and widely used (e.g.

nuclear propulsion system and missile system safety arguments) [2], and as such
processes exist for ensuring the correctness and consistency of the results
obtained.

2. the techniques offers: (a) strong traceability and a rigorous method for deriving
the attributes and questions with which designs are analysed; (b) the ability to
capture design rationale and assumptions which is essential if component reuse
is to be achieved.

3. information generated from their original intended use can be reused, rather than
repeating the effort.

4. the method is equally intended as a design technique to assist in the evaluation
of the architectural design and implementation strategy as it is for evaluating a
design at a particular fixed stages of the process.

3.1 Analysing Different Design Solutions and Performing Trade-Offs

Figure 1 provides a diagrammatic overview of the proposed method. Stage (1) of
the trade-off analysis method is producing a model of the system to be assessed.
This model should be decomposed to a uniform level of abstraction. Currently our
work uses UML [9] for this purpose, however it could be applied to any modelling
approach that clearly identifies components and their couplings. Arguments are
then produced (stage (2)) for each coupling to a corresponding (but lower so that
impact of later choices can be made) abstraction level than the system model. (An
overview of Goal Structuring Notation symbols is shown in Figure 2, further details
of the notation can be found in [10]) The arguments are derived from the top-level
properties of the particular system being developed. The properties often of interest
are lifecycle cost, dependability, and maintainability. Clearly these properties can
be broken down further, e.g. dependability may be decomposed to reliability, safety,
timing (as described in [11]). Safety may further involve providing guarantees of
independence between functionality. In practice, the arguments should be generic
or based on patterns where possible. Stage (3) then uses the information in the
argument to derive options and evaluate particular solutions. Part of this activity
uses representative scenarios to evaluate the solutions.

Stage 1 – Modelling
the system

Stage 2 – Arguing about key
properties

Stage 3(b) - Extracting
questions from the arguments

Stage 3(c) – Evaluating
whether claims are satisfied

Stage 3(a) – Elicitation
and evaluation of choices

Mak
e D

es
ign

Cho
ice

s

By
 M

ult
iple

-C
rite

ria

Opti
misa

tio
n

Improve

Design

Refine

Design

SCENARIOS

Figure 1 - Overview of the Method

A

Goal Solution Context Assumption SolvedBy InContextOf Choice
Figure 2 – Goal Structuring Notation (GSN) Symbols

Based on the findings of stage (3), the design is modified to fix problems that are
identified – this may require stages (1)-(3) to be repeated to show the revised design
is appropriate. When this is complete and all necessary design choices have been
made, the process returns to stage (1) where the system is then decomposed to the

next level of abstraction using guidance from the goal structure. Components
reused from another context could be incorporated as part of the decomposition.
Only proceeding when design choices and problem fixing are complete is preferred
to allowing trade-offs across components at different stages of decomposition
because the abstractions and assumptions are consistent.

3.2 Example – Simple Control System

The example being considered is a continuous control loop that has health
monitoring to check for whether the loop is complying with the defined correct
behaviour (i.e. accuracy, responsiveness and stability) and then takes appropriate
actions if it does not.

Sensor

-value
-health

+read_data()
+send_data()

Calculations
-sensor_data
-actuator_data
-health
+read_data()
+send_data()
+transform_data()

Actuator

-value
-health

+read_data()
+send_data()

Health Monitoring
-system_health
+read_data()
+calculate_health()
+perform_health()
+update_maintainenance_state()

Figure 3 - Class Diagram for the Control Loop
At the highest level of abstraction the control loop (the architectural model of
which is shown in Figure 3) consists of three elements; a sensor, an actuator and a
calculation stage. It should be noted that at this level, the design is abstract of
whether the implementation is achieved via hardware or software. The
requirements (key safety properties to be maintained are signified by (S), functional
properties by (F) and non-functional properties by (NF), and explanations, where
needed, in italics) to be met are:
1. the sensors have input limits (S) (F);
2. the actuators have input and output limits (S) (F);
3. the overall process must allow the system to meet the desired control properties,

i.e. responsiveness (dependent on errors caused by latency (NF)), stability
(dependent on errors due to jitter (NF) and gain at particular frequency responses
(F)) [6] (S);

4. where possible the system should allow components that are beginning to fail to
be detected at an early stage by comparison with data from other sources (e.g.
additional sensors) (NF). Early recognition would allow appropriate actions to be
taken including the planning of maintenance activities.

In practice as the system development progresses, the component design in Figure 3
would be refined to show more detail. For reasons of space only the calculation-
health monitor coupling is considered.
Stage 2 is concerned with producing arguments to support the meeting of
objectives. The first one considered here is an objective obtained from decomposing
an argument for dependability (the argument is not shown here due to space
reasons) that the system’s components are able to tolerate timing errors (goal
Timing). From an available argument pattern, the argument in Figure 4 was

produced that reasons “Mechanisms in place to tolerate key errors in timing
behaviour” where the context of the argument is health monitor component. Figure
4 shows how the argument is split into two parts. Firstly, evidence has to be
obtained using appropriate verification techniques that the requirements are met in
the implementation, e.g. when and in what order functionality should be
performed. Secondly, the health monitor checks for unexpected behaviour. There
are two ways in which unexpected behaviour can be detected (a choice is depicted
by a black diamond in the arguments) – just one of the techniques could be used or
a combination of the two ways. The first way is for the health-monitor component
to rely entirely on the results of the internal health monitoring of the calculation
component to indicate the current state of the calculations. The second way is for
the health-monitor component to monitor the operation of the calculation
component by observing the inputs and outputs to the calculation component.

Timing
Mechanisms in place to

tolerate key errors in
timing behaviour

G0015
Timing

requirements are
specified

appropriately

G0016
System

implemented in
a predictable

way

G0017
Verification

techniques available
to prove the

requirements are met

C0009
Appropriate =

correct, consistent
and completeness

G0020
Sufficient information
about the bounds of

expected timing
operation is obtained

G0021
Operation is monitored

and unexpected
behaviour handled

C0010
Expected temporal

behaviour concerns when
and the order in which

functionality is performed

G0022
Health monitor
relies on health

information
provided to it

G0023
Health monitor

performs checks
based on provided

information

A

A0004

Appropriate steps taken
when system changes

C0010
Mechanism = Health-

monitoring
component

Figure 4 - Timing Argument

In the arguments, the leaf goals (generally at the bottom) have a diamond below
them that indicates the development of that part of the argument is not yet
complete. The evidence to be provided to support these goals should be quantitative
in nature where possible, e.g. results of timing analysis to show timing
requirements are met.
Next an objective obtained from decomposing an argument for maintainability
(again not shown here due to space reasons) that the system’s components are
tolerant to changes is examined. The resultant argument in Figure 5 depicts how it
is reasoned the “Component is robust to changes” in the context of the health-
monitor component. There are two separate parts to this; making the integrity of
the calculations less dependent on when they are performed, and making the
integrity of the calculations less dependent on the values received (i.e. error-
tolerant). For the first of these, we could either execute the software faster so that
jitter is less of an issue, or we could use a robust algorithm that is less susceptible to
the timing properties of the input data (i.e. more tolerant to jitter or the failure of
values to arrive).

G0011
Make operations integrity
less susceptible to time

variations

G0002
Component is

robust to changes

G0012
Make operations

integrity less
dependent on value

A

A0002

The integrity is related to
frequency, latency and

jitter

G0013
Perform functionality

faster than the
plant's fastest

frequency

G0014
Make calculations

integrity less
dependent on input

data's timing
properties

C0008
Robust

algorithms e.g.
H-infinity

C0007
Plant = system
under control

C0012
Component = health

monitoring

Figure 5 – Minimising Change Argument

The next stage (stage 3(a)) in the approach is the elicitation and evaluation of
choices. This stage extracts the choices, and considers their relative pros and cons.
The results are presented in Table 1. From Table 1 it can be seen that some of the
choices that need to be made about individual components are affected by choices
made by other components within the system. For instance, Goal G0014 is a design
option of having a more complicated algorithm that is more resilient changes to
and variations in the system’s timing properties. However Goal G0014 is in
opposition to Goal G0023 since it would make the health-monitoring component
more complex.

Table 1 - Choices Extracted from the Arguments
Content Choice Pros Cons

Goal G0022 -
Health monitor relies on
health information
provided to it

Simplicity since health
monitor doesn’t need to access
and interpret another
component’s state.

Can a failing/failed
component be trusted to
interpret error-free data.

Goal G0021 -
Operation is monitored
and unexpected
behaviour handled

Goal G0023- Health
monitor performs checks
based on provided
information

Omission failures easily
detected and integrity of
calculations maintained
assuming data provided is
correct.

Health monitor is more
complex and prone to
change due to dependence
on the component.

Goal G0013 – Perform
functionality faster than the
plant’s fastest frequency.

Simple algorithms can be
used.
These algorithms take less
execution time.

Period and deadline
constraints are tighter.
Effects of failures are more
significant.

Goal G0011 - Make
operations integrity
less susceptible to time
variations

Goal G0014 - Make
calculations’ integrity less
dependent on input data’s
timing properties.

Period and deadline
constraints relaxed.
Effects of failures may be
reduced.

More complicated
algorithms have to be used.
Algorithms may take more
execution time.

Stage 3(b) then extracts questions from the argument that can then be used to
evaluate whether particular solutions (stage 3(c)) meets the claims from the
arguments generated earlier in the process. Table 2 presents some of the results of
extracting questions from the arguments for claim G0011 and its assumption
A0002 from Figure 5. The table includes an evaluation of a solution based on a PID
(Proportional Integration Differentiation) loop.

Table 2 shows how questions for a particular coupling have different importance
associated (e.g. Essential versus Value Added). These relate to properties that must
be upheld or those whose handling in a different manner may add benefit (e.g.
reduced susceptibility to change). The responses are only partially for the solution
considered due to the lack of other design information. As the design evolves the
level of detail contained in the table would increase and the table would then be
populated with evidence from verification activities, e.g. timing analysis.
With the principles that we have established for organising the safety case structure
“in-the-large”, and the complementary approach we have described for reasoning
about the required properties of the system architecture, we believe it is possible to
create a flexible, modular, certification argument for IMA. This is discussed in the
following section.

Table 2 – Evaluation Based on Argument
Question Importance Response Design Mod.

Goal G0011 - Can the integrity of the operations
be justified?

Essential More design
information needed

Dependent on
response to questions

Assumption A0002 - Can the dependency
between the operation’s integrity and the timing
properties be relaxed?

Value
Added

Only by changing
control algorithm used

Results of other trade-
off analysis needed

4 Example Safety Case Architecture for a Modular System

The principles of defining system and safety case architecture discussed in this
paper are embodied in the safety case architecture shown in Figure 6. (The UML
package notation is used to represent safety case modules.)
The role of each of the modules of the safety case architecture shown in Figure 6 is
as follows:
• ApplnAArg - Specific argument for the safety of Application A (one required

for each application within the configuration)
• CompilationArg - Argument of the correctness of the compilation process.

Ideally established once-for-all.
• HardwareArg - Argument for the correct execution of software on target

hardware. Ideally an abstract argument established once-for-all leading to
support from specific modules for particular hardware choices.

• ResourcingArg - Overall argument concerning the sufficiency of access to, and
integrity of, resources (including time, memory, and communications)

• ApplnInteractionArg - Argument addressing the interactions between
applications, split into two legs: one concerning intentional interactions, the
second concerning unintentional interactions (leading to the NonInterfArg
Module)

• InteractionIntArg - Argument addressing the integrity of mechanism used for
intentional interaction between applications. Supporting module for
ApplnInteractionArg. Ideally defined once-for-all.

• NonInterfArg - Argument addressing unintentional interactions (e.g.
corruption of shared memory) between applications. Supporting module for
ApplnteractionArg. Ideally defined once-for-all

• PlatFaultMgtArg - Argument concerning the platform fault management
strategy (e.g. addressing the general mechanisms of detecting value and timing
faults, locking out faulty resources). Ideally established once-for-all. (NB
Platform fault management can be augmented by additional management at the
application level).

• ModeChangeArg - Argument concerning the ability of the platform to
dynamically reconfigure applications (e.g. move application from one
processing unit to another) either due to a mode change or as requested as part
of the platform fault management strategy. This argument will address state
preservation and recovery.

• SpecificConfigArg - Module arguing the safety of the specific configuration of
applications running on the platform. Module supported by once-for-all
argument concerning the safety of configuration rules and specific modules
addressing application safety.

• TopLevelArg - The top level (once-for-all) argument of the safety of the
platform (in any of its possible configurations) that defines the top level safety
case architecture (use of other modules as defined above).

• ConfigurationRulesArg - Module arguing the safety of a defined set of rules
governing the possible combinations and configurations of applications on the
platform. Ideally defined once-for-all.

• TransientArg - Module arguing the safety of the platform during transient
phases (e.g. start-up and shut-down).

Top Level System Argument for the
platform + configured applications

TopLevelArg

Specific safety
arguments
concerning the
functionality of
Application A

ApplnAArg

Specific safety
arguments
concerning the
functionality of
Application B

ApplnBArg

Argument for the
safety of interactions
between applications

ApplnInteractionArg

Arguments of the
absence of
non-intentional
interference between
applications

NonInterfArg

Arguments of the
integrity of the
compilation path

CompilationArg
(As Example)

Arguments
concerning the
integrity of intentional
mechanisms for
application interaction

InteractionIntArg

Safety argument for the
specific configuration of
the system

SpecificConfigArg

Arguments of the
correct execution of
software on target
hardware

Hardware Arg

Safety argument
based upon an
allowable set of
configurations

ConfigRulesArg
Arguments concerning the
integrity of the general
purpose platform

PlatformArg

Arguments of the safety
of the platform during
transient phases

TransientArg

Argument concerning
the platform fault
management strategy

PlatFaultMgtArg
Arguments concerning
the sufficiency of
access to, and integrity
of, resources

ResourcingArg

Figure 6 – Safety Case Architecture of Modularised IMA Safety Argument

An important distinction is drawn above between those arguments that ideally can
be established as ‘once-for-all’ arguments that hold regardless of the specific

applications placed on the architecture (and should therefore be unaffected by
application change) and those that are configuration dependent.
In the same way as there is an infrastructure to the IMA system itself the safety case
modules that are established once for all possible application configurations form
the infrastructure of this particular safety case architecture. These modules (e.g.
NonInterfArg) establish core safety claims such as non-interference between
applications by appeal to properties of the underlying system infrastructures. These
properties can then be relied upon by the application level arguments.

5 Conclusions

In order to reap the potential benefits of modular construction of safety critical and
safety related systems a modular approach to safety case construction and
acceptance is also required.
This paper has addressed a method to support architectural design and
implementation strategy trade-off analysis, one of the key parts of component-based
development. Specifically, the method presented provides guidance when
decomposing systems so that the system’s objectives are met and deciding what
functionality the components should fulfil in-order to achieve the remaining
objectives.

6 References

1. Jones, C. Specification and design (parallel) programs. in IFIP Information
Processing 83. 1983: Elsevier.

2. MoD, 00-56 Safety Management Requirements for Defence Systems. 1996,
Ministry of Defence.

3. MoD, 00-55 Requirements of Safety Related Software in Defence Equipment.
1997, Ministry of Defence.

4. Perrow, C., Normal Accidents: living with high-risk technologies. 1984: Basic
Books.

5. Leveson, N.G., Safeware: System Safety and Computers. 1995: Addison-
Wesley.

6. Meyer, B., Applying Design by Contract. IEEE Computer, 1992. 25(10): p. 40-
52.

7. CENELEC, Safety-related electronic systems for signalling, European
Committee for Electrotechnical Standardisation: Brussels.

8. Kazman, R., M. Klein, and P. Clements, Evaluating Software Architectures -
Methods and Case Studies. 2001: Addison-Wesley.

9. Douglass, B., Real-Time UML. 1998: Addison Wesley.
10. Kelly, T.P., Arguing Safety - A Systematic Approach to Safety Case

Management. 1998, Department of Computer Science, University of York.
11. Laprie, J.-C. Dependable Computing and Fault Tolerance: Concepts and

Terminology. 1985. 15th International Symposium on Fault Tolerant
Computing (FTCS-15).

