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Abstract 
Large-scale safety-related embedded systems pose 
unique problems. Unlike most embedded systems, safety-
related systems must be developed to meet exacting 
standards so that they can be verified as fit for use for 
the intended application. This has implications upon the 
whole development process used for the system. 
Conventionally, the process used is conservative and 
largely sequential, rather than the concurrent hardware 
and software development prescribed by a codesign 
process. Sequential development causes many problems, 
especially late in the lifecycle when it is too late or 
expensive to change the partitioning between hardware 
and software components. This paper examines some of 
the issues when codesign principles are incorporated 
within a conventional safety-related development 
process. A key element is the ability to perform 
architectural trade-off analysis throughout the lifecycle 
in a manner that results in evidence generated that the 
resultant design meets both functional and non-
functional (i.e. safety) requirements. 

 
1 Introduction 

Safety-related embedded systems, such as those 
found in aerospace applications, are characterised by 
their functional complexity, size (in terms of required 
software / hardware), relatively long lifecycles and 
requirement for validation and verification of their 
safety prior to deployment [1] Usually, unit cost of 
hardware is not an overriding concern � the relatively 
few units made mean one-off development costs are the 
prime cost consideration.  

Conventional development processes for safety-
related systems contain an early hard partitioning of 
system functionality between hardware and software. It 
is performed with minimal use of architecture trade-off 
techniques, rather high-level systems engineering 
principles [2]. Essentially, a �best guess� is made when 
functions are partitioned between hardware and 
software. Invariably an underestimate of the amount of 
software is made (hence the computing platform is 
under resourced). 

One consequence of the safety-related system 
development process is that hardware is developed in 
isolation from software, usually prior to software 
development (due to long lead times for safety-related 
hardware). Effectively, the overall development process 
is sequential � hardware development followed by A 

key element of safety-related system development is the 
software development, finally integration of software 
and hardware. A critical problem occurs when / if 
additional functions are identified after system 
partitioning, these are usually pushed into software as 
the hardware is fixed. The hardware is considered fixed 
as it is expensive to redevelop the hardware to cope with 
either additional functions or to provide increased 
computing resource for the software components. 

Codesign [12] recognises that systems implement 
required functions using a mixture of hardware and 
software components. Trade-offs can be explored 
regarding whether system functionality is implemented 
in hardware and software. Given a partitioning of 
functionality into hardware and software components, 
design / synthesis of hardware and software can proceed 
in parallel. Subsequently, the separate hardware and 
software are integrated to form the final system. A key 
element of the codesign process is that alternatives for 
the hardware / software partitioning are evaluated. 

Safety-related embedded systems tend to be large in 
terms of the software size (in the order of millions of 
lines of software). For such systems, the codesign 
approach of automatic synthesis (particularly of 
software) becomes extremely difficult. However, the 
basic philosophy of the codesign process has important 
properties that can be incorporated into the conventional 
design process for safety-related systems. This is despite 
the fact that long lead times for hardware means some 
decisions have to be made earlier in the design lifecycle 
than for conventional systems. 

This paper contends that important benefits arise by 
embedding a codesign process as a sub-process within 
the conventional safety-related system development 
process. This enables early partitioning of functions 
between hardware and software within the traditional 
safety-related system process, but enables functions 
identified later to be subject to a codesign process.  

To support this approach, two main requirements 
must be met: 
1. As part of the early partitioning, resource is 

reserved for future functions � e.g. FPGAs which 
can implement hardware or software functions.  

2. The structured capture of design information. 
The requirement for resource is to enable the codesign 
sub-process to partition functionality to hardware and 
software. Further discussion of this lies beyond this 
paper. 



The capture of design information has two purposes. 
Firstly, it enables traceability through the development 
process, which is important in the verification of any 
safety-related system. Secondly, the design information 
can be used within the trade-off analysis at the codesign 
level. The trade-off analysis is to determine how well 
particular solutions meet the systems objectives in order 
that the �best guess� at partitioning can be made. The 
objectives could be properties that it is essential they are 
met (e.g. meeting of timing requirements) or value 
added properties (e.g. making the design flexible so that 
managed changes is supported). 

In section 2 the overall approach is described further, 
explaining how the codesign process is embedded within 
the overall safety-related system design process. In 
section 3 a method for architectural trade-off analysis 
within codesign is given. Finally, conclusions are 
offered in section 4. 
2 Approach 

Systems engineering for a safety-related 
development is essentially a standard �V� [3] containing 
a decompositional phase (left hand side or downward 
side of �V�), and integration and qualification phase 
(right hand side or upward path of �V�). Essentially, 
requirements specification, definition of qualification / 
validation plan and design specification forms the bulk 
of the decompositional phase. This results in a number 
of design specifications that are passed over to 
individual engineering disciplines for detailed design, 
implementation and test (e.g. software engineering, 
electronics / electrical engineering etc.). After the 
individual disciplines have implemented parts of the 
system, the qualification phase ensures that the 
integrated system meets user requirements and sufficient 
evidence is available for the acceptance of the system by 
the regulatory authority (i.e. CAA / FAA for civil 
aircraft). This requires that all stages in the development 
produce traceable evidence and rationale that the system 
is sufficiently safe for intended use. 

A codesign process can be incorporated within this 
structure to improve the traditional process and provide 
codesign of (computer) hardware1. However, a vanilla 
codesign process requires sufficient specification of 
functions to enable automatic synthesis of hardware and 
software components. For large safety-related systems, 
such specification is not usually available until late in 
the lifecycle. Usually, a minimal specification is 
available to enable the development of an initial system, 
with further functions specified later. For example, in 
the development of an aircraft, a minimal specification 
is produced to enable a test aircraft to be built. The test 
aircraft can be used for many experimental purposes 
including evolving the understanding of the aircraft�s 
dynamic. Subsequent additional functionality is then 
specified to bring the aircraft up to customer 
requirements. Ideally, only software is changed between 
the test and final aircraft. 

                                                            
1 At this point, a codesign process is not considered for the 

entirety of the system (including all engineering disciplines), although 
this does not rule out such an approach in future. 

Therefore, the inserted codesign process must allow 
partial specification of the software, together with an 
expansion estimate. Together, these will allow hardware 
to be designed that allows for future expansion due to 
additional requirements / functions. For the purposes of 
codesign (specifically the ability to compare and 
evaluation alternative hardware / software designs), the 
expansion estimate can be given as resource 
requirements so that software can be synthesised with 
the same characteristics.  

A key part of the integration of a codesign process 
into the systems engineering lifecycle is the continued 
ability of the overall process to collect evidence for 
system verification. The systems engineering process 
will produce and collect such information in a traceable 
and methodical manner � e.g. design rationale, 
implementation decisions, testing data are collected. The 
codesign process must function within this environment.  

The contention of this paper is that this can be 
achieved by utilising a single architecture trade-off 
analysis method for the entire system [4]. As well as 
conventional trade-off analysis, this also provides a 
repository for design rationale. At the early stages of the 
system engineering process (i.e. decompositional phase) 
this can be used for gross partitioning of the system 
requirements and specification of sub-systems for the 
different engineering disciplines. Within the codesign 
phase, the same architectural trade-off analysis can be 
used to evaluate different alternative designs. The 
important outcomes are: 
• a single repository of design decisions throughout 

the entire system, this is key to the production of 
safety evidence during system qualification), and  

• a complementary design and certification approach 
and architecture [11]. 

2.1 Overview of the Architectural Trade-off  
Architectural trade-off analysis for use by the 

systems engineering process, together with the inserted 
codesign process has the following properties: 
• derivation of choices � identifies where different 

design solutions are available for satisfying a goal.  
• manage sensitivities � identifies dependencies 

between components and design decisions. 
• evaluation of options � allows evaluation of 

alternative solutions against required properties / 
specification. 

• influence on the design � identifies constraints on 
how components should be designed to support the 
meeting of the system�s overall objectives. 

• collection of design rationale � forms a repository 
for design decisions to aid traceability throughout 
the design 

The proposed approach could be used within the 
nine-step process of the Architecture Trade-Off Analysis 
Method (ATAM) [5]. The key difference between our 
strategy and other existing approaches, e.g. ATAM, is 
the way in which quality attributes are derived. (Quality 
attributes are the used to evaluate solutions, e.g. does the 
design support predictability?) Our proposed approach 
was chosen due to the following reasons. 



• the techniques used in our approach are already 
accepted and widely used. 

• the techniques offer strong traceability and the 
ability to capture design rationale. 

• information generated from their original intended 
use can be reused, rather than repeating the effort. 

• the method is equally intended as a design 
technique to assist in the evaluation of the 
architectural design and implementation strategy as 
it is for evaluating a design at a particular fixed 
stages of the process. 

Figure 1 provides a diagrammatic overview of the 
proposed method. Stage (1) of the trade-off analysis 
method is producing a model of the system to be 
assessed. This model should be decomposed to a 
uniform level of abstraction. Currently our work uses 
UML [9] for this purpose, however it could be applied to 
any modelling approach that clearly identifies 
components and their interactions. (Interaction is 
considered to be the link and interfaces between two 
components.) 

In stage (2), arguments are then produced for each 
interaction to a corresponding (but lower so that the 
impact of later choices can be made) abstraction level 
than the system model. (An overview of Goal 
Structuring Notation symbols is given in section 2.2, 
further details of the notation can be found in [10]) The 
arguments are derived from the top-level properties and 
objectives of the particular system being developed. The 
properties often of interest are lifecycle cost, 
dependability, and maintainability. Clearly these 
properties can be broken down further, e.g. 
dependability may be decomposed to reliability, safety, 
timing. Safety may further involve providing guarantees 
of independence between functionality. In practice, the 
arguments should be generic or based on patterns where 
possible. The objectives often of interest are managed 
change, ease of integration and ease of verification. 
Stage (3) then uses the information in the argument to 
derive options and evaluate particular solutions via 
assessment criteria. Initially when the design is in its 
early stage the evaluation may have to be qualitative in 
nature but as the design is refined then quantitative 
assessment may be used where appropriate. Part of this 
activity uses representative scenarios to evaluate the 
solutions. 

Based on the findings of stage (3), the design is 
modified to fix any problems that are identified � this 
may require stages (1)-(3) to be repeated to show the 
revised design is appropriate. When this is complete and 
all necessary design choices have been made, the 
process returns to stage (1) where the system is then 
decomposed to the next level of abstraction using 
guidance from the arguments. Components reused from 
another context could be incorporated as part of the 
decomposition. Only proceeding when design choices 
and problem fixing are complete is preferred to allowing 
trade-offs across components at different stages of 
decomposition because the abstractions and assumptions 
are consistent. 

Currently the refinement of the design (stage (4) of 
the process) is currently performed manually to decide 

how best to decompose the current architecture to the 
next level. Future work will look at using a combination 
of the current approach and multi-criteria optimisation to 
address the problem. 
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Figure 1 - Overview of the Method 

2.2 Background on Goal Structuring Notation 
The arguments are expressed in the GSN [10] that is 

widely used in the safety-critical domain for making 
safety arguments. In brief, any safety case can be 
considered as consisting of requirements, argument, 
evidence and definition of bounding context. GSN - a 
graphical notation - explicitly represents these elements 
and (perhaps more significantly) the relationships that 
exist between these elements (i.e. how individual 
requirements are supported by specific arguments, how 
argument claims are supported by evidence and the 
assumed context that is defined for the argument). 

A  
In 

Context
Of 

Choice Context Assumption Away/Generic
Goal 

  
J  

 Solved 
By 

Undeveloped 
Goal Justification Goal 

Figure 2 - Principal Elements of GSN 
The principal symbols in the notation are shown in 

Figure 2 (with example instances of each concept). The 
principal purpose of a goal structure is to show how 
goals (claims about the system) are successively broken 
down into sub-goals until a point is reached where 
claims can be supported by direct reference to available 
evidence (solutions). As part of this decomposition, 
using the GSN it is also possible to make clear the 
argument strategies adopted (e.g. adopting a quantitative 
or qualitative approach), the rationale for the approach 
(assumptions, justifications) and the context in which 



goals are stated (e.g. the system scope or the assumed 
operational role). Further details are found in [10]. 
3 Application of Trade-Off Analysis within 

Hardware Software Co-Design 
A key part of architecture trade-off analysis is 

deriving the top-level properties and objectives (i.e. 
goal) for the systems such that arguments can be 
produced that systematically break them down to lower-
level goals. These goals are then used to form questions 
that can be used to judge whether a proposed solution is 
appropriate. During the production of these arguments, 
choices of how they can be supported (e.g. implement in 
hardware or software) will emerge and assumptions 
identified. (The assumptions are important when trying 
to reuse designs since they allow the basis for the 
existing components� design to be evaluated in the new 
context.) The following subsection proposes some 
properties for use in hardware software co-design that 
later in the section are developed into arguments that can 
be used. 
3.1 Key Properties for Hardware Software Co-

Design 
Based on experience and conversations with 

industrial colleagues, the following objectives have been 
identified as being important. It should be noted that 
most objectives are derived from the overarching 
objective of maximising profit in some way. 
• Correctness � using appropriate verification 

techniques sufficient evidence needs to be gathered 
that what is being produced meets its requirements. 
Sufficient is dependent on the nature of the 
application, for example it would be expected in 
critical systems development that more evidence is 
expected than for non-critical systems. In general, 
hardware development is considered to have 
verification techniques that can provide stronger 
evidence for correctness. 

• Managed change � the system produced should be 
changeable or upgradeable in an efficient manner. For 
most applications, typical change patterns or potential 
upgrades are predictable with reasonable confidence. 
For some applications, there are known killer changes 
that are likely to occur and result in significant re-
design effort being needed. In general, software is 
considered easier to change but as Ariane 501 
demonstrated the assumptions that exist in a 
component being reused are not always handled 
appropriately. 

• Efficiency � the system produced should make the 
best use of the available resources. The efficiency of 
a technology is strongly dependent on the nature of 
the technology. For instance, a FPGA is an effective 
means (in terms of the amount of silicon used is 
small) of implementing logic such as found in 
Statecharts but may not be as effective at 
implementing floating point operations. 

• Sufficiency � the technology used in the 
implementation must be able to represent the design. 
There are many factors here. Considering just timing, 
o Von Neumann architectures are often considered 

to have the benefit of providing raw processing 

power, however for applications where hard real-
time guarantees are needed the difficulty in 
modelling modern Von Neumann processors can 
lead to large amounts of pessimism in the analysis 
that reduces/eliminates the benefits [6]. 

o FPGAs are better at handling concurrency [7]. 
o FPGAs have little or no difference between their 

best, average and worst-case performance whereas 
Von Neumann do [7]. Variability in timing 
behaviour makes many applications, e.g. control 
systems, harder to produce [8]. 

The rest of this paper considers sufficiency and its 
relationship to architectural design in greater detail. 
3.2 Arguments for Sufficiency 

Figure 3 presents the top-level argument for the 
property sufficiency. This shows how the goal, G0001, 
that the implementation strategy is sufficient is broken 
down into three sub-goals that concern the functional 
(G0002), non-functional (G0003) and operational 
environment requirements (G0004). To satisfy any of 
the goals in Figure 3, the assumption A0001 has to be 
satisfied that the requirements are specified in an 
appropriate manner, i.e. the requirements are complete 
and consistent � note correctness is not important for the 
implementation strategy only for the final system being 
fit for purpose. Goal G0004 that deals with operational 
environments is left undeveloped.  

Goal G0002 that deals with functional requirements 
is satisfied using a generic goal G2001 � 
Implementation Sufficient for the Requirements to be 
Met. The argument (SufficiencyArg) for the generic 
goal is presented in Figure 5. In the case of functional 
requirements it is assumed, A0002, either hardware or 
software can equally well be used for meeting the 
requirements. Goal G0003 is decomposed into an 
argument that deals with whether the implementation 
strategy can satisfy the system�s non-functional 
requirements. The goal G0003 is split into five parts 
(one for each sub-property of non-functional -memory, 
safety, timing, reliability and communications) which 
are also satisfied by the generic goal G2001. 

In Figure 5, the argument for goal G2001, 
originating in Figure 3, is split into three parts; the 
implementation allows the requirements to be met (goal 
G2002), requirements are specified appropriately (goal 
G2003 which is left un-developed � indicated by a 
diamond below the goal), and sufficient evidence can be 
gathered the requirements are met (goal G2004). 

The goal G2004 results in two choices (a choice 
means that at least one of N strategies proposed is 
followed) which are evidence is either gathered by static 
or dynamic analysis. A feature of the technique that has 
been developed is that where a choice exists then 
justifications and assumptions should be captured and 
these normally relate to pros and cons of the choices that 
need to be explored. In this case, the assumptions and 
justifications indicate that static analysis has the 
advantage it can show absence of faults but getting 
appropriate models is difficult, hard to validate and often 
not practicable, whereas dynamic analysis is more 
generally applicable but can�t guarantee the absence of 



failures. Often, the best compromise is a combination of 
the options. 

The goal G2002 is split into three parts; that the 
infrastructure is predictable (goal G2005), that the 
mapping of the application onto the infrastructure is 
predictable (goal G2006), and the application can be 
shown to meet its requirements (goal G2007). From the 
goals the key points that emerge are the choices in the 
hardware used (between FPGA, microprocessor and 
discrete circuitry) and the design notation used (between 
hardware-based and software-based languages). The 
latter of these choices shows that software-based 
languages have the advantage that they can represent 
both hardware and software but a disadvantage is raised 
that hardware-based languages often support devices 
and concurrency better.  

Each of the hardware choices can be satisfied by the 
same argument, given in Figure 4. This argument shows 
that the choice should be based on whether the type of 
hardware has appropriate models available and whether 
these can be validated. 
3.3 Using the Arguments 

From the argument in section 3.2, a number of 
design choices and objectives (i.e. goals or quality 
attributes) have been identified. This section is to 
consider how these objectives should be used during the 
hardware software co-design process; issues include 
whether they should be used as part of a qualitative or 
quantitative assessment, whether the process is manual 
or automated and how they are used as part of making 
an overall decision. In general, qualitative assessments 
consist of asking questions which are based on 
experience and some consideration whereas quantitative 
assessment consists of a checklist of activities to be 
completed. A key difference is qualitative assessment 
can be performed anytime during a project whereas 
quantitative assessment often relies on certain design 
information (e.g. task execution times in the case of 
timing analysis) being available which may dictate when 
it can be performed. 

Table 1 provides a partial trade-off analysis of the 
objectives given in the arguments presented in section 
3.2. The analysis has lead to qualitative and quantitative 
assessments being derived as well as an indication of the 
relative importance of each. The rest of the section 
explains how this can be used as part of hardware 
software co-design. The qualitative assessment criteria 
can be used elsewhere as part of review checklists, and 
the quantitative assessment criteria are verification and 
validation requirements (e.g. the need to perform timing 
analysis). 

Table 1 shows many of the quality attributes that 
have to be made when performing co-design. When 
performing co-design it would be necessary to produce a 
balanced design where the important constraints are met 
and others are achieved as well as possible. 

Putting this into context, consider the design of a 
system whose principal function is to support a number 
of control loops. Key requirements for such a system are 
the ability to meet requirements and the ability to detect 
when the system is not performing as expected. Taking 
the first of these and considering timing, the main 

requirements are that precedence constraints are 
maintained, freshness of data when used in calculations 
and later output, and jitter requirements because of its 
impact on stability. 

One co-design decision is whether a conventional 
microprocessor is used or a FPGA. For simplicity when 
making this decision, other variables could be 
considered as fixed, for example Ada as the 
programming language. Consider the assessment related 
to goal G3001, for a FPGA the models of the circuitry 
(i.e. individual cells and overall circuitry) are well-
defined and comprehensive models available. However 
for anything other than a simple microprocessor models 
are rarely available, and even if they were validation 
would be difficult if not impossible [9]. This is 
particularly the case for timing where worst-case 
execution time analysis is hard because the information 
provided by the manufacturers is often difficult to 
interpret and containing errors and if a model can be 
derived then it is especially hard to validate and often 
pessimistic [9]. Additionally from a timing perspective 
related to G2014, it would be hard to meet the control 
systems timing requirements because modern 
microprocessors tend to have high variability in their 
executions, whereas FPGAs tend to have constant 
execution times, which makes meeting jitter 
requirements difficult [7]. Also, FPGAs support 
concurrency better than microprocessors which ease the 
problem of supporting multiple control loops. 

Despite the problems of using microprocessors, 
obviously as common practice suggests they do provide 
a means to implement control systems especially where 
much of the processing demands does not need strict 
timing behaviour (e.g. health monitoring functionality). 
One key advantage of the trade-off analysis approach 
proposed is that the output helps guide the design of the 
system, for example the design of the scheduler should 
minimise the jitter of certain tasks related to the 
operation of the control loops. 

Another key benefit of the arguments and trade-off 
analysis is the way they support the objective of the 
systems engineering process being partitioned into clear 
and distinct parts that can then be performed as 
independent entities. For instance in Figure 5, there are 
goals for whether the implementation meets its 
requirements. From this, sub-goals are derived that 
separate the meeting of the requirements for the 
application, infrastructure and mapping from one 
another. These activities can then be performed in 
isolation of one another. However the goals capture key 
assumptions that must be considered and later shown to 
hold such that when the activities merge back together 
that the overall requirements are met. As the design is 
further decomposed, more assumptions between these 
activities would be derived. 
4 Summary and Future Work 

This paper has shown how the codesign process can 
be incorporated as a sub-process within the conventional 
safety-related system process. A key integrating 
technology between the conventional process and 
codesign process is the ability to collect design evidence 
throughout the overall process, utilising it for both 



verification and trade-off analysis within the codesign 
sub-process. 

This paper has proposed that this can be achieved by 
utilising a single architecture trade-off analysis method 
for the entire system. As well as conventional trade-off 
analysis, this also provides a repository for design 
rationale. At the early stages of the system engineering 
process (i.e. decompositional phase) this can be used for 
gross partitioning of the system requirements and 
specification of sub-systems for the different 
engineering disciplines. Within the codesign phase, the 
same architectural trade-off analysis can be used to 
evaluate different alternative designs. The important 
outcomes are: 
• a single repository of design decisions throughout 

the entire system, this is key to the production of 
safety evidence during system qualification), and  

• a complementary design and certification approach 
and architecture. 

• a means to focus the co-design process so that 
different ways of satisfying the system�s objectives 
can be traded off. 

Current work is looking at how the process may be 
automated and proving the concepts in this paper with a 
case study. Automation could be achieved for instance 
by the use of heuristic search algorithms, such as genetic 
algorithms, to optimise the design with respect to its 
objectives. 
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Goal Qualitative Quantitative Importance 
G3001 � 
Hardware 
used is 
predictable 

For proposed hardware, raise questions 
such as: 
a. Does documentation exist? 
b. Does it seem comprehensive? 

Choice (originating from goal G2004) of either: 
a. derivation of models for the different non-functional 

properties that are validated against the actual 
hardware. 

b. development of an appropriate testing strategy. 

Normally high, but 
dependent on the integrity 
the part of the system and 
particular property needs 
to attain. 

G2017 and 
G2018 � Use 
a software or 
hardware 
based 
language 

For a proposed language, raise questions 
such as: 
a. Can sufficient engineers be found? 
b. Have previous systems been 

successfully developed with it? 
c. Does the language provide a set of 

features that are probably sufficient for 
the envisaged application? 

d. Does the language allow static analysis 
to be performed? 

e. Are support tools available? 

Assessment activities could include: 
a. Related to G2013, obtaining/defining semantics. 
b. Related to G2008, obtaining/producing 

complementary static analysis tools. 
c. Related to A2006 and A2007, determine the language 

features needed and whether they are supported. 
d. Related to J2003 and J2004, is an appropriate 

mapping available from software to hardware? 

High since changing the 
language used part way 
through development can 
lead to large amounts of (if 
not total) rework. 

G2014 � 
Infrastructure 
provided is 
sufficient 

For a proposed infrastructure, raise 
questions such as: 
a. Based on previous experience, does the 

resources available seem sufficient? 
E.g. Are more MIPS available than for 
other similar projects 

b. Does the hardware provide a set of 
features that are probably sufficient for 
the envisaged application? 

c. Are support tools available? 

a. Related to G2004, early in the project, use data from 
previous similar systems and other metrics (e.g. 
number of requirements) to estimate whether 
infrastructure means the requirements can be met. 
Later in the project, use actual data obtained via static 
or dynamic analysis. At all stages, possibly perform 
sensitivity analysis to de-risk further development. 

b. Related to G2014, determine the hardware features 
needed and whether they are supported. 

Depends on how easily the 
infrastructure or 
application can be 
changed. Often from an 
early stage in projects 
changing the infrastructure 
or application design are 
not options, therefore 
importance would be high.

Table 1 � Assessment Using the Contents of the Arguments 



G0001
Implementation

strategy is sufficient
for systems

requirements

A0001
Systems requirements

specified in an
appropriate manner

A

C0002
Sufficient means

requirements can be
met with available

infrastructure

St0001
Split into functional, non-
functional and operational

environment

G0004
Implementation strategy
is sufficient for systems
operational environment

requirements

G0003
Implementation strategy
is sufficient for systems

non-functional
requirements

C0004
Operational
environment

requirements =
temperature, power,
physical space etc

A0002
Both hardware and

software can be equally
well used to meet

functional requirements

A

C0001
appropriate =
consistent and

complete

G0002
Implementation

strategy is sufficient
for systems functional

requirements

C0003
non-functional = timing,

memory, safety,
reliability, comms

G1005
Implementation

strategy is sufficient
for systems memory

requirements

G1006
Implementation

strategy is sufficient
for systems safety

requirements

G1007
Implementation

strategy is sufficient
for systems timing

requirements

G1008
Implementation

strategy is sufficient
for systems reliability

requirements

G1009
Implementation strategy
is sufficient for systems

communications
requirements

G2001
Implementation

sufficient for
requirements to be met

     SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

     SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

     SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

     SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

     SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

     SufficiencyArg
 

Figure 3 - Top Level Argument 

J3001
Set of models needed
of the hardware are

available

J

A3001
Models of the hardware

are validated against
actual hardware

A

G3001
Hardware used is

predictable

 
Figure 4 - Hardware is Predictable � �HWPredArg� 



G2002
Implementation

supports requirements
being met

G2007
Application can be
shown to meet its

requirements

G2005
Infrastructure is

predictable

G2013
Notations used (e.g.

programming
languages) are

predictable

G2012
Method used (e.g.

coding style) is
predictable

J2003
Can be compiled in a
predictable manner to

both software and
hardware

J

J2004
Can be compiled in a
predictable manner to

hardware

J

A2007
Language is sufficient,

e.g. for hardware
applications need

support concurrency
and devices A

A2006
Language is

sufficient, e.g. for
hardware applications

need support
concurrency and

devices A

G2006
Mapping of application
onto infrastructure is

sufficient and
predictable

G2018
Use a software-
based language

(e.g. Ada)

G2019
Use a hardware-
based language

(e.g. VHDL)

G2011
Infrastructure's

software (e.g. OS)
is predictable

C2003
Infrastructure =

hardware
devices, OS

C2004
Hardware options

include FPGA, Von
Neumann processor
and discrete circuitry

G2010
Infrastructure's
hardware used
is predictable

G2016
Predictable micro-
processor is used

A2001
If the infrastructure and

mapping are predictable,
then an application can be
produced that is shown to

meet its requirements
A

G2014
Sufficient resources
are selected and an

appropriate allocation
found

A2002
Application can be shown to

meet its requirements if it
produced appropriately and

enough resources are
provided

A

G2004
Sufficient evidence

gathered that
requirements are met

G2003
Requirements are

specified
appropriately

C2001
appropriately =

consistent and complete

C2002
sufficient is

dependent on the
nature of  the

application

G2008
Evidence gathered
by static analysis

J2001
Can show the

absence of faults

J

A2003
Analysis models
hard to produce

and validate

A

J2002
Often generally

applicable
J

A2005
System must be
able to tolerate

failures
A

A2004
Analysis models
are practicable,
i.e. safe but not

overly pessimistic
A

G2001
Implementation sufficient

for requirements to be
met

G2015
Predictable

FPGA is used

G2017
Predictable

discrete circuitry
is used

G2009
Evidence gathered

by dynamic
analysis (e.g. test,

simulation)

G3001
Hardware used is

predictable
    HWPredArg

G3001
Hardware used is

predictable
    HWPredArg

G3001
Hardware used is

predictable
    HWPredArg

 
Figure 5 - Implementation Meets the Requirements � �SufficiencyArg� 


