
Architecture Trade-off Analysis and Codesign for
Safety-Related Real-Time Embedded Systems

N. C. Audsley and I. J. Bate
Real-Time Systems Research Group,

Department of Computer Science,
University of York, York, YO10 5DD, UK

{neil,ijb}@cs.york.ac.uk

Abstract
Large-scale safety-related embedded systems pose
unique problems. Unlike most embedded systems, safety-
related systems must be developed to meet exacting
standards so that they can be verified as fit for use for
the intended application. This has implications upon the
whole development process used for the system.
Conventionally, the process used is conservative and
largely sequential, rather than the concurrent hardware
and software development prescribed by a codesign
process. Sequential development causes many problems,
especially late in the lifecycle when it is too late or
expensive to change the partitioning between hardware
and software components. This paper examines some of
the issues when codesign principles are incorporated
within a conventional safety-related development
process. A key element is the ability to perform
architectural trade-off analysis throughout the lifecycle
in a manner that results in evidence generated that the
resultant design meets both functional and non-
functional (i.e. safety) requirements.

1 Introduction

Safety-related embedded systems, such as those
found in aerospace applications, are characterised by
their functional complexity, size (in terms of required
software / hardware), relatively long lifecycles and
requirement for validation and verification of their
safety prior to deployment [1] Usually, unit cost of
hardware is not an overriding concern � the relatively
few units made mean one-off development costs are the
prime cost consideration.

Conventional development processes for safety-
related systems contain an early hard partitioning of
system functionality between hardware and software. It
is performed with minimal use of architecture trade-off
techniques, rather high-level systems engineering
principles [2]. Essentially, a �best guess� is made when
functions are partitioned between hardware and
software. Invariably an underestimate of the amount of
software is made (hence the computing platform is
under resourced).

One consequence of the safety-related system
development process is that hardware is developed in
isolation from software, usually prior to software
development (due to long lead times for safety-related
hardware). Effectively, the overall development process
is sequential � hardware development followed by A

key element of safety-related system development is the
software development, finally integration of software
and hardware. A critical problem occurs when / if
additional functions are identified after system
partitioning, these are usually pushed into software as
the hardware is fixed. The hardware is considered fixed
as it is expensive to redevelop the hardware to cope with
either additional functions or to provide increased
computing resource for the software components.

Codesign [12] recognises that systems implement
required functions using a mixture of hardware and
software components. Trade-offs can be explored
regarding whether system functionality is implemented
in hardware and software. Given a partitioning of
functionality into hardware and software components,
design / synthesis of hardware and software can proceed
in parallel. Subsequently, the separate hardware and
software are integrated to form the final system. A key
element of the codesign process is that alternatives for
the hardware / software partitioning are evaluated.

Safety-related embedded systems tend to be large in
terms of the software size (in the order of millions of
lines of software). For such systems, the codesign
approach of automatic synthesis (particularly of
software) becomes extremely difficult. However, the
basic philosophy of the codesign process has important
properties that can be incorporated into the conventional
design process for safety-related systems. This is despite
the fact that long lead times for hardware means some
decisions have to be made earlier in the design lifecycle
than for conventional systems.

This paper contends that important benefits arise by
embedding a codesign process as a sub-process within
the conventional safety-related system development
process. This enables early partitioning of functions
between hardware and software within the traditional
safety-related system process, but enables functions
identified later to be subject to a codesign process.

To support this approach, two main requirements
must be met:
1. As part of the early partitioning, resource is

reserved for future functions � e.g. FPGAs which
can implement hardware or software functions.

2. The structured capture of design information.
The requirement for resource is to enable the codesign
sub-process to partition functionality to hardware and
software. Further discussion of this lies beyond this
paper.

The capture of design information has two purposes.
Firstly, it enables traceability through the development
process, which is important in the verification of any
safety-related system. Secondly, the design information
can be used within the trade-off analysis at the codesign
level. The trade-off analysis is to determine how well
particular solutions meet the systems objectives in order
that the �best guess� at partitioning can be made. The
objectives could be properties that it is essential they are
met (e.g. meeting of timing requirements) or value
added properties (e.g. making the design flexible so that
managed changes is supported).

In section 2 the overall approach is described further,
explaining how the codesign process is embedded within
the overall safety-related system design process. In
section 3 a method for architectural trade-off analysis
within codesign is given. Finally, conclusions are
offered in section 4.
2 Approach

Systems engineering for a safety-related
development is essentially a standard �V� [3] containing
a decompositional phase (left hand side or downward
side of �V�), and integration and qualification phase
(right hand side or upward path of �V�). Essentially,
requirements specification, definition of qualification /
validation plan and design specification forms the bulk
of the decompositional phase. This results in a number
of design specifications that are passed over to
individual engineering disciplines for detailed design,
implementation and test (e.g. software engineering,
electronics / electrical engineering etc.). After the
individual disciplines have implemented parts of the
system, the qualification phase ensures that the
integrated system meets user requirements and sufficient
evidence is available for the acceptance of the system by
the regulatory authority (i.e. CAA / FAA for civil
aircraft). This requires that all stages in the development
produce traceable evidence and rationale that the system
is sufficiently safe for intended use.

A codesign process can be incorporated within this
structure to improve the traditional process and provide
codesign of (computer) hardware1. However, a vanilla
codesign process requires sufficient specification of
functions to enable automatic synthesis of hardware and
software components. For large safety-related systems,
such specification is not usually available until late in
the lifecycle. Usually, a minimal specification is
available to enable the development of an initial system,
with further functions specified later. For example, in
the development of an aircraft, a minimal specification
is produced to enable a test aircraft to be built. The test
aircraft can be used for many experimental purposes
including evolving the understanding of the aircraft�s
dynamic. Subsequent additional functionality is then
specified to bring the aircraft up to customer
requirements. Ideally, only software is changed between
the test and final aircraft.

1 At this point, a codesign process is not considered for the

entirety of the system (including all engineering disciplines), although
this does not rule out such an approach in future.

Therefore, the inserted codesign process must allow
partial specification of the software, together with an
expansion estimate. Together, these will allow hardware
to be designed that allows for future expansion due to
additional requirements / functions. For the purposes of
codesign (specifically the ability to compare and
evaluation alternative hardware / software designs), the
expansion estimate can be given as resource
requirements so that software can be synthesised with
the same characteristics.

A key part of the integration of a codesign process
into the systems engineering lifecycle is the continued
ability of the overall process to collect evidence for
system verification. The systems engineering process
will produce and collect such information in a traceable
and methodical manner � e.g. design rationale,
implementation decisions, testing data are collected. The
codesign process must function within this environment.

The contention of this paper is that this can be
achieved by utilising a single architecture trade-off
analysis method for the entire system [4]. As well as
conventional trade-off analysis, this also provides a
repository for design rationale. At the early stages of the
system engineering process (i.e. decompositional phase)
this can be used for gross partitioning of the system
requirements and specification of sub-systems for the
different engineering disciplines. Within the codesign
phase, the same architectural trade-off analysis can be
used to evaluate different alternative designs. The
important outcomes are:
• a single repository of design decisions throughout

the entire system, this is key to the production of
safety evidence during system qualification), and

• a complementary design and certification approach
and architecture [11].

2.1 Overview of the Architectural Trade-off
Architectural trade-off analysis for use by the

systems engineering process, together with the inserted
codesign process has the following properties:
• derivation of choices � identifies where different

design solutions are available for satisfying a goal.
• manage sensitivities � identifies dependencies

between components and design decisions.
• evaluation of options � allows evaluation of

alternative solutions against required properties /
specification.

• influence on the design � identifies constraints on
how components should be designed to support the
meeting of the system�s overall objectives.

• collection of design rationale � forms a repository
for design decisions to aid traceability throughout
the design

The proposed approach could be used within the
nine-step process of the Architecture Trade-Off Analysis
Method (ATAM) [5]. The key difference between our
strategy and other existing approaches, e.g. ATAM, is
the way in which quality attributes are derived. (Quality
attributes are the used to evaluate solutions, e.g. does the
design support predictability?) Our proposed approach
was chosen due to the following reasons.

• the techniques used in our approach are already
accepted and widely used.

• the techniques offer strong traceability and the
ability to capture design rationale.

• information generated from their original intended
use can be reused, rather than repeating the effort.

• the method is equally intended as a design
technique to assist in the evaluation of the
architectural design and implementation strategy as
it is for evaluating a design at a particular fixed
stages of the process.

Figure 1 provides a diagrammatic overview of the
proposed method. Stage (1) of the trade-off analysis
method is producing a model of the system to be
assessed. This model should be decomposed to a
uniform level of abstraction. Currently our work uses
UML [9] for this purpose, however it could be applied to
any modelling approach that clearly identifies
components and their interactions. (Interaction is
considered to be the link and interfaces between two
components.)

In stage (2), arguments are then produced for each
interaction to a corresponding (but lower so that the
impact of later choices can be made) abstraction level
than the system model. (An overview of Goal
Structuring Notation symbols is given in section 2.2,
further details of the notation can be found in [10]) The
arguments are derived from the top-level properties and
objectives of the particular system being developed. The
properties often of interest are lifecycle cost,
dependability, and maintainability. Clearly these
properties can be broken down further, e.g.
dependability may be decomposed to reliability, safety,
timing. Safety may further involve providing guarantees
of independence between functionality. In practice, the
arguments should be generic or based on patterns where
possible. The objectives often of interest are managed
change, ease of integration and ease of verification.
Stage (3) then uses the information in the argument to
derive options and evaluate particular solutions via
assessment criteria. Initially when the design is in its
early stage the evaluation may have to be qualitative in
nature but as the design is refined then quantitative
assessment may be used where appropriate. Part of this
activity uses representative scenarios to evaluate the
solutions.

Based on the findings of stage (3), the design is
modified to fix any problems that are identified � this
may require stages (1)-(3) to be repeated to show the
revised design is appropriate. When this is complete and
all necessary design choices have been made, the
process returns to stage (1) where the system is then
decomposed to the next level of abstraction using
guidance from the arguments. Components reused from
another context could be incorporated as part of the
decomposition. Only proceeding when design choices
and problem fixing are complete is preferred to allowing
trade-offs across components at different stages of
decomposition because the abstractions and assumptions
are consistent.

Currently the refinement of the design (stage (4) of
the process) is currently performed manually to decide

how best to decompose the current architecture to the
next level. Future work will look at using a combination
of the current approach and multi-criteria optimisation to
address the problem.

Model of the System

Arguments
Containing Quality

Attributes

Stage 2 - Produce Arguments
for Key Objectives/Properties

Stage 1(a) - Produce Initial Architecture Model

Quantitative and
Qualitative

Assessment Criteria

Stage 3(b) - Extract Assessment Criteria

Design Evaluation
Results

Stage 3(c) - Evaluate Architectural Design

St
ag

e
1(

b)
 -

Im
pr

ov
e

D
es

ig
n

(if
 n

ec
es

sa
ry

)

Design Choices Stage 3(a) - Extract
Design Choices

Accept Design

Stage 4 - Produce Refined

Architectural Model

(possibly with Multi-C
riteria

Optimisation Technique)

Scenarios Stage 3(d) - Scenario
Based Assessment

Figure 1 - Overview of the Method

2.2 Background on Goal Structuring Notation
The arguments are expressed in the GSN [10] that is

widely used in the safety-critical domain for making
safety arguments. In brief, any safety case can be
considered as consisting of requirements, argument,
evidence and definition of bounding context. GSN - a
graphical notation - explicitly represents these elements
and (perhaps more significantly) the relationships that
exist between these elements (i.e. how individual
requirements are supported by specific arguments, how
argument claims are supported by evidence and the
assumed context that is defined for the argument).

A
In

Context
Of

Choice Context Assumption Away/Generic
Goal

J

 Solved
By

Undeveloped
Goal Justification Goal

Figure 2 - Principal Elements of GSN
The principal symbols in the notation are shown in

Figure 2 (with example instances of each concept). The
principal purpose of a goal structure is to show how
goals (claims about the system) are successively broken
down into sub-goals until a point is reached where
claims can be supported by direct reference to available
evidence (solutions). As part of this decomposition,
using the GSN it is also possible to make clear the
argument strategies adopted (e.g. adopting a quantitative
or qualitative approach), the rationale for the approach
(assumptions, justifications) and the context in which

goals are stated (e.g. the system scope or the assumed
operational role). Further details are found in [10].
3 Application of Trade-Off Analysis within

Hardware Software Co-Design
A key part of architecture trade-off analysis is

deriving the top-level properties and objectives (i.e.
goal) for the systems such that arguments can be
produced that systematically break them down to lower-
level goals. These goals are then used to form questions
that can be used to judge whether a proposed solution is
appropriate. During the production of these arguments,
choices of how they can be supported (e.g. implement in
hardware or software) will emerge and assumptions
identified. (The assumptions are important when trying
to reuse designs since they allow the basis for the
existing components� design to be evaluated in the new
context.) The following subsection proposes some
properties for use in hardware software co-design that
later in the section are developed into arguments that can
be used.
3.1 Key Properties for Hardware Software Co-

Design
Based on experience and conversations with

industrial colleagues, the following objectives have been
identified as being important. It should be noted that
most objectives are derived from the overarching
objective of maximising profit in some way.
• Correctness � using appropriate verification

techniques sufficient evidence needs to be gathered
that what is being produced meets its requirements.
Sufficient is dependent on the nature of the
application, for example it would be expected in
critical systems development that more evidence is
expected than for non-critical systems. In general,
hardware development is considered to have
verification techniques that can provide stronger
evidence for correctness.

• Managed change � the system produced should be
changeable or upgradeable in an efficient manner. For
most applications, typical change patterns or potential
upgrades are predictable with reasonable confidence.
For some applications, there are known killer changes
that are likely to occur and result in significant re-
design effort being needed. In general, software is
considered easier to change but as Ariane 501
demonstrated the assumptions that exist in a
component being reused are not always handled
appropriately.

• Efficiency � the system produced should make the
best use of the available resources. The efficiency of
a technology is strongly dependent on the nature of
the technology. For instance, a FPGA is an effective
means (in terms of the amount of silicon used is
small) of implementing logic such as found in
Statecharts but may not be as effective at
implementing floating point operations.

• Sufficiency � the technology used in the
implementation must be able to represent the design.
There are many factors here. Considering just timing,
o Von Neumann architectures are often considered

to have the benefit of providing raw processing

power, however for applications where hard real-
time guarantees are needed the difficulty in
modelling modern Von Neumann processors can
lead to large amounts of pessimism in the analysis
that reduces/eliminates the benefits [6].

o FPGAs are better at handling concurrency [7].
o FPGAs have little or no difference between their

best, average and worst-case performance whereas
Von Neumann do [7]. Variability in timing
behaviour makes many applications, e.g. control
systems, harder to produce [8].

The rest of this paper considers sufficiency and its
relationship to architectural design in greater detail.
3.2 Arguments for Sufficiency

Figure 3 presents the top-level argument for the
property sufficiency. This shows how the goal, G0001,
that the implementation strategy is sufficient is broken
down into three sub-goals that concern the functional
(G0002), non-functional (G0003) and operational
environment requirements (G0004). To satisfy any of
the goals in Figure 3, the assumption A0001 has to be
satisfied that the requirements are specified in an
appropriate manner, i.e. the requirements are complete
and consistent � note correctness is not important for the
implementation strategy only for the final system being
fit for purpose. Goal G0004 that deals with operational
environments is left undeveloped.

Goal G0002 that deals with functional requirements
is satisfied using a generic goal G2001 �
Implementation Sufficient for the Requirements to be
Met. The argument (SufficiencyArg) for the generic
goal is presented in Figure 5. In the case of functional
requirements it is assumed, A0002, either hardware or
software can equally well be used for meeting the
requirements. Goal G0003 is decomposed into an
argument that deals with whether the implementation
strategy can satisfy the system�s non-functional
requirements. The goal G0003 is split into five parts
(one for each sub-property of non-functional -memory,
safety, timing, reliability and communications) which
are also satisfied by the generic goal G2001.

In Figure 5, the argument for goal G2001,
originating in Figure 3, is split into three parts; the
implementation allows the requirements to be met (goal
G2002), requirements are specified appropriately (goal
G2003 which is left un-developed � indicated by a
diamond below the goal), and sufficient evidence can be
gathered the requirements are met (goal G2004).

The goal G2004 results in two choices (a choice
means that at least one of N strategies proposed is
followed) which are evidence is either gathered by static
or dynamic analysis. A feature of the technique that has
been developed is that where a choice exists then
justifications and assumptions should be captured and
these normally relate to pros and cons of the choices that
need to be explored. In this case, the assumptions and
justifications indicate that static analysis has the
advantage it can show absence of faults but getting
appropriate models is difficult, hard to validate and often
not practicable, whereas dynamic analysis is more
generally applicable but can�t guarantee the absence of

failures. Often, the best compromise is a combination of
the options.

The goal G2002 is split into three parts; that the
infrastructure is predictable (goal G2005), that the
mapping of the application onto the infrastructure is
predictable (goal G2006), and the application can be
shown to meet its requirements (goal G2007). From the
goals the key points that emerge are the choices in the
hardware used (between FPGA, microprocessor and
discrete circuitry) and the design notation used (between
hardware-based and software-based languages). The
latter of these choices shows that software-based
languages have the advantage that they can represent
both hardware and software but a disadvantage is raised
that hardware-based languages often support devices
and concurrency better.

Each of the hardware choices can be satisfied by the
same argument, given in Figure 4. This argument shows
that the choice should be based on whether the type of
hardware has appropriate models available and whether
these can be validated.
3.3 Using the Arguments

From the argument in section 3.2, a number of
design choices and objectives (i.e. goals or quality
attributes) have been identified. This section is to
consider how these objectives should be used during the
hardware software co-design process; issues include
whether they should be used as part of a qualitative or
quantitative assessment, whether the process is manual
or automated and how they are used as part of making
an overall decision. In general, qualitative assessments
consist of asking questions which are based on
experience and some consideration whereas quantitative
assessment consists of a checklist of activities to be
completed. A key difference is qualitative assessment
can be performed anytime during a project whereas
quantitative assessment often relies on certain design
information (e.g. task execution times in the case of
timing analysis) being available which may dictate when
it can be performed.

Table 1 provides a partial trade-off analysis of the
objectives given in the arguments presented in section
3.2. The analysis has lead to qualitative and quantitative
assessments being derived as well as an indication of the
relative importance of each. The rest of the section
explains how this can be used as part of hardware
software co-design. The qualitative assessment criteria
can be used elsewhere as part of review checklists, and
the quantitative assessment criteria are verification and
validation requirements (e.g. the need to perform timing
analysis).

Table 1 shows many of the quality attributes that
have to be made when performing co-design. When
performing co-design it would be necessary to produce a
balanced design where the important constraints are met
and others are achieved as well as possible.

Putting this into context, consider the design of a
system whose principal function is to support a number
of control loops. Key requirements for such a system are
the ability to meet requirements and the ability to detect
when the system is not performing as expected. Taking
the first of these and considering timing, the main

requirements are that precedence constraints are
maintained, freshness of data when used in calculations
and later output, and jitter requirements because of its
impact on stability.

One co-design decision is whether a conventional
microprocessor is used or a FPGA. For simplicity when
making this decision, other variables could be
considered as fixed, for example Ada as the
programming language. Consider the assessment related
to goal G3001, for a FPGA the models of the circuitry
(i.e. individual cells and overall circuitry) are well-
defined and comprehensive models available. However
for anything other than a simple microprocessor models
are rarely available, and even if they were validation
would be difficult if not impossible [9]. This is
particularly the case for timing where worst-case
execution time analysis is hard because the information
provided by the manufacturers is often difficult to
interpret and containing errors and if a model can be
derived then it is especially hard to validate and often
pessimistic [9]. Additionally from a timing perspective
related to G2014, it would be hard to meet the control
systems timing requirements because modern
microprocessors tend to have high variability in their
executions, whereas FPGAs tend to have constant
execution times, which makes meeting jitter
requirements difficult [7]. Also, FPGAs support
concurrency better than microprocessors which ease the
problem of supporting multiple control loops.

Despite the problems of using microprocessors,
obviously as common practice suggests they do provide
a means to implement control systems especially where
much of the processing demands does not need strict
timing behaviour (e.g. health monitoring functionality).
One key advantage of the trade-off analysis approach
proposed is that the output helps guide the design of the
system, for example the design of the scheduler should
minimise the jitter of certain tasks related to the
operation of the control loops.

Another key benefit of the arguments and trade-off
analysis is the way they support the objective of the
systems engineering process being partitioned into clear
and distinct parts that can then be performed as
independent entities. For instance in Figure 5, there are
goals for whether the implementation meets its
requirements. From this, sub-goals are derived that
separate the meeting of the requirements for the
application, infrastructure and mapping from one
another. These activities can then be performed in
isolation of one another. However the goals capture key
assumptions that must be considered and later shown to
hold such that when the activities merge back together
that the overall requirements are met. As the design is
further decomposed, more assumptions between these
activities would be derived.
4 Summary and Future Work

This paper has shown how the codesign process can
be incorporated as a sub-process within the conventional
safety-related system process. A key integrating
technology between the conventional process and
codesign process is the ability to collect design evidence
throughout the overall process, utilising it for both

verification and trade-off analysis within the codesign
sub-process.

This paper has proposed that this can be achieved by
utilising a single architecture trade-off analysis method
for the entire system. As well as conventional trade-off
analysis, this also provides a repository for design
rationale. At the early stages of the system engineering
process (i.e. decompositional phase) this can be used for
gross partitioning of the system requirements and
specification of sub-systems for the different
engineering disciplines. Within the codesign phase, the
same architectural trade-off analysis can be used to
evaluate different alternative designs. The important
outcomes are:
• a single repository of design decisions throughout

the entire system, this is key to the production of
safety evidence during system qualification), and

• a complementary design and certification approach
and architecture.

• a means to focus the co-design process so that
different ways of satisfying the system�s objectives
can be traded off.

Current work is looking at how the process may be
automated and proving the concepts in this paper with a
case study. Automation could be achieved for instance
by the use of heuristic search algorithms, such as genetic
algorithms, to optimise the design with respect to its
objectives.
5 References
[1] Y.C. Yeh, Dependability of the 777 Primary Flight

Control System. Proceedings of the 5th IFIP
Conference on Dependable Computing for Critical
Applications, 1995.

[2] D. M. Buede, The Engineering Design of Systems,
pub. Wiley, 2000.

[3] K. Forsberg, H. Mooz, The Relationship of Systems
Engineering to the Project Lifecycle, Engineering
Management Journal, 4(3), 36-43, 1992

[4] I. Bate, N. Audsley, Architecture Trade-off
Analysis and the Influence on Component Design,
Proceedings of Workshop On Component-Based
Software Engineering: Composing Systems from
Components, 2002.

[5] R. Kazman, M. Klein, and P. Clements, Evaluating
Software Architectures - Methods and Case
Studies. 2001: Addison-Wesley.

[6] I Bate, P Conmy, T Kelly, J McDermid, Use of
Modern Processors in Safety-critical Applications,
The Computer Journal, 44 (6), 531-543, 2001.

[7] M. Ward, N.C. Audsley, Hardware Compilation of
Sequential Ada, Proceedings of CASES, 2001.

[8] I Bate, Scheduling and Timing Analysis of Safety
Critical Hard Real Time Systems, Thesis,
Department of Computer Science, University of
York, YCST-99-04, 1999.

[9] J. Engblom: Processor Pipelines and Static Worst-
Case Execution Time Analysis, Uppsala
Dissertations from the Faculty of Science and
Technology, ISBN 91-554-5228-0, 2002.

[10] T. Kelly, Arguing Safety � A Systematic Approach
to Safety Case Management, DPhil Thesis, YCST-
99-05, Department of Computer Science, Univ. of
York, 1998.

[11] I. Bate, T. Kelly, Architectural Considerations in
the Certification of Modular Systems, To Appear in
Proceedings of 22nd International Conference on
Computer Safety, Reliability and Security
(SAFECOMP 2002), 2002.

[12] G. de Micheli, R. Ernst, W. Wolf, Readings in
Hardware / Software Codesign, pub. Morgan
Kaufmann, 2002.

Goal Qualitative Quantitative Importance
G3001 �
Hardware
used is
predictable

For proposed hardware, raise questions
such as:
a. Does documentation exist?
b. Does it seem comprehensive?

Choice (originating from goal G2004) of either:
a. derivation of models for the different non-functional

properties that are validated against the actual
hardware.

b. development of an appropriate testing strategy.

Normally high, but
dependent on the integrity
the part of the system and
particular property needs
to attain.

G2017 and
G2018 � Use
a software or
hardware
based
language

For a proposed language, raise questions
such as:
a. Can sufficient engineers be found?
b. Have previous systems been

successfully developed with it?
c. Does the language provide a set of

features that are probably sufficient for
the envisaged application?

d. Does the language allow static analysis
to be performed?

e. Are support tools available?

Assessment activities could include:
a. Related to G2013, obtaining/defining semantics.
b. Related to G2008, obtaining/producing

complementary static analysis tools.
c. Related to A2006 and A2007, determine the language

features needed and whether they are supported.
d. Related to J2003 and J2004, is an appropriate

mapping available from software to hardware?

High since changing the
language used part way
through development can
lead to large amounts of (if
not total) rework.

G2014 �
Infrastructure
provided is
sufficient

For a proposed infrastructure, raise
questions such as:
a. Based on previous experience, does the

resources available seem sufficient?
E.g. Are more MIPS available than for
other similar projects

b. Does the hardware provide a set of
features that are probably sufficient for
the envisaged application?

c. Are support tools available?

a. Related to G2004, early in the project, use data from
previous similar systems and other metrics (e.g.
number of requirements) to estimate whether
infrastructure means the requirements can be met.
Later in the project, use actual data obtained via static
or dynamic analysis. At all stages, possibly perform
sensitivity analysis to de-risk further development.

b. Related to G2014, determine the hardware features
needed and whether they are supported.

Depends on how easily the
infrastructure or
application can be
changed. Often from an
early stage in projects
changing the infrastructure
or application design are
not options, therefore
importance would be high.

Table 1 � Assessment Using the Contents of the Arguments

G0001
Implementation

strategy is sufficient
for systems

requirements

A0001
Systems requirements

specified in an
appropriate manner

A

C0002
Sufficient means

requirements can be
met with available

infrastructure

St0001
Split into functional, non-
functional and operational

environment

G0004
Implementation strategy
is sufficient for systems
operational environment

requirements

G0003
Implementation strategy
is sufficient for systems

non-functional
requirements

C0004
Operational
environment

requirements =
temperature, power,
physical space etc

A0002
Both hardware and

software can be equally
well used to meet

functional requirements

A

C0001
appropriate =
consistent and

complete

G0002
Implementation

strategy is sufficient
for systems functional

requirements

C0003
non-functional = timing,

memory, safety,
reliability, comms

G1005
Implementation

strategy is sufficient
for systems memory

requirements

G1006
Implementation

strategy is sufficient
for systems safety

requirements

G1007
Implementation

strategy is sufficient
for systems timing

requirements

G1008
Implementation

strategy is sufficient
for systems reliability

requirements

G1009
Implementation strategy
is sufficient for systems

communications
requirements

G2001
Implementation

sufficient for
requirements to be met

 SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

 SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

 SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

 SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

 SufficiencyArg

G2001
Implementation

sufficient for
requirements to be met

 SufficiencyArg

Figure 3 - Top Level Argument

J3001
Set of models needed
of the hardware are

available

J

A3001
Models of the hardware

are validated against
actual hardware

A

G3001
Hardware used is

predictable

Figure 4 - Hardware is Predictable � �HWPredArg�

G2002
Implementation

supports requirements
being met

G2007
Application can be
shown to meet its

requirements

G2005
Infrastructure is

predictable

G2013
Notations used (e.g.

programming
languages) are

predictable

G2012
Method used (e.g.

coding style) is
predictable

J2003
Can be compiled in a
predictable manner to

both software and
hardware

J

J2004
Can be compiled in a
predictable manner to

hardware

J

A2007
Language is sufficient,

e.g. for hardware
applications need

support concurrency
and devices A

A2006
Language is

sufficient, e.g. for
hardware applications

need support
concurrency and

devices A

G2006
Mapping of application
onto infrastructure is

sufficient and
predictable

G2018
Use a software-
based language

(e.g. Ada)

G2019
Use a hardware-
based language

(e.g. VHDL)

G2011
Infrastructure's

software (e.g. OS)
is predictable

C2003
Infrastructure =

hardware
devices, OS

C2004
Hardware options

include FPGA, Von
Neumann processor
and discrete circuitry

G2010
Infrastructure's
hardware used
is predictable

G2016
Predictable micro-
processor is used

A2001
If the infrastructure and

mapping are predictable,
then an application can be
produced that is shown to

meet its requirements
A

G2014
Sufficient resources
are selected and an

appropriate allocation
found

A2002
Application can be shown to

meet its requirements if it
produced appropriately and

enough resources are
provided

A

G2004
Sufficient evidence

gathered that
requirements are met

G2003
Requirements are

specified
appropriately

C2001
appropriately =

consistent and complete

C2002
sufficient is

dependent on the
nature of the

application

G2008
Evidence gathered
by static analysis

J2001
Can show the

absence of faults

J

A2003
Analysis models
hard to produce

and validate

A

J2002
Often generally

applicable
J

A2005
System must be
able to tolerate

failures
A

A2004
Analysis models
are practicable,
i.e. safe but not

overly pessimistic
A

G2001
Implementation sufficient

for requirements to be
met

G2015
Predictable

FPGA is used

G2017
Predictable

discrete circuitry
is used

G2009
Evidence gathered

by dynamic
analysis (e.g. test,

simulation)

G3001
Hardware used is

predictable
 HWPredArg

G3001
Hardware used is

predictable
 HWPredArg

G3001
Hardware used is

predictable
 HWPredArg

Figure 5 - Implementation Meets the Requirements � �SufficiencyArg�

