Re-targetable Framework for Wor st-Case Execution Time Analysis

lan Bate
BAE SY STEM S Dependable Computing Systems Centre,
Department of Computer Science,
University of York, York, United Kingdom.
e-mall: iain.bate@cs.york.ac.uk

Relevant Research Themes. Embedded Systems and Safety-Critical Systems

Abstract

The ability to estimate the Worst-Case Execution
Time (WCET) of software is essential for all forms
of timing analysis. In critical systems, there is a
need to obtain safe estimates which can only be
achieved viaanalysis. Traditionally, WCET analysis
approaches have been tightly coupled to specific
compilers and processors. The purpose of this
paper is to describe a framework that has been
developed for WCET analysis that is not tied to a
specific compiler or platform. Instead, existing
analysis has been generalised so that it can be
instantiated at run-time for a particular platform, in
this case using a purposebuilt language. The
framework produced alows the tool to be re-
targeted without (in most cases) modification/re-
compilation of the analysis software.

1 Introduction

The purpose of this work is to produce appropriate
models for the Worst-Case Execution Time (WCET)
analysis of modern processors. The ability to estimate
the WCET of software is essential for all forms of timing
analysis. WCET analysis is the process by which the
maximum execution time of a piece of software on a
particular hardware platform is obtained. There are two
principal partsto WCET analysis:

higher-level analysis of the program to deduce the
bounds on loops and mutually exclusive paths, and
lower-level analysis related to how the instruction(s)
are actually processed.

Work in York [1], amongst others [2], has already
looked at manual methods for dealing with the higher-
level analysis, whilst others have looked at automatic
methods [3]. Until recently, this was sufficient because
the processors most often used (e.g. 68020) did not tend
to have features (e.g. caches and pipelines) found in
modern processors. In critical systems that use older
generation processors, if a processor has a cache then it
is often disabled due to the perceived difficulty in
analysing its operation. However if the modern
processors were used and suitable analysis were
available, then it is likely it would be used. The type of
processor being used in development projects is
changing to more modern devices (e.g. superscalar).

The change is happening not because of the need for
more processing power but because obsolescence is
meaning supplies of currently used processors are

running out. Whilst the processor could operate without
a cache or with the cache disabled, albeit inefficiently,

the use of pipelines can not be avoided. If during WCET
analysis advanced features of the processor (e.g. cache
and pipeline) are ignored, then the pessimism in the

analysis can be at least an order of magnitude (refer to
section 2.1 for details) which could be an un-manageable
amount. This would mean little of the processor's
resource could be used since the worst-case processor
utilisation has to be within defined bounds. This could
lead to a decision to base the WCET of tasks on a
measured value, however this means systematic failures
could occur in service which for some systems, e.g.

safety-related, is not acceptable. Therefore, thiswork has
been performed with an overall am of developing
appropriate lower-level analysis whilst building in
support for the higher-level analysis.

A great deal of work has been presented on the
subject of WCET analysis, including analysis of caches
and pipelines, examples of which can be found. The
approaches proposed vary greatly in their complexity
and precision, but the few that support re-targetability
would require significant re-work to achieve it. Whilst the
techniques can be re-applied to other processing
architectures, the models of the architectures are
contained within the analysis which means the analysis
software has to be modified.

The contribution of this work is to select and reuse
existing techniques for WCET analysis and configure
these into a re-targetable framework. The architecture of
the framework has been produced by identifying a
suitable abstraction layer that minimises the effort in
tailoring it for a specific problem without prohibiting the
framework from supporting processors that may need to
be analysed. The implementation of the framework is
achieved using a target-independent model that can be
instantiated for a specific processing architecture using
details expressed in a WCET language that has been
developed. Since the details of the processing
architecture are held outside of the actual analysis tool,
then this removes the need to modify the analysis
software when re-targeting the analysis to a different
platform. The contribution of this paper is not the
individual analyses but the way in which they are
tailored to be generic. The reason is the analyses are
considered to be replaceable facets of the overall
solution and most of the forms of analyses already exist.

The structure of the report is as follows. Section 2



gives background and motivation to the problem of
WCET analysis, the constraints placed on the work so an
appropriate solution is obtained and the assumptions
made during the course of this work. Section 3 presents
the overall strategy taken for providing a WCET analysis
tool. Section 4 presents some examples of how cache
configurations may be represented and based on these
an evaluation of the approach is carried out. Finaly,

section 5 presents the summary and considers the future
work that could be performed.

2 Motivation and Background for the
Work

The purpose of this section isto examine why the work
is viewed as important and the key issues to be
considered when producing suitable analysis.

21 WhytheAnalysisisEssential

WCET analysis is the mechanism for determining the
maximum possible time a piece of software takes to
execute. There are two principal ways for obtaining the
value; the first and most often used is test and the
second is via analysis. In our experience, test-based
techniques often involve running the software with a
large number of scenarios and measuring what the
WCET is. Other test-based techniques use guided search
techniques (e.g. genetic algorithms) that evolve test
cases which are hoped to include the worst case.

The method chosen for obtaining the WCET of
softwareis clearly dependent on the needs of the project.
If achieving the maximum possible use of available
processing is the key concern, rather than risk of failure
to meet timing requirements (which is a primer driver for
safety-critical  real-time systems), then test-based
techniques have the advantage. This can be a misguided
advantage if allowance is made for the potential optimism
in the results leading to an engineering margin having to
be built into the results. Otherwise, the analysis-based
techniques have the advantage. If WCET analysis were
used that ignored cache and pipelines to analyse
PowerPC 603e code, the pessimism could be 1000% or
more. This figure can be justified by considering the
realistic case of a 500 MHz processor that uses 50 nano-
second memory, which leads to at least 25 (= 500 /
(1000/50)) wait states per memory access. Ignoring the
four stage pipeline would mean the analysis produces a
result up to four times the actual execution time. Thisis
due to the analysis having to assume each instruction
propagates through every stage before the next
instruction could begin.

2.2 TheConsraintson the Problem

When deriving an approach for WCET analysis it is
useful to place a number of constraints on the problem
so that the resulting analysis is of practical use. The
following are constraints used to influence this work:

Computational Complexity - It would be possible to
produce analysis software that effectively emulated
the processor and then exercised all possible cases.

However for some parts of the analysis problem, it
could beintractable for reasonable sizes of software.
Pessimism - Again, it would be easy to produce
analysis software whose results were so pessimistic
that the effective utilisation of the processor was
less than that of the processors being replaced -
refer to section 2.1 for details.

Re-targetability - Whilst achieving the earlier two
constraints, a model is developed that is highly
optimised for a particular processor and/or compiler.
It is not a goal of this work to tie the user(s) to a
particular processor, in fact the principal constraint
on this work is to ease the problem of re-targeting
the solution.

Qualification - For any approach to be useful, it is
necessary to validate that the analysis model is safe
(i.e. the results of the analysis is always greater than
or equal to the actual WCET) and ensure the tool is
not so complex the model is impossible to justify.
The validation of the pipeline model is complicated
since the pipeline's internal operation cannot be
observed. This means greater trust has to be placed
in the information provided by the manufacturer.
Little work has been performed on the subject of
processor model validation.

3  Framework for WCET Analyss

The principal part of the WCET framework that is
being presented is a generic analysis model instantiated
at run-time with instruction set and hardware details that
are input using a language that has been developed. The
analysis model and language has been defined with an
abstraction layer that attempts to minimise the effort
needed to instantiate the model whilst allowing the
resulting model to be as versatile as possible - ideally
truely generic. The instruction set and hardware details
are needed to allow the generic tool to interpret the
software to be analysed and then determine how
individual instructions would be processed by the
platform. The approach has been taken so that when re-
targeting the analysis to a new platform the analysis
software itself should not need altering, only an external
file. This should lead to significant cost savings when
porting the tool to a new platform. The cost savings are
at the expense of a slight increase in the time required to
do the analysis caused by the need to invoke the model
for a specific platform and an analysis model that
contains some parts that are not always used.

The description of a specific platform is not
represented using one of the existing languages (e.g.
VHDL) because the methods tend to have an
inappropriate level of abstraction. This could lead to long
complicated descriptions having to be produced for what
could be relatively simple concepts. Consider for example
defining three pipeline stages where two of the stages
can be accessed in parallel and these stages receive
instructions after the other one has processed them. In
VHDL, a number of procedures would have to be written
in-order to represent the situation. The result would be



hard to parse. Instead, the proposal is to develop a
simple language (referred to as the WCET language),
represented in  BNF, for defining processing
architectures. In the case of the pipeline mechanism, this
entails the convenient definition of the individual
pipeline stages, their interactions with other stages, and
how the instructions actually make use of the stages.

The overall framework that has been produced (in
Ada) isgivenin Figure 1. A key feature of the framework
is that the analyses are performed as independent of one
another as possible with the results of each then being
combined to give the desired result. In addition,
interfaces are defined to allow communication between
the analyses and to allow individual analysis to be
changed without affecting others, i.e. there is a modular
architecture. The WCET analysis is based on a path-
based approach, rather than IPET (Implicit Path
Enumeration Technique) [2] or tree-based approaches
[3]. The reasons for this choice are that previous work at
York [1] has used the path-based approach, allowing for
cache and branch prediction is more straightforward and
the analysis results include the worst-case path which is
useful for manual validation.

Figure 1 shows the WCET analysis is performed on a
disassembled version of the software. This strategy is
taken so that the tool is easier to validate during
prototyping. It is envisaged a production version would
operate directly on the object code. The software is then
split into basic blocks, a basic block being a series of
instructions with branches only at its entry or exit.

Path analysis is the process by which all possible
paths (i.e. sequence of basic blocks) are determined and
the path associated with the WCET deduced. The path
analysis uses information provided in the file Manual
Path Information which contains information about
maximum loop bounds and mutually exclusive paths. The
set of paths is then fed into the lower-level forms of
analyses. In the future framework, automatic methods of
providing thisinformation could be added.

Pipeline analysis is performed in two stages; each
basic block is analysed once to determine how the

Manual Path
Information

instructions exercise the pipeline, and then for a
particular path the details gathered are joined to give the
Path's Processing Time (PPT) within the pipeline. This
analysis assumes that memory accesses result in a cache
hit and all branches are correctly predicted.

Cache analysis is performed for each path in the
program in order to determine the number of Cache
Misses (CM). Similarly branch prediction is performed for
each path to determine the number of Incorrect Branch
Predictions (IBP). The results of the analyses are then
combined using equation (1) to determine the Overall
Execution Time (OET).

OET = PPT + é CMPenaItyé IBPPenalty @

" CM "1BP
4  Evaluation of the Approach

For reasons of space, the complete WCET language,
and the analysis to support it, cannot be described.
Instead, this paper gives examples of the WCET
languages’ use and presents some evaluation.

Part of the evaluation was considering whether the
language was sufficiently complete that all processors
could be represented and analysed. After some
consideration, it was concluded that there are processors
now and in the future that may not be represented
efficiently in this framework. However based on
discussions with people working with embedded
systems and the fact a variety of processors have been
represented (e.g. Intel Pentium family, ARM family,
Motorola PowerPC family and SHARC — DSP), it is
considered that the framework is sufficient.

Another evaluation metric for WCET analysis is
pessimism. Our approach should introduce little
pessimism because the approach provides an accurate
model of the cache mechanism. The only pessimism is
attributable to:

the fact we assume the cache is empty when
entering the code being analysed, and

the mechanism for analysing for the impact of
preemption on the cache, i.e. the cache is flushed.

Manual Data
Cache Information

1

Data Cache
Analysis

Program Path o e
Analysis e Instruction Cache
_/ - Analysis
- ,,-’/ weeT
setof
slogks o -
v d Branch Prediction
—1+| Integrate Analyses H
r Analysis
-~ -7
Softw Break the Soft e _,-r"'-r’ Worst-c
reak the Software s orst-Case
(in disassem bled — ook E‘:::? P .
format) into Blocks w7 - Pat
P,
.-/,-"‘r,.r"-’-r
e
-
Platform Specific ;?‘-’E:"J
Information Build Reserval tion Concatenat
(in WCET Tables Block
Language Format)

PIPELINE ANALYSIS

PLATFORM INDEPENDENT WCET ANALYSIS

Figurel - Framework for WCET Analysis



Judging the pessimism of an approach for any non-
trivial example is impossible because of the difficulty in
determining an exact WCET value. However, a partia
evaluation can be achieved by comparing the WCET
results using different approaches. Table 1 compares the
results for the two different instruction sets, PowerPC
and ARM, each with different cache configurations.

The following example presents the details for a
PowerPC 603e with a primary cache that has 1024 cache
lines (represented using the WCET language construct
nunber _of cache_l i nes) each containing 32
bytes (represented using the WCET language construct
nunber _of bytes_per _cache_l i ne) with each
cache line being memory aligned (represented using the
WCET language construct menory_al i gnnment ). The
primary cache is organised in a set associative manner
(represented using the WCET language construct
cache_organi sati on) with 8 ways (represented
using the WCET language construct
nunber _of ways). Cache lines to be replaced are
chosen using the least recently used algorithm
(represented using the WCET language construct
cache_line_replacenent).

The evaluation platform used was a 500 MHz Pentium
I11 running Linux with the WCET analysis tool written in
Ada and compiled using GNAT. The analysis time
quoted is the time to perform the whole WCET analysis
and not just the instruction cache analysis. The table
shows the benefit of performing cache analysis since in
both cases the mgjority of instructions' accesses result
in acache hit. Thisresult is clearly afunction of the type
of application being analysed. The results for the
PowerPC take significantly longer to obtain. There are a
number of reasons for this, including the relative size and
complexity of the instruction sets and pipeline
mechanisms.

Processor No. of No of Analysis
Accesses Cache Time
Misses
PowerPC 2116 266 1 minute 47
603 seconds
ARM 7 2108 264 1 minute 20
TLDI seconds

nunber _of cache_lines primary 1024
nunber _of _bytes_per_cache_line primary 32
cache_organi sation primry set_associative
nunber _of _ways primary 8

menory_al i gnment primary true
cache_line_replacenment primary lru

Another example, below, is the ARM 7 TLDI with a
primary cache that has 256 cache lines each containing
32 bytes with each cache line being memory aligned. The
primary cache is organised in a set associative manner
with 4 ways. Cache lines to be replaced are chosen using
the least frequently used algorithm.

nunber _of cache_lines primry 256
nunber _of _bytes_per_cache_line primary 32
cache_organi sation primry set_associative
nunber _of _ways primary 4

menory_al i gnment primary true
cache_line_replacenment primary |fu

It is assumed that the PowerPC stores its instructions
in memory conforming to the specification for blockl
and the ARM instructions in memory conforming to the
specification for block2. (Note memory block identifiers
are represented using WCET language construct
menory_bl ock_nane) blockl ranges from address O
to 65535 with any cache miss suffering a penalty of 10
wait states — represented using WCET language
construct menory_bl ock_det ai | . block2 ranges
from address 65536 to 131071 with any cache miss
suffering a penalty of 2 wait states.

menory_bl ock_nane bl ockl bl ock2
menory_bl ock_detail blockl 0 65535 10
menmory_bl ock_detail block2 65536 131071 2

Table 1 - Results of the Evaluation

5 Condusons

The paper has introduced a framework that has been
developed to support the need for re-targetable WCET
analysis that accounts for the features of today's
microprocessors. The framework is based on target-
independent models that are instantiated for specific
platforms using a WCET language. More specificaly, it
has briefly described how it is possible to represent
instruction caches in a re-targetable fashion. The paper
then evaluates the approach by performing analysis on
two different instruction sets, ARM and PowerPC, each
with a different cache configuration. Being realistic, it is
envisaged some cases could arise that the framework
cannot support without minimal modification. However
these are expected to be few in number and should
require minimal change.

Future papers will describe the other parts of the
framework that has already been produced.

6 References

[1] R. Chapman, Static Timing Analysis and
Program Proof, Department of Computer
Science, University of York, 1995.

[2] P. Puschner, A. Schedl, Calculating the
maximum  execution times with linear
programming techniques, I nstitut fur
Technische Informatik, Technische Univeristat
Wien, 1995.

[3] S. Min et al, An Accurate Worst Case Timing
Analysis for RISC Processors, |EEE
Transactions on Software Engineering, 21(7),
pp. 593-604, 1995..



