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Abstract 
The ability to estimate the Worst-Case Execution 

Time (WCET) of software is essential for all forms 
of timing analysis. In critical systems, there is a 
need to obtain safe estimates which can only be 
achieved via analysis. Traditionally, WCET analysis 
approaches have been tightly coupled to specific 
compilers and processors. The purpose of this 
paper is to describe a framework that has been 
developed for WCET analysis that is not tied to a 
specific compiler or platform. Instead, existing 
analysis has been generalised so that it can be 
instantiated at run-time for a particular platform, in 
this case using a purpose-built language. The 
framework produced allows the tool to be re-
targeted without (in most cases) modification/re-
compilation of the analysis software. 

1 Introduction 

The purpose of this work is to produce appropriate 
models for the Worst-Case Execution Time (WCET) 
analysis of modern processors. The ability to estimate 
the WCET of software is essential for all forms of timing 
analysis. WCET analysis is the process by which the 
maximum execution time of a piece of software on a 
particular hardware platform is obtained. There are two 
principal parts to WCET analysis:  
• higher-level analysis of the program to deduce the 

bounds on loops and mutually exclusive paths, and 
• lower-level analysis related to how the instruction(s) 

are actually processed.  
Work in York [1], amongst others [2], has already 

looked at manual methods for dealing with the higher-
level analysis, whilst others have looked at automatic 
methods [3]. Until recently, this was sufficient because 
the processors most often used (e.g. 68020) did not tend 
to have features (e.g. caches and pipelines) found in 
modern processors. In critical systems that use older 
generation processors, if a processor has a cache then it 
is often disabled due to the perceived difficulty in 
analysing its operation. However if the modern 
processors were used and suitable analysis were 
available, then it is likely it would be used. The type of 
processor being used in development projects is  
changing to more modern devices (e.g. superscalar). 

The change is happening not because of the need for 
more processing power but because obsolescence is 
meaning supplies of currently used processors are 

running out. Whilst the processor could operate without 
a cache or with the cache disabled, albeit inefficiently, 
the use of pipelines can not be avoided. If during WCET 
analysis advanced features of the processor (e.g. cache 
and pipeline) are ignored, then the pessimism in the 
analysis can be at least an order of magnitude (refer to 
section 2.1 for details) which could be an un-manageable 
amount. This would mean little of the processor's 
resource could be used since the worst-case processor 
utilisation has to be within defined bounds. This could 
lead to a decision to base the WCET of tasks on a 
measured value, however this means systematic failures 
could occur in service which for some systems, e.g. 
safety-related, is not acceptable. Therefore, this work has 
been performed with an overall aim of developing 
appropriate lower-level analysis whilst building in 
support for the higher-level analysis.  

A great deal of work has been presented on the 
subject of WCET analysis, including analysis of caches 
and pipelines, examples of which can be found. The 
approaches proposed vary greatly in their complexity 
and precision, but the few that support re-targetability 
would require significant re-work to achieve it. Whilst the 
techniques can be re-applied to other processing 
architectures, the models of the architectures are 
contained within the analysis which means the analysis 
software has to be modified.  

The contribution of this work is to select and reuse 
existing techniques for WCET analysis and configure 
these into a re-targetable framework. The architecture of 
the framework has been produced by identifying a 
suitable abstraction layer that minimises the effort in 
tailoring it for a specific problem without prohibiting the 
framework from supporting processors that may need to 
be analysed. The implementation of the framework is 
achieved using a target-independent model that can be 
instantiated for a specific processing architecture using 
details expressed in a WCET language that has been 
developed. Since the details of the processing 
architecture are held outside of the actual analysis tool, 
then this removes the need to modify the analysis 
software when re-targeting the analysis to a different 
platform. The contribution of this paper is not the 
individual analyses but the way in which they are 
tailored to be generic. The reason is the analyses are 
considered to be replaceable facets of the overall 
solution and most of the forms of analyses already exist.  

The structure of the report is as follows. Section 2 



gives background and motivation to the problem of 
WCET analysis, the constraints placed on the work so an 
appropriate solution is obtained and the assumptions 
made during the course of this work. Section 3 presents 
the overall strategy taken for providing a WCET analysis 
tool. Section 4 presents some examples of how cache 
configurations may be represented and based on these 
an evaluation of the approach is carried out. Finally, 
section 5 presents the summary and considers the future 
work that could be performed.  

2 Motivation and Background for the 
Work 

The purpose of this section is to examine why the work 
is viewed as important and the key issues to be 
considered when producing suitable analysis.  

2.1 Why the Analysis is Essential 

WCET analysis is the mechanism for determining the 
maximum possible time a piece of software takes to 
execute. There are two principal ways for obtaining the 
value; the first and most often used is test and the 
second is via analysis. In our experience, test-based 
techniques often involve running the software with a 
large number of scenarios and measuring what the 
WCET is. Other test-based techniques use guided search 
techniques (e.g. genetic algorithms) that evolve test 
cases which are hoped to include the worst case. 

The method chosen for obtaining the WCET of 
software is clearly dependent on the needs of the project. 
If achieving the maximum possible use of available 
processing is the key concern, rather than risk of failure 
to meet timing requirements (which is a primer driver for 
safety-critical real-time systems), then test-based 
techniques have the advantage. This can be a misguided 
advantage if allowance is made for the potential optimism 
in the results leading to an engineering margin having to 
be built into the results. Otherwise, the analysis -based 
techniques have the advantage. If WCET analysis were 
used that ignored cache and pipelines to analyse 
PowerPC 603e code, the pessimism could be 1000% or 
more. This figure can be justified by considering the 
realistic case of a 500 MHz processor that uses 50 nano-
second memory, which leads to at least 25 (= 500 / 
(1000/50)) wait states per memory access. Ignoring the 
four stage pipeline would mean the analysis produces a 
result up to four times the actual execution time. This is 
due to the analysis having to assume each instruction 
propagates through every stage before the next 
instruction could begin.  

2.2 The Constraints on the Problem 

When deriving an approach for WCET analysis it is 
useful to place a number of constraints on the problem 
so that the resulting analysis is of practical use. The 
following are constraints used to influence this work:  
• Computational Complexity - It would be possible to 

produce analysis software that effectively emulated 
the processor and then exercised all possible cases. 

However for some parts of the analysis problem, it 
could be intractable for reasonable sizes of software.  

• Pessimism - Again, it would be easy to produce 
analysis software whose results were so pessimistic 
that the effective utilisation of the processor was 
less than that of the processors being replaced - 
refer to section 2.1 for details.  

• Re-targetability - Whilst achieving the earlier two 
constraints, a model is developed that is highly 
optimised for a particular processor and/or compiler. 
It is not a goal of this work to tie the user(s) to a 
particular processor, in fact the principal constraint 
on this work is to ease the problem of re-targeting 
the solution. 

• Qualification - For any approach to be useful, it is 
necessary to validate that the analysis model is safe 
(i.e. the results of the analysis is always greater than 
or equal to the actual WCET) and ensure the tool is 
not so complex the model is impossible to justify. 
The validation of the pipeline model is complicated 
since the pipeline's internal operation cannot be 
observed. This means greater trust has to be placed 
in the information provided by the manufacturer. 
Little work has been performed on the subject of 
processor model validation.  

3 Framework for WCET Analysis 

The principal part of the WCET framework that is 
being presented is a generic analysis model instantiated 
at run-time with instruction set and hardware details that 
are input using a language that has been developed. The 
analysis model and language has been defined with an 
abstraction layer that attempts to minimise the effort 
needed to instantiate the model whilst allowing the 
resulting model to be as versatile as possible - ideally 
truely generic. The instruction set and hardware details 
are needed to allow the generic tool to interpret the 
software to be analysed and then determine how 
individual instructions would be processed by the 
platform. The approach has been taken so that when re-
targeting the analysis to a new platform the analysis 
software itself should not need altering, only an external 
file. This should lead to significant cost savings when 
porting the tool to a new platform. The cost savings are 
at the expense of a slight increase in the time required to 
do the analysis caused by the need to invoke the model 
for a specific platform and an analysis model that 
contains some parts that are not always used.  

The description of a specific platform is not 
represented using one of the existing languages (e.g. 
VHDL) because the methods tend to have an 
inappropriate level of abstraction. This could lead to long 
complicated descriptions having to be produced for what 
could be relatively simple concepts. Consider for example 
defining three pipeline stages where two of the stages 
can be accessed in parallel and these stages receive 
instructions after the other one has processed them. In 
VHDL, a number of procedures would have to be written 
in-order to represent the situation. The result would be 



hard to parse. Instead, the proposal is to develop a 
simple language (referred to as the WCET language), 
represented in BNF, for defining processing 
architectures. In the case of the pipeline mechanism, this 
entails the convenient definition of the individual 
pipeline stages, their interactions with other stages, and 
how the instructions actually make use of the stages.  

The overall framework that has been produced (in 
Ada) is given in Figure 1. A key feature of the framework 
is that the analyses are performed as independent of one 
another as possible with the results of each then being 
combined to give the desired result. In addition, 
interfaces are defined to allow communication between 
the analyses and to allow individual analysis to be 
changed without affecting others, i.e. there is a modular 
architecture. The WCET analysis is based on a path-
based approach, rather than IPET (Implicit Path 
Enumeration Technique) [2] or tree-based approaches 
[3]. The reasons for this choice are that previous work at 
York [1] has used the path-based approach, allowing for 
cache and branch prediction is more straightforward and 
the analysis results include the worst-case path which is 
useful for manual validation.  

Figure 1 shows the WCET analysis is performed on a 
disassembled version of the software. This strategy is 
taken so that the tool is easier to validate during 
prototyping. It is envisaged a production version would 
operate directly on the object code. The software is then 
split into basic blocks, a basic block being a series of 
instructions with branches only at its entry or exit. 

Path analysis is the process by which all possible 
paths (i.e. sequence of basic blocks) are determined and 
the path associated with the WCET deduced. The path 
analysis uses information provided in the file Manual 
Path Information which contains information about 
maximum loop bounds and mutually exclusive paths. The 
set of paths is then fed into the lower-level forms of 
analyses. In the future framework, automatic methods of 
providing this information could be added. 

Pipeline analysis is performed in two stages; each 
basic block is analysed once to determine how the 

instructions exercise the pipeline, and then for a 
particular path the details gathered are joined to give the 
Path's Processing Time (PPT) within the pipeline. This 
analysis assumes that memory accesses result in a cache 
hit and all branches are correctly predicted. 

Cache analysis is performed for each path in the 
program in order to determine the number of Cache 
Misses (CM). Similarly branch prediction is performed for 
each path to determine the number of Incorrect Branch 
Predictions (IBP). The results of the analyses are then 
combined using equation (1) to determine the Overall 
Execution Time (OET). 

∑∑
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+=
IBP

IBPPenalty

CM

PenaltyCMPPTOET          (1) 

4 Evaluation of the Approach 

For reasons of space, the complete WCET language, 
and the analysis to support it, cannot be described. 
Instead, this paper gives examples of the WCET 
languages’ use and presents some evaluation. 

Part of the evaluation was considering whether the 
language was sufficiently complete that all processors 
could be represented and analysed. After some 
consideration, it was concluded that there are processors 
now and in the future that may not be represented 
efficiently in this framework. However based on 
discussions with people working with embedded 
systems and the fact a variety of processors have been 
represented (e.g. Intel Pentium family, ARM family, 
Motorola PowerPC family and SHARC – DSP), it is 
considered that the framework is sufficient. 

Another evaluation metric for WCET analysis is 
pessimism. Our approach should introduce little 
pessimism because the approach provides an accurate 
model of the cache mechanism. The only pessimism is 
attributable to: 

• the fact we assume the cache is empty when 
entering the code being analysed, and  

• the mechanism for analysing for the impact of 
preemption on the cache, i.e. the cache is flushed. 
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Figure 1 - Framework for WCET Analysis 



Judging the pessimism of an approach for any non-
trivial example is impossible because of the difficulty in 
determining an exact WCET value. However, a partial 
evaluation can be achieved by comparing the WCET 
results using different approaches. Table 1 compares the 
results for the two different instruction sets, PowerPC 
and ARM, each with different cache configurations. 

The following example presents the details for a 
PowerPC 603e with a primary cache that has 1024 cache 
lines (represented using the WCET language construct 
number_of_cache_lines) each containing 32 
bytes (represented using the WCET language construct 
number_of_bytes_per_cache_line) with each 
cache line being memory aligned (represented using the 
WCET language construct memory_alignment). The 
primary cache is organised in a set associative manner 
(represented using the WCET language construct 
cache_organisation) with 8 ways (represented 
using the WCET language construct 
number_of_ways). Cache lines to be replaced are 
chosen using the least recently used algorithm 
(represented using the WCET language construct 
cache_line_replacement). 
number_of_cache_lines primary 1024 
number_of_bytes_per_cache_line primary 32 
cache_organisation primary set_associative 
number_of_ways primary 8 
memory_alignment primary true 
cache_line_replacement primary lru 

Another example, below, is the ARM 7 TLDI with a 
primary cache that has 256 cache lines each containing 
32 bytes with each cache line being memory aligned. The 
primary cache is organised in a set associative manner 
with 4 ways. Cache lines to be replaced are chosen using 
the least frequently used algorithm. 
number_of_cache_lines primary 256 
number_of_bytes_per_cache_line primary 32 
cache_organisation primary set_associative 
number_of_ways primary 4 
memory_alignment primary true 
cache_line_replacement primary lfu 

It is assumed that the PowerPC stores its instructions 
in memory conforming to the specification for block1 
and the ARM instructions in memory conforming to the 
specification for block2. (Note memory block identifiers 
are represented using WCET language construct 
memory_block_name) block1 ranges from address 0 
to 65535 with any cache miss suffering a penalty of 10 
wait states – represented using WCET language 
construct memory_block_detail. block2 ranges 
from address 65536 to 131071 with any cache miss 
suffering a penalty of 2 wait states. 
memory_block_name block1 block2 
memory_block_detail block1 0 65535 10 
memory_block_detail block2 65536 131071 2 

 

The evaluation platform used was a 500 MHz Pentium 
III running Linux with the WCET analysis tool written in 
Ada and compiled using GNAT. The analysis time 
quoted is the time to perform the whole WCET analysis 
and not just the instruction cache analysis. The table 
shows the benefit of performing cache analysis since in 
both cases the majority of instructions’ accesses result 
in a cache hit. This result is clearly a function of the type 
of application being analysed. The results for the 
PowerPC take significantly longer to obtain. There are a 
number of reasons for this, including the relative size and 
complexity of the instruction sets and pipeline 
mechanisms. 
Processor No. of 

Accesses  
No of 
Cache 
Misses  

Analysis 
Time 

PowerPC 
603 

2116 266 1 minute 47 
seconds 

ARM 7 
TLDI 

2108 264 1 minute 20 
seconds 

Table 1 - Results of the Evaluation 

5 Conclusions 

The paper has introduced a framework that has been 
developed to support the need for re-targetable WCET 
analysis that accounts for the features of today's 
microprocessors. The framework is based on target-
independent models that are instantiated for specific 
platforms using a WCET language. More specifically, it 
has briefly described how it is possible to represent 
instruction caches in a re-targetable fashion. The paper 
then evaluates the approach by performing analysis on 
two different instruction sets, ARM and PowerPC, each 
with a different cache configuration. Being realistic, it is 
envisaged some cases could arise that the framework 
cannot support without minimal modification. However 
these are expected to be few in number and should 
require minimal change. 
Future papers will describe the other parts of the 
framework that has already been produced. 
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