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Overview 

Computing technology is quickly becoming a fundamental part of 
many commodity goods. While the demands for bigger and faster 
machines continue, a new wave of computing revolution is 
emerging: embedded computing. Previously, industry tailored 
applications to meet the capabilities of technologies, but now the 
time has come that technologies need to be tailored for 
applications. At the same time, the range of demands (e.g. power, 
dependability, cost etc.) have continued to grow. To best support 
these demands requires technologies that work across and correctly 
balance the different demands. A perceived weakness in the 
embedded real-time systems community is a shortage of events 
that cover multi-disciplinary topics such as control and scheduling, 
and hardware software co-design. 
 
The aims of this workshop are to: 
• identify other relevant cross-disciplinary topics to embedded 

real-time systems than the key ones listed above (hardware-
software co-design, control-scheduling co-design),  

• identify the state of the art, problems and open research areas 
related to embedded real-time systems. 

 
Finally, we would like to thank all the people who helped with the 
event; the reviewers for their speed and their quickness, the 
organizing committee for their guidance, and the members of the 
IEE and Euromicro Technical Committee on Real-Time Systems who 
helped with the organisation. 
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Towards the Codesign of Large Complex Hard Real-Time

Embedded Systems

Neil C. Audsley

Real-Time Systems Research Group,
Department of Computer Science, University of York, York, UK

Neil.Audsley@cs.york.ac.uk

Abstract. The development of long lifetime hard real-time systems is becoming increas-
ingly difficult, due to increased system complexity and pressure to reduce development times.
This paper considers the use of codesign techniques for the development of future hard real-
time systems. A three phase process is outlined. Firstly, non-functional design decisions are
captured and structured in a manner that enables trade-offs between different non-functional
properties to be considered (primarily time). Secondly, system functions are generated by
use of high-level modelling tools (eg. Matlab) to reflect the trend towards these technologies
for increased automation and higher levels of abstraction within the development process.
Thirdly, low-level implementation performs relatively conventional hardware software code-
sign to map the functions generated onto a platform whilst meeting the non-functional
requirements.

1 Introduction

Real-time embedded systems are becoming increasingly complex, in terms of their functional and
non-functional properties, so making their design and implementation evermore difficult. However,
systems need to be developed in shorter times, due to business requirements to reduce the time-
to-market. Such conflicting pressures are often addressed by increasing the automation within
the development process, e.g. by utilising high-level modelling tools (UML, Matlab, MatrixX etc)
and utilising the automatic software generation facilities within those tools for system software
production. Effectively, the abstraction level at which most of the system is developed is raised
from the software level to a modelling level.

This general approach of high-level specification and greater process automation is extremely
attractive in order to reduce system time-to-market. It can be seen in much hardware-software
codesign research, which enables automatic derivation of a hardware architecture and application
software from a high-level specification [1–3]. Such approaches are limited in terms of the scale
of the system that can be developed (usually small uniprocessor or multiprocessor based systems
rather than large distributed systems); limited traceability from specification to final design (due
to automation); limited ability to change / update parts of the system with ease at some later
date (rather the entire modified system has to be re-generated with no guarantee that the new
hardware architecture will be identical to the original).

Many real-time embedded systems are developed for domains that have additional constraints
than those assumed by “traditional” codesign work. Current research at York is concentrating
upon the codesign of complex long-lifetime hard real-time systems. These systems have a number
of important requirements. Firstly, timing predictability is key – failure of the system to meet
timing requirements (eg. process deadlines) can result in catastrophic failure of the system. Thus,
it is important to be able to show that all timing requirements of the system are met prior to
run-time. Secondly, the system must be shown to be fit-for-purpose prior to use [4]. Often some
regulatory authority (eg. aerospace, nuclear, medical) requires documentary evidence that both
the development process and the system are sufficiently robust and correct before the system can
be used. Finally, the system must be amenable to change / upgrade. This must be carried out
in manner that minimises the impact of the change upon the rest of the system, to simplify the



process of convincing the regulators that the changed system has not introduced any unexpected
problems.

This paper outlines an approach currently being developed that seeks to take advantage of
increased automation for long-lifetime hard real-time embedded systems, whilst ensuring system
timing predictability and amenability to change.

2 Overview of the Development Process

The process is broken into three phases:

1. High-Level Design and Timing Optimisation
Captures design choices in a structured manner to aid traceability (and provide supporting
evidence of the system being fit-for-purpose), whilst providing automatic optimisation of key
system non-functional properties (including timing) to ensure that non-functional requirements
will be met in the final system. This phase develops constraints (in terms of time, allocation,
resource usage etc.) that are placed upon a subsequent implementation of the system.

2. System Function Generation
Utilises appropriate modelling techniques (eg. UML, MatrixX, Matlab) for the modelling of
desired functional behaviours. Software to implement these functions can be automatically
generated from these tools. Where the modelling techniques available are not sufficient to
express required functions, manual software development can occur (using a suitably rigorous
software development process).

3. Low-Level Implementation
Produces a hardware architecture that supports the functions generated whilst meeting the
non-functional constraints generated by the high-level design phase. Restricted codesign tech-
niques for automatic hardware and software production are used.

The process is illustrated in Figure 1. It is assumed that outline requirements of intended
system behaviour are available at the start of this process. It is also assumed that new, changed
or clarified requirements can become available during the development process (or after initial
development, when system change or upgrades are required).
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Fig. 1. Overview of Process.

Non-functional requirements are considered by the high-level design process to order to es-
tablish a set of constraints and requirements that must be met by the low-level implementation.
This process can feed back any recommendations for change to the requirements process to the
high-level modelling process if it finds contradictions or inconsistencies.

Figure 1 shows the system function generation phase that automatically generates the ap-
plication functions in a manner that can then be taken by the low-level implementation phase



(usually expressed in a high level programming language). This does not include any required OS
functionality, which is generated during the low-level implementation phase).
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Fig. 2. High-Level Design Process.

2.1 High-Level Design and Timing Optimisation

Figure 2 provides a diagrammatic overview of the high-level process. It assumes the availability of
non-functional system requirements. The process allows the derivation of design choices, identifying
where different solutions are available for satisfying a key system requirement, managing the
sensitivities / dependencies between components and design decisions. The process also identifes
the constraints that must be placed upon functional component design, such that the overall
objectives of the system are met. Such constraints are passed to the system function generation
process as they are found. In practice, this will occur whenever design decisions are committed,
rather than merely contemplated.

The high-level design process is also the recipient of constraints from the system function
generator. These constraints include the functional properties that must be considered by the
high-level design process during the development of the non-funcitonal design. For example, the
number of processes and / or functions that must be accounted for during timing analysis.

Finally, the high-level design process collects all the design rationale (ie. the design choices,
sensitivities, dependencies and design decisions) into a repository to aid traceability. This is par-
ticularly important if changes to the system need to be made during the lifetime of the system,
eg. for planned updates or major revisions sometime after the system has been initially deployed.

The iterative nature of the high-level design process shown in Figure 2 is used to develop
the design, in terms of further decomposition of the design. Eventually, when sufficient design
development has occurred, the low-level implementation phase can be utilised.

A key aspect of the high-level design process is that many decisions made will constrain the
eventual system implementation and architecture. For example, if during high-level design it is



determined that redundancy is required (to meet fault-tolerance requirements), then this will be
specified to the low-level implementation phase.

The high-level design process is largely manual. However, in the generation of timing con-
straints, the high-level process uses an automatic optimisation process.

Further details of the high-level process are given in [5].

2.2 System Function Generation

The system function generation phase encompasses the mapping of funcitonal requirements to
implementation. This is usually achieved using appropriate modelling tools (eg. UML, Matlab,
MatrixX), that permit automatic generation of an implementation, as represented in a high-level
language such as C, Ada, VHDL etc. The resultant “programs” can be passed to the low-level
implementation phase. Whilst the generation of the program is automatic, the use of the tools
themselves is manual. Many of the modelling tools include model-level testing and simulation
of the model (ie. model execution) which aids verification that the model is meeting functional
requirements.

The current realisation of the system function generation phase is limited to tools that can
produce Ada (including UML, Beacon, MatrixX, Matlab). It is noted that the limitations on
language are largely imposed by the current scope of the low-level implementation.

A key part of this phase is the interation of contraints with the high-level design phase, as
described above. This phase is responsible for identifying functions that need to be executed
(and perhaps upper and lower bounds on some timing properties), the high-level design phase is
responsible for assigning execution times etc.

Ada for Hard Real-Time Systems Ideally, the system functions are generated in Ada, as
the Ada language [6] facilitates the programming of real-time systems. It contains facilities for
programming-in-the-small (ie. sequential programming), facilities for programming-in-the-large
(ie. data abstraction and packages), together with facilities for concurrent programming (ie. tasks
and inter-task communication). In addition, subsets of Ada have been developed that effect re-
strictions upon Ada that enable conforming programs to be statically analysed for timing, resource
and functional properties.

The SPARK subset of Ada [7] restricts the sequential part of the language. Conformant pro-
grams can be proved (partially) correct. SPARK does not contain any dynamic constructs, in-
cluding concurrency (and synchronisation), the access (pointer) type, variant records (hence no
object-oriented capabilities). Sub-programs are no longer allowed to recurse, nor can procedure
pointers be used. These restrictions make all subprogram call trees known at compile-time, and
all variable references resolve to only one instance. The SPARK Ada subset is consistent with the
requirements for real-time system timing analysis in that all conforming programs are statically
analysable for their worst-case properties.

The Ravenscar tasking profile[8] is a statically analysable tasking subset. Unlike full Ada,
Ravenscar compliant code is predictable in its timing behaviour and resource usage. The Ravenscar
profile makes no comment on the sequential part of the language. The definition of Ravenscar is
effectively included in the Ada standard, being part of Annex H (Safety and Security) which
comments on applicability of Ada language features for use in safety-related systems.

A SPARK / Ravenscar conformant Ada program consists of a number of concurrent tasks,
that interact via protected objects. These objects enforce mutual exclusion over some procedures
and associated data within the object. Interaction with other devices is achieved by representation
clauses, which associate a specific memory location with a program variable, so achieving a memory
mapped programming model. Also, conformant programs are analysable for timing (and other
statically determinable) properties.
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2.3 Low-Level Implementation

The low-level implementation phase allows the mapping of functions expressed in Ada (devel-
oped by the system function generation phase), constrained by the non-functional requirements
established by the high-level design phase, into an actual hardware and software implementation.
Although a number of design decisions have been taken during the high-level design phase, there
is still considerable freedom for the low-level implementation phase to search a wide range of
potential solutions.

Currently, the physical target architecture assumed is that of a single Field Programmable Gate
Array (FPGA) [9], coupled to a number of RAM banks. Clearly, limiting the target architecture
to a single FPGA restricts the solution space. However, the physical size of current high-end
FPGAs is large, ensuring that substantial functionality can be achieved on a single device. Also,
the presence of the RAM banks ensures that (parts of) the FPGA can be used for softcore CPUs,
further extending the size of the functionality that can be implemented upon the target.

The low-level implementation phase follows a timing analysis driven approach, as motivated
earlier in this paper. The timing characteristics of an Ada program are modelled sufficiently for
analytical timing analysis to occur. The actual implementation of the system is then checked
against the assumptions of the model. If the assumptions still hold (eg. that the WCET of a
software task is no more than some value), then the full implementation will meet its timing
requirements.

The method is illustrated in Figure 3. It consists of an iterative process with two main parts:

1. Modelling and simulating the timing and interaction properties of the software.
2. Compilation to hardware circuit and CPU instructions of a given allocation of the software.

These stages provide feedback in terms of timing characteristics of the actual software (eg. WCET
of software tasks, or circuit speed and size of an FPGA task); analytical timing analysis; and
simulation of the system. This is sufficient for the system configuration, in terms of the allocation



of tasks to hardware or software, to be evaluated. As a consequence, a new allocation can be
determined to further improve the system.

The low-level implementation phase takes as inputs the constraints and requirements estab-
lished by the high-level phase, together with the application software (it is assumed that the
high-level modelling tools are able to generate (automatically) application software). This phase is
able to analyse the software for timing characteristics (eg. worst-case execution times) and find a
suitable platform on which the application software can execute to meet its timing requirements.
Note that the low-level implementation phase is not necessarily restricted to implementations on
CPU, it can also consider direct mapping to hardware (if permitted by the target architecture
assumptions). The low-level phase is entirely automatic.

Compilation The compilation of Ada to binary (ie. the software route) utilises the GNAT Ada
compiler [10]. The compilation to hardware is achieved using the hardware Ada compiler[11, 12].

Conventional compilation of Ada to CPU instructions follows the normal compilation path [10].
Note that the concurrent features of Ada require a run-time (or kernel) to be present at run-time.
One function of the run-time is to provide scheduling between the different application tasks.
Given the restricted concurrency model of Ravenscar conformant programs, the run-time required
for such programs is simple – indeed, a simplistic run-time was one of the prime motivations for
the Ravenscar subset.

SPARK / Ravenscar conformant Ada programs are ideal for direct compilation to hardware
circuit. In[11, 12] an Ada compilation process is described for such programs. Essentially, con-
currency within Ada can be represented on hardware as truely parallel tasks. In terms of the
Ravenscar tasking subset, the main implication is that task scheduling is no longer required –
indeed, no run-time is required at all. The sequential language used within a task is relatively
straightforward to compile to hardware, as the restrictions of the SPARK subset ensure that no
dynamic statements are present in a task.

Protected objects enforce mutual exclusion over some procedures and associated data. Hard-
ware compilation does not remove the need for mutual exclusion, so protected objects remain.
When contention exists over access to a protected object, the default locking policy of Ada is
used, that is ceiling protocol [13], where ceiling priorities are defined in terms of the priorities of
the tasks that

2.4 Meeting Timing Requirements

A dominant theme throughout the process is an emphasis upon ensuring that the system will meet
any non-functional requirements, in particular timing. Static offline timing analysis is used to drive
many of the decisions taken in both the high-level and low-level phases [14]. The analysis proceeds
by extracting a model of the key timing properties of the system then calculating the worst-case
timing behaviour of the system. If the timing properties of the system are met in the worst-case, the
system will meet its timing requirements at run-time (assuming that the implementation does not
invalidate any assumptions made in the model). Note that extensive testing of an implementation
does not necessarily cover the worst-case.

The use of static offline timing analysis enables a correctness by construction approach to
be used to develop the system. Essentially, the high-level design phase uses timing analysis to
generate many of the constraints given to the low-level implementation phase. This then gener-
ates an architecture that meets the contraints, so ensuring that the system will meet its timing
requirements.

2.5 Comparison with Codesign Approaches

It is appropriate at this juncture to compare the overall process outlined above with those of
conventional hardware-software codesign, as typified by the approaches presented in [15].



Codesign approaches assume that a complete specification is available prior to system genera-
tion. To some degree, this is also seen in the process given above, where a reasonably complete set
of requirements is required prior to the commencement of design. However, in realistic large hard
real-time system developments, the precise specification is often not readily available until late in
the development. Normally, the high level design process and the modelling has started before a
total specification is available.

Codesign approaches usually assume a single process for development. This is not usually
the case for large hard real-time systems, where parts of the design and implementation are
sub-constracted to different companies. It is important that the overall process described above
is amenable for use by a subcontractor building part of a system (eg. a sub-system), a prime
contractor assembling the entire system, or a sub-contractor contributing either software (eg. by
some system model).

Codesign approaches utilise an automatic partitioning of functionality between hardware and
software implementation. This is adopted in the low level implementation phase of the process
outlined above. Here, functions expressed in a high level language (eg. software language such
as Ada) are mapped to a combination of logic and CPU, utilising hardware compilers that map
programs in a high-level language such as Ada, to circuit (ie. FPGA) [11, 12].

Codesign approaches assume a co-verification phase as part of the iterative search during
system generation. In the overall process described above, verification occurs in many areas. As
part of the high level design process, key non-functional requirements are verified as part of
iteration towards a design solution, eg. timing. As part of the system function generation phase,
functional properties will be verified. This occurs at the model level where appropriate. During
low level implementation, further verification of properties (both functional and non-functional)
is performed during the iterative search for an implementation solution.

The key part of codesign that is adapted throughout the overall process given above is the
automatic trade-off of design choices, particularly in the non-functional domain. This is seen in
the high-level design phase where timing properties (amongst others) can be optimised via trade-
off analysis to provide a good technology independent design. The low-level implementation phase
automatically finds a solution to meet the non-functional and functional designs generated by the
high-level design process and system function generation phases respectively. In many ways, this
low-level implementation phase is closest to the normal codesign approaches.

3 Conclusions

This paper has described a process which utilises codesign techniques within the development
process for complex hard real-time systems. The motivations for inclusion of codesign techniques
includes the structured capture of non-functional design decisions in a more structured and in-
tegrated manner than current practice suggests; technology independent design is encouraged,
which postpones decisions regarding the target technology until late in the development process.
Combined with automatic mapping of system functions to a target architecture within the con-
straints imposed by the non-functional requirements (and related design decisions), this provides
a better process for complex hard real-time system development. The process ensures that key
non-functional properties are met by the design and eventual implementation. Importantly, the
process is driven from a timing analysis perspective, closely integrating static timing analysis
within the process. This imposes a correctness by construction approach, rather than the build
and test approach seen often in practical developments.

Further work presently being undertaken is seeking to expand the process and methods de-
scribed in this paper in a number of ways. Firstly, more non-functional properties are being
considered, including safety, reliability, size, cost and power. Secondly, potential implementation
architectures are being expanded to include fully distributed systems with associated network
controllers and hardware.
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ABSTRACT
This paper presents a Genetic Algorithm (GA) based approach
for design space exploration targeting an architecture composed
of a processor and a dynamically reconfigurable datapath
(FPGA). From an acyclic task graph and a set of Area-Time
implementation trade off points for each task, our GA performs
HW/SW partitioning and scheduling such that the global
application execution time is minimized. The efficiency of our
GA is established through its application to a motion detection
application with hard real time constraints.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Engineering -
Computer-aided design (CAD).
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems - Real-time and embedded systems.

General Terms
Algorithms, Design, Performance.

Keywords
Genetic algorithm, HW/SW partitioning, clustering, dynamic
reconfiguration, codesign.

1. INTRODUCTION
The recent improvements in size, flexibility and reconfiguration
speed of FPGAs make this technology very attractive for low
cost and high speed embedded system design. Connecting a
reconfigurable device to a programmable processor in a single
chip [1, 2, 3, 4, 5], constitutes a very flexible and efficient
architecture that can be used in a wide variety of embedded
devices (for example, intelligent terminals or sensors such as a
networked camera [6]). Rapid development of embedded
systems using this software/reconfigurable technology suffers
from lack of advanced system level design tools which exploit
efficiently the parallelism and the dynamic reconfiguration
capabilities of the architecture.
The aim of the project EPICURE1 is to introduce a design
methodology for dynamically reconfigurable computing
platforms composed of a general purpose processor (CPU) and a
dynamically reconfigurable datapath (FPGA…). From
performance/cost estimations of the functions of the application
on the processor and on the reconfigurable circuit, we have
                                                          
1 This project is supported by the French Ministry of Research and

Education through the Réseau National des Technologies Logicielles.
The partners of the project are CEA, Thales, Esterel Technologies,
LESTER - Université de Bretagne Sud and I3S - Université de Nice
Sophia Antipolis/CNRS.

developed a partitioning tool which provides a mapping and a
schedule of the tasks on the architecture.
The organisation of this paper is as follow. In Section 2 we
formulate our problem to match the application and the
architecture models. The description of our partitioning approach
based on a genetic algorithm is provided in Section 3, and in
Section 4 are outlined some results on a motion detection
application example. We conclude with Section 5.

2. PROBLEM FORMULATION
The dynamic reconfiguration technology is investigated by
numerous research groups (e.g. [7],[8]) and would be very
attractive for commercial products. Exploiting  dynamic
reconfiguration requires rather a coarse grain parallelism to
reduce the relative cost of reconfiguration and data transfers.
The partitioning problem imposes to specify a model of the
target architecture and one of the target application. A precise
definition of these models gives more realistic behaviors but a
precision excess may drastically increase the partitioning time.
Compromises have to be made. The next paragraphs will present
the models retained in our approach.

The Architecture Model
Our target architecture is composed of a Processor connected to
a Dynamically Reconfigurable Processing Unit (DRPU) as
depicted in figure 1. We consider an embedded processor with a
relatively deterministic behavior (WCET…) and a
reconfigurable data path with Logic Cells (LCs) and Dedicated
Cells (DCs). This kind of chips tends to be generalized, so we
adapted our model to handle these evolutions. The LCs are
functional elements used to synthesize logic and operators to
build tasks and the DCs are more elaborated preset blocks (e.g.
Block-RAMs, Multipliers).
Our partitioning approach takes into account the partial
reconfiguration of the FPGA: the reconfiguration time depends
on the number of LCs involved in the function realization.
Complete reconfigurations of the circuit can be considered as
well. However, we made the realistic assumption that there is no
overlapping between partial reconfiguration and treatments on
the FPGA. The data transfers between the processing units is
done throw a double port memory (figure 1) situated in the
interface and connected to the processor throw its data bus (bus

Figure 1. The Target Architecture
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1) and to the FPGA throw a specific bus (bus 2). A Second
assumption is that the communication on bus 1 are blocking for
the CPU and the one on bus 2 are not for the treatment on the
FPGA.
The communication time between two tasks mapped to SW is set
to zero. Let ρi be the number of bytes on edge ei and λl be the
number of bytes per packet supported by bus l. Let τl be the
communication time of a packet on l and Ωl  be the access time
per packet on that bus. The communication time on edge ei

between a task τi mapped to SW (respectively to HW) and a task
τj mapped to HW (respectively to SW), [9] is set to :

                     (1)

and the communication time on edge e’i between two tasks
mapped to HW is temporarily set to worst case communication
time :

                        (2)

and will be updated once the HW contexts defined. For clarity
reasons, we set all the communication times to 5 units in fig. 2.

The application model
The application model considered is a function or task level data
flow graph specification. From this task graph, the goal of
partitioning is to select whether to put each task into SW or HW
such that the whole execution time is minimized.
Each node of the acyclic data flow graph denotes a task that can
be mapped to the SW or the HW. The amount of data (bytes) that
must be transferred between two connected tasks is associated
with each edge. A task can begin its execution when all its parent
tasks and incoming edges have completed their executions. SW
and HW runtimes of each task are estimated  in terms of Area–
Time trade off points. SW runtime performance is estimated
through profiling and HW (FPGA) performance/area estimations
are performed at the behavioral level. The number of
implementation points can differ for each task depending on the
exploitation of the available parallelism in the task [10]. Figure 2

shows an example of a task graph and the Area-Time
implementation points for each task.

The partitioning approach is based on a genetic algorithm that
realizes a design space exploration by generating different
mappings of the tasks on the processor and the FPGA.
Evaluation of the execution time of the architecture for each
mapping requires to define a schedule of the tasks including
reconfigurations for context switching and data transfers
between tasks. This evaluation is performed with a clustering
heuristic inspired by the COSYN method [9].

3. HW/SW PARTITIONING USING A
GENETIC ALGORITHM

We model and solve our partitioning problem through a Genetic
Algorithm (GA). This kind of algorithms is based on five main
steps : the Encoding, the Evaluation (in term of a cost function),
the Selection, the Generation and the Renewal steps.

Chromosome Encoding
The encoding of any solution corresponds to the binding of each
task to an implementation point. Our encoding method codes a
chromosome C with an array of genes of length N where N is the
number of tasks. Each gene C(i) is an integer representing a
percentage. The maximum 100% value that can take C(i) is
associated with the most LCs-based expensive implementation of
task i. The selected implementation point is the nearest point to
C(i) on the LC’s axis. If there is more than one implementation
point having the same CLs number, we compare the DCs picking
also the nearest point to C(i) on that axis, and so on. All the
solutions delivered by this encoding method are viable.

The chromosome example presented in Figure 3 assigns only
task 5 to a SW implementation and all the others to HW. Tasks
mapped to HW have to be grouped into Contexts (or Clusters) to
finally evaluate the effectiveness of the individual.

Chromosome Evaluation
The fitness of every chromosome (solution) delivered by GA is
evaluated allowing its ranking onto the current population. A
solution is evaluated by its overall execution time including the
reconfigurations for context switching and data transfers
between tasks.
Contexts definition (Clustering):
We use a Clustering approach as addressed in [9] to group tasks
in contexts. We first assign priority levels to tasks, starting from
the graph’s leafs. The priority level of a task is the longest path

Figure 3: Chromosome encoding
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Figure 2: Task Graph and Area/Time trade off points
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from the task to a leaf evaluated as computation and
communication costs (Fig. 4). To reduce the schedule length, we
need to decrease the length of the longest path by clustering
tasks along it in order to reduce the communication costs along
the path. The priority Pi of task i is computed considering the
priority of its successors j and the communication time between
i and j according to equation (3):

Pi  = T_exec(τi) +  Max(j) (Pj + T_com(τi , τj))     (3)

The cluster size Smax(LC) is limited to the maximum FPGA size in
terms of LCs (in practice, 80 to 85 % of the total number of LCs)
and Smax(DC) is the maximum size for the corresponding DC.

Initially, all the tasks are sorted in the decreasing order of their
priority levels. We pick the unclustered task τi(ti,Si(LC), Si(DC))
with the highest priority level, where ti is the execution time and
Si(LC) (respectively Si(DC)) the number of LCs (respectively DCs)
defined by the implementation pointed by C(i) in the
chromosome, and mark it clustered. The available resources of
the current cluster Ress(Ccurr) (initially to Smax) are decreased
by the corresponding Si. This context building is iterated with
tasks τj(tj,Sj(LC), Sj(DC)) assigned to HW while:

  Sj(LC)  ≤  Ress(LC)(Ccurr)  &&  Sj(DC)  ≤  Ress(DC)(Ccurr)    (4)

Else, a new cluster is created and the process is repeated until all
the HW tasks are assigned to clusters. The reconfiguration time
depends on the quantity Nk of LCs needed for mapping the
context k on the FPGA. Let TF be the time for a full
reconfiguration then the reconfiguration time per LC is given by:

Treconf/LC  = 
max

 
S
TF                   (5)

We evaluate the reconfiguration time of the context k by:

Treconf  (k)  =     . reconf/LCk TN     (6)

Once the contexts are defined, the algorithm updates the intra-
Context (within a context) and inter-Contexts (between different
contexts) communication times. Intra-Context communication
times are set to zero.

In figure 4 and for simplicity reasons, we have fixed the
execution time, the number of LCs and DCs for each task
depending on the correspondent allocation.

Let Ei(k) and Eo(k) be respectively the incoming and outgoing
edges of context k. for each edge ej ∈ Eo(l) ∩ Ei(k) of contexts l
and k. The communication time is updated by:

 Tcom(ej) = Max ( t(ej),  Treconf(k))           (7)

Where t(ej) is the communication time computed using (2).
Hence, after updating communication times (see fig. 4), the
global execution time is computed starting from the roots of the
DFG and considering the ASAP execution time of each task.
This global execution time (which is the cost of this solution) is
the maximum ASAP execution time among all the leaves.

Chromosome selection:
Selection of solutions by GA is performed by the Tournament
technique. A number (Nparents) of tournaments are performed,
each one opposes a given number of individuals randomly
chosen in the current population to finally select the fittest to be
one of the parents allowed to reproduce.

Chromosome generation
Genetic operators are used on the Nparents individuals selected by
the Tournament technique to generate the Nchildren solutions
representing the new offspring.

Mutation operators:
Mutation randomly selects a gene (or a set of genes) and changes
its value. The mapping of a task can change from a SW to a HW
implementation, HW to SW, or the task may remain in HW but
using a different implementation point. Five mutation operators
are used in our algorithm. That permits large jumps in the
solution space assuring a pure exploration process.

Crossover operators:
Two parent’s chromosomes are cut at the same offsets (randomly
set) from their starting points and the portions following the cut
are swapped. Two crossover operators are used in our algorithm:
A simple point (1p-Cross) and a double point (2p-Cross)
crossover operator.

Renewal
After generation of the new offspring, the renewal of the
population is performed according to the elitism principle.
Clones are not allowed in our renewal procedure because they
can invade the whole population leading to a genetic drift. When
a number of generations Ngen has passed without improvements
of the best individual, GA halts and displays the best
encountered solution.

Figure 5: Best individual’s cost and the mean cost values

   Figure 4 : Clustering and communication time update



4. EXPERIMENTAL RESULTS
In this section we present results of the genetic algorithm for
HW/ SW partitioning. Our partitioning algorithm is implemented
in C++ on an Ultra Sparc 5 Unix workstation.

The benchmark used to evaluate the result quality of our
partitioning algorithm is motion detection (MD) application that
performs object labelling with a real time constrain of 40 ms per
image. Considering a coarse grain decomposition of the
application, we set the number of C procedures to 16.

A SW only implementation on an ARM 922 processor leads to
an execution time of  76.44 ms. So we need to accelerate some
portions of the application on HW to fit the deadline constraint.
Given the execution time estimations on the ARM922 processor
and the Xilinx Virtex-E family FPGAs (with a reconfiguration
time per LC of 5µs), we fix the buses speed and width (bus 1
between the processor and the interface: λ1 = 128, τ1 = 10 ns;
bus 2 between the FPGA and the interface: λ2 = 256, τ2 = 15 ns)
and the memory access time Ω  = 2 ns.

GA is executed with an initial population size NIndiv of 600 and
an offspring size Nchildren of 200. The GA terminates when Ngen =
100 generations have passed without improvements of the best
solution. Towards the end of the run, a convergence is observed
as displayed in figure 5. This figure shows the evolution of the
best individual’s cost and the mean cost over several
generations. The CPU run time on the Ultra 5 workstation of the
GA on the MD application is in the range of 4 to 6 minutes.

The GA gives a total execution time of 28.1 ms for the hole
application with 43200 LCs and 150 RAM blocks that can fit on a
Virtex XCV2000E. Note that these results are obtained for a
fixed granularity of LCs. Considering an FPGA with a different
granularity requires new estimations and partitioning.

We must notice here that the behaviour of the
clustering/scheduling algorithm in the GA consists in exploiting
the available LCs and DCs in the FPGA to parallelize and to
speed up executions of tasks. However, the allocation of a new
task to a HW context, in the case of a partial reconfiguration,
leads to delay the executions of the other tasks already allocated
in that context since the reconfiguration time of the context is
augmented.

As communications play an increasing role in today’s SOC
components, it is also interesting to see the variation of the mean
communication time over several generations. Figure 6 shows
that, after a short decrease, the mean communication time
increases as the overall execution time is dropped. That means
that the refinement procedure of the GA tries to exploit at best
the available parallelism between the Processing Elements (PEs)
leading to extra communication times that remain ‘reasonable’
comparing with the overall execution time. Figure 7 shows also
the variation of the mean PE’s Idle time which is the mean over
the individuals of a given generation of the Idle times on the two
PEs (the FPGA and the processor). This mean time decreases
drastically as the GA proceeds, which is also due to the
refinement procedure capability to use at best the available gaps
in the timing charts of the two PEs.

These timing charts are presented in figure 6 where we can
distinguish three FPGA contexts (notice that we have considered
partial reconfiguration in this example: the reconfiguration time
blocs are of different sizes), the scheduling on the processor and
the memory occupation.

5. CONCLUSION
The scheduling/clustering process in the fitness evaluation step
of the genetic algorithm is a greedy algorithm that must be tuned
to take into account the delay introduced in the executions of
tasks in a context due to the allocation of a new tasks in that
context. In the genetic algorithm allocation and scheduling are
separated: allocation is included in the design space exploration
while scheduling allows the evaluation of each solution.

  Figure 7: The PE’s idle time, the mean exec. time and
   the mean com. time
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The genetic approach for HW/SW partitioning with a dy-
namically reconfigurable unit is really effective; it provides an
efficient assistance to the designer in the investigation of a
balanced architecture and allows various parameters of the
architecture to be optimized, such as the number of available
LCs and DCs in the reconfiguration unit, the reconfiguration
time per LC, the data transfer rates on the buses, the relative
speeds of the processor and the reconfiguration unit.
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Abstract

As embedded processors become more powerful, demand
for quantity and complexity of real-time embedded function
increases. This increase in function is in direct opposition
to system dependability requirements, since dependability
is harder to achieve in larger or more complex applica-
tions. While tradeoffs must be made in designing systems to
achieve both these ends, system architectures have the
potential to ameliorate the problem. In this paper, we advo-
cate the use of survivability as a mechanism for maintain-
ing dependability while attaining the functionality desired
by users and discuss research directions needed to realize
its benefits.

1. Introduction

The more computing power that embedded processors
provide, the more functionality application designers
desire to include in real-time embedded systems. This
functionality, while offering many possibilities in terms of
convenience and safety, can quickly become much more
complex than that which humans are able to comprehend.
Lack of comprehension introduces opportunities for error,
and in systems that must be dependable, such as those
described as safety-critical, those errors could easily have
unacceptable consequences. Furthermore, the resources
required to ensure dependability of conceptually simple but
extensive functionality might be more than a customer is
willing to provide. This sort of tradeoff suggests that func-
tionality/dependability co-design will become an issue of
increasing importance.

Limiting the functionality included on a processor is an
infeasible option. Not only does it seem a poor choice eco-
nomically, in practice it is likely to be ignored. Introducing
additional complex safety checks can add its own risks due
to an increasing incomprehensibility of the overall design
[8]. We therefore need technologies that enable designers
to include functionality without compromising the critical
dependability properties of the system.

Sha has proposed the use of simplicity in dealing with
complexity [10], and has shown how this works in control
systems. In this paper we introduce the notion of applying
survivability to embedded real-time systems, extending
Sha’s concept to the more general framework of arbitrary
embedded systems while combining it with principles from
the field of critical networked information systems. The
goal in designing a survivable embedded system is to
develop the system in such a way that it provides crucial
functionality during operation even if it is not able to pro-
vide non-crucial functionality. By doing so, different
dependability requirements can be associated with differ-
ent functional elements, and, provided the system is
designed appropriately, crucial system properties, such as
safety, can be maintained even if desirable though non-cru-
cial functionality cannot.

In practice many safety-critical systems are built this
way, although with an ad hoc approach. We propose a gen-
eral, comprehensive approach based on a rigorous defini-
tion of survivability. This approach permits a tradeoff
between the degree to which functionality is maintained
and the cost of system development. Within an application,
it also provides a feasible route to the ultradependable
implementation of crucial services without demanding the
ultradependable implementation of the entire application, a
goal that is often technically infeasible using more tradi-
tional methods.

The remainder of this paper is organized as follows.
Section 2 discusses why survivability is a good strategy for
addressing the functionality/dependability co-design issue.
Section 3 gives background on survivability from other
disciplines and defines it for embedded real-time systems.
Section 4 gives a brief example of what this might mean in
terms of avionics system regulations. Sections 5 and 6 enu-
merate future research directions needed to realize the
potential of this strategy, and Section 7 concludes the work.

2. Why Survivability?

In order to understand why survivability might be help-
ful in the context of dependable systems, we first explain
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what we mean by dependability. Avizienis, Laprie, and
Randell have defined dependability as a collection of six
properties [2], and this definition has become a de facto
standard as well as a de jure standard in progress through
IFIP Working Group 10.4 [4]. The six properties are:

• availability: readiness for correct service,
• reliability: continuity of correct service,
• safety: absence of catastrophic consequences on the

user(s) and the environment,
• confidentiality: absence of unauthorized disclosure of

information,
• integrity: absence of improper system state alter-

ations;
• maintainability: ability to undergo repairs and

modifications [2].
These properties are in some sense orthogonal to the

function specified for the system. For instance, availability
is the probability that the system will be able to provide
service at time t, i.e., that its functional and real-time
requirements are met with a certain probability at the time
when it is called. Similarly, meeting reliability, safety,
integrity, and confidentiality requirements might be contin-
gent on the system’s meeting real-time requirements.
Maintainability is chiefly an offline characteristic—and
should not be required to be performed in real time even if
it is online—and so it will not be addressed here.

Many techniques have been developed to support the
engineering of dependable systems. In a broad sense, these
techniques fall into three primary areas: fault avoidance,
fault elimination, and fault tolerance. Combined with anal-
ysis techniques such as fault-tree analysis, event-tree anal-
ysis, and failure-modes-and-effects analysis, these
approaches to dealing with faults permit useful dependabil-
ity predictions to be made about specific designs. How-
ever, none of these techniques effectively address the
dependability problems arising from the growing complex-
ity of embedded software. For example, showing that an
entire modern avionics system designed for a commercial
air transport meets the FAA’s mandated safety goal (see
below) is, in general, beyond the present state of the art.

In many cases, much of the functionality included in a
system is not directed primarily at system safety. For
example, the autopilot system on a commercial air trans-
port could contribute to an accident, but while it is a signif-
icant part of the safety case for the aircraft, cessation of its
function is unlikely to have catastrophic consequences.
This suggests that such a system does not need to be
ultradependable as much as it needs to be fail-stop [9].
Provided the autopilot either works correctly or stops and
alerts the pilot, the aircraft is unlikely to come to harm
because of it. The complete avionics system for the aircraft
needs to be able to operate without the autopilot (and other
similar subsystems) so that safety is not compromised even

though an emergency landing might be required if the auto-
pilot fails. Such a strategy also reflects the practice of safe
programming as advocated by Anderson and Witty [1]. In
an informal sense, such an avionics system is survivable
rather than ultradependable.

The notion of survivability has been discussed exten-
sively in the area of networked information systems, and
numerous informal definitions of the term have appeared.
Knight, Strunk, and Sullivan have presented a more rigor-
ous definition based on the idea that a survivable system is
one that complies with its survivability specification, a
structure that defines the dependability requirements that
must be met for different sets of system functionality [4].
We claim that this rigorous definition can be applied in a
straightforward manner to the domain of real-time embed-
ded systems with significant benefits, including the provi-
sion of a precise framework for functionality/dependability
co-design.

Defining survivability in terms of a specification offers
significant advantages in systems engineering, in compre-
hensibility of the necessary dependability properties of a
system, and in demonstration of those dependability prop-
erties. In terms of systems engineering, the specification
permits domain experts to define precisely what function-
ality is crucial to system dependability and what sorts of
timing guarantees must hold on that functionality before
the software is designed. This enables system designers to
make appropriate tradeoffs. Specifications allow experts to
see software at a high level of abstraction, aiding them in
understanding what the system as a whole is required to
accomplish. The specification can require overall depend-
ability properties of the system as well, defining fault con-
ditions under which those properties must hold. Some
formal systems offer considerable benefits through design
verification of such dependability properties. Finally, being
able to provide crucial functionality in the presence of cer-
tain classes of faults means that those faults do not have to
be tolerated by the entire system, and demonstrating that
only a part of the system tolerates those faults is not only
less expensive but also a much more tractable problem.

3. Survivability In Embedded Systems

3.1 Survivability in Critical Information Systems

Survivability is an established research discipline in the
realm of critical information systems. The general idea of
survivability is that a system will “survive” (i.e., continue
some operation), even in the event of damage. The opera-
tion it maintains may not be its complete functionality, or it
may have reduced dependability properties. It will be some
useful functionality that provides value to the users of the



system, including possibly the prevention of catastrophic
results due to the system’s failure.

Like many terms used in technologies that have not yet
matured, however, survivability is not defined with the
rigor we need in order to use the concept in reference to
specific systems. It has roots in other disciplines that begin
to indicate what it should mean in our field; for instance,
the telecommunications industry defines survivability as:

Survivability: A property of a system, subsystem,
equipment, process, or procedure that provides a
defined degree of assurance that the named
entity will continue to function during and after
a natural or man-made disturbance; e.g., nuclear
burst. Note: For a given application, survivabil-
ity must be qualified by specifying the range of
conditions over which the entity will survive,
the minimum acceptable level or [sic] post-dis-
turbance functionality, and the maximum
acceptable outage duration [9].

The network survivability community has attempted to
come up with a more directly applicable description,
resulting in definitions such as Ellison’s:

Survivability: The ability of a network computing
system to provide essential services in the pres-
ence of attacks and failures, and recover full ser-
vices in a timely manner [4].

The sundry definitions of survivability vary consider-
ably in their details, but they share certain essential charac-
teristics. One of these is the concept of service that is
essential to the system. Another is the idea of damage that
can occur, and responding to that damage by reducing
delivered function.

Definitions such as these are inadequate because they do
not give system developers criteria for determining
whether a system is survivable. One cannot determine
whether a system is survivable if one is unsure exactly
what survivability means. Also, knowing exactly what sur-
vivability means in general does not ensure that a straight-
forward implementation of survivability exists for a
particular system. A precise definition is necessary in order
to make survivability a meaningful system property.

Knight et al. give a definition based on specification: “A
system is survivable if it complies with its survivability
specification” [4]. They draw on the properties mentioned
above and present a specification structure that tells devel-
opers what survivability means in an exact and testable
way. When followed, this structure will cause them to doc-
ument what it means for their system to be survivable. It is
this perspective we take when defining survivability in
embedded systems.

3.2 Requirements of a Survivability Specification

Embedded real-time software has certain similarities to
and differences from large networked systems. It has a cer-
tain level of intellectual manageability stemming from its
less distributed nature. However, it still rarely possesses
the qualities of what could be considered a stand-alone
application. Embedded systems generally receive input
from and send output to other devices; this is the purpose
for which such systems are built. These devices can fail
just as network nodes can, and such failures must be con-
sidered in order to build software that is safe.

Adding to the problem is the inherent functional com-
plexity of many embedded systems. Networked survivable
systems are designed to deal with the failure of software on
individual nodes; but, when dealing with embedded sys-
tems, that software may be in the logical central node.
Input and output devices generally are not designed to
compensate for failure of the embedded software, and so
the software must be designed to survive internal failures. 

Furthermore, safety-critical embedded systems are
likely to have hard real-time requirements, their depend-
ability requirements are likely to be much tighter than
those for networked information systems, and the allow-
ance for duplication much smaller. If one ATM fails, a
banking customer can use another; if it takes longer than
expected on occasion, this is merely irritating. Only large
numbers of such failures can cause significant problems.
The smaller scale of embedded systems aids in their analy-
sis, but it makes them more tightly coupled and thus neces-
sitates deeper rigorous analysis.

Finally, many embedded systems require some minimal
level of function to ensure safety. For example, software
controlling aircraft flight cannot simply terminate in mid-
air; there must be some basic level of operation that it is
guaranteed to maintain. Networked systems are likely to
see a more gradual degradation, with the boundary
between effectiveness and ineffectiveness being blurred.

Functionality/dependability co-design decisions, then,
must make some compromise between the functionality a
user desires to see in a system and the minimal functional-
ity a system must maintain to be considered dependable.
We are proposing essentially a framework where the
former is the primary function and the latter the backup.
This is an incomplete view, however, for three reasons:
• User expectation.   The user is likely to expect some

minimum probability that the full function is provided.
Operating exclusively in backup mode is almost certain
to be unacceptable.

• Multiple functionalities.   Usually, there will be more
than two major classes of function. If the system must
degrade its services, some services are likely to be more
valuable than others even if they are not essential for



dependable operation, and the system should continue to
provide those services if possible.

• Value as a function of state.   What is essential for
dependable function usually depends on prevailing con-
ditions. In other words, the functionality that is deter-
mined to be crucial by domain experts will usually
depend upon operating circumstances. As an example,
consider an automatic landing system. It could halt and
simply alert pilots of its failure if it were not in use (i.e.,
in standby mode), but if it were controlling an aircraft it
would have to ensure that pilots had time to gain control
of the situation before halting.

These concepts are used extensively in industrial software
development, but the survivability framework puts them on
a rigorous footing. This enables them to be analyzed to
determine whether they do in fact satisfy the user’s needs.

3.3 Defining Survivability

The criteria above are vague, and using them informally
will not enable developers to determine whether a system
meets them. We therefore must define what we mean by a
survivability specification in some rigorous but general
way so that, when a specification is built using the frame-
work, it can be analyzed to determine whether it possesses
all the necessary information. The form of survivability
specification we will use for embedded systems has six ele-
ments:
S: the set of functional specifications of the system. This

set includes the preferred specification defining full func-
tionality. It also includes alternative specifications repre-
senting forms of service that are acceptable under certain
adverse circumstances (such as failure of one or more sys-
tem components). Each member of S is a full specification,
including dependability requirements such as availability
and reliability for that specification.
E: the set of characteristics of the operating environ-

ment that are not direct inputs to the system, but affect
which form of service (member of S) will provide the most
value to the user. For example, when developing an aircraft
automatic landing system, whether the aircraft has reached
decision height (the height below which it is committed to
land) might be a member of E. Above decision height it
might be safer for the system to pull the plane up before
relinquishing control, while below decision height it would
leave the aircraft on the course to land. Each characteristic
in E will have a range or set of possible values, in this case
above decision height or below decision height. These val-
ues also must be listed.
D: the set of assignments of value to members of E that

the system might encounter. This is essentially the set of all
modes (i.e., collection of states) the environment can be in
at any particular time. Each element of D is some predicate

on the environment. D will not necessarily be equal to the
set of combinations of all values of elements in E; for
example, if stage of flight were also a member of E, then
{below decision height, enroute} could not be a member of
D because it is an unreachable state of the environment.
V: matrix of relative values each specification provides

to the user. Each value will be affected both by the func-
tionality contained in the specification and the environ-
mental conditions for which that specification is
appropriate. For example, the primary specification might
have value 5 under all members of D, the alternative of
pulling up value 2 when above decision height and 0 below
decision height, and the alternative of continuing on cur-
rent course value 2 when below decision height and 0
above decision height. Quantifying these values is impossi-
ble, but using relative values (as is done in economic utility
theory) gives the ordering a developer needs to implement
the system.
T: the valid transitions from one functional specification

to another. Each member of T represents a transition from
one specification to another. It includes the specification
from which the transition originates (source specification),
the specification in which the transition ends (target speci-
fication), and a member of D defining the environmental
conditions under which that transition may occur (the tran-
sition guard). The guard enables a specifier to define which
transitions are valid under certain circumstances, and the
developer can then use V to decide which target specifica-
tion is most valuable under those conditions.
P: the set of probabilities on combinations of specifica-

tions. Each member P will be a set of specifications
mapped to a probability. The set of specifications is the
specifications that provide approximately the same level of
functionality, under different environmental conditions.
The probability is the probability of a failure occurring in
the system when the system is in compliance with one of
those specifications (or the single specification, if there is
only one in the set for that probability). The probabilities
serve to provide a lower-bound guarantee of system opera-
tion.

4. An Avionics Example

As an example of how survivability can be applied to
embedded real-time systems, we show how it might be
used with the current dependability requirements for U.S.
commercial avionics systems put forth by the US Federal
Aviation Administration (FAA). The FAA categorizes air-
craft functionality into three major levels of criticality
according to the potential severity of its failure
conditions [6]:



Minor: Failure conditions which would not signif-
icantly reduce airplane safety, and which
involve crew actions that are well within their
capabilities...

Major: Failure conditions which would reduce the
capability of the airplane or the ability of the
crew to cope with adverse operating conditions
to the extent that there would be, for example,
(i) A significant reduction in safety margins or
functional capabilities, a significant increase in
crew workload or in conditions impairing crew
efficiency, or some discomfort to occupants; or
(ii) In more severe cases, a large reduction in
safety margins or functional capabilities, higher
workload or physical distress such that the crew
could not be relied on to perform its tasks accu-
rately or completely, or adverse effects on occu-
pants.

Catastrophic: Failure conditions which would
prevent continued safe flight and landing.

Failure conditions must have probabilities of not occur-
ring proportional to the potential consequences of their
occurrence. “(1) Minor failure conditions may be probable.
(2) Major failure conditions must be improbable. (3) Cata-
strophic failure conditions must be extremely
improbable” [6]. “Probable” is defined as “anticipated to
occur one or more times during the entire operational life
of each airplane”; “improbable” as “not anticipated to
occur during the entire operational life of a single random
airplane”; and “extremely improbable” as “so unlikely that
[the failure condition is] not anticipated to occur during the
entire operational life of all airplanes of one type” [6].
Quantifying these definitions leads to probabilities that can
be extremely small. “Extremely improbable”, for example,
corresponds to a failure rate of 10-9 per hour of operation.

In our automatic landing system example, we will
assume four functional specifications, as shown in

Figure 1. The first, primary, specification (S0) will have all
of the functionality the user desires for the system. The
consequences of any failures will be minor because, if they
have the potential to be more severe, the system can transi-
tion to one of the other three specifications. Therefore, any
failure in the primary specification may be “probable”.

The first alternative specification (S1) will have much of
the functionality desired by the user, but some desirable yet
unnecessary functionality removed. For example, the sys-
tem might have to follow the step-down altitude clearances
for the runway to descend at the proper rate rather than
using the glideslope. All failures in this specification must
be “improbable”; its functionality is important enough that
frequent interruptions could have adverse consequences.
However, none of it need be “extremely improbable”
because any failures with potentially catastrophic conse-
quences will cause a transition to a different alternative
specification (S2 or S3).

S2 and S3 are the specifications that have very high
dependability requirements. We will let S2 be the specifica-
tion requiring the aircraft to pull up and alert the pilot on
system failure and S3 be the specification requiring that the
system continue on its current course when alerting the
pilot if the system fails. They contain the minimum func-
tionality necessary to maintain safe operation of the sys-
tem. Any non-masked failure of either of these
specifications—such as failure to alert the pilot that the
system has malfunctioned and the pilot is now in control—
must be “extremely improbable”, as they are designed to
include only the system functionality whose failure could
have catastrophic consequences.

A major factor that the FAA guidelines for flight sys-
tems does not address is changes in what system depend-
ability requirements might be based on environmental
circumstances. Whether the system transitions to S2 or S3
on a failure of S1 depends on whether the aircraft is above
or below decision height at the time of the transition. The

In
cr

ea
si

ng
 fu

nc
tio

na
lit

y

Figure 1.  Function and dependability in a survivability specification
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new probability requirement, then, would be that a failure
of S2 above decision height is “extremely improbable”, and
a failure of S3 below decision height is “extremely improb-
able”. In some cases the environmental conditions might
change, and a transition between specifications appropriate
to different conditions must occur in order to keep the sys-
tem operating with the optimal functionality.

Finally, it is possible that the system could recover from
a failure that forced it to transition to a lower level of func-
tionality. For instance, the aircraft might operate under
specification S1 while the glideslope transmitter is reset to
recover from a transitory error, then transition back to
specification S0. A specification structure for a survivable
system should provide for this as well.

In considering this example, it is important to note the
difference between this discussion and the normal
approach that is taken by regulating agencies such as the
FAA. The example illustrates the use of survivability and
the association of different dependability requirements
with different functionalities within the survivability speci-
fication. This contrasts with the current situation in which
the entire system would be assigned a certification level by
the FAA even though much of the functionality would not
require that level of dependability.

5. Research Challenges in Functionality/
Dependability Co-design

The notion of functionality/dependability co-design is
complex yet potentially very fruitful. There are numerous
remaining issues that need to be resolved before the con-
cept as manifested in the notion of survivability applied to
embedded systems can be used routinely. In this section,
we present some of the research issues.
• Defining confidence for different software dependability 

levels.   Current software practice defines measurements
for determining confidence in software, but these mea-
surements tend to be based on intuition and can vary
widely across application domains and regulatory agen-
cies. The research community has argued that engineers
cannot be confident that current software will function
at ultradependable levels. The aim of functionality/
dependability co-design of software is to make this a
tractable problem. Powerful but potentially expensive
mathematical analysis such as model checking and puta-
tive theorem proving can be applied to critical parts of a
system while leaving most of a company’s standard
development processes intact. Testing might be able to
show statistically that certain functionality meets its less
stringent dependability requirements. Determining
whether ultradependable functionality meets its require-
ments still is not, however, a statistical problem [3]. The

computing research community is now presented with
the challenge of deciding what metrics or processes give
us confidence that software conforming to them indeed
achieves stated dependability goals. This includes deter-
mining what sorts of analysis apart from testing can
show in a defensible way that real-time constraints are
met.

• Validation of survivability specifications.   Potentially,
the most valuable benefit from building survivable spec-
ifications is a significant reduction in complexity for the
most dependable portions of a software system. This
reduced complexity can facilitate inspection and valida-
tion of the system. It can also help application domain
experts determine what properties are required in order
to ensure the system is dependable in the common sense,
i.e., that its users can depend on its performance. The
composite survivability structure, however, is more
complex than any individual specification. Inspection
and other validation methods are needed to ensure
experts’ understanding of the overall function of the sys-
tem.

• Analysis of transitions between specifications.   The
powerful advantages gained through applying surviv-
ability require that certain properties of transitions
between specifications be guaranteed. The specifier
must be able to show that the system is able to transition
to an alternative specification without violating the sys-
tem’s overall dependability requirements if he is to
claim that the alternative specification can stand in for
the primary specification in terms of dependability anal-
ysis. A major part of this is determining what the real-
time requirements on the transitions themselves must be,
and how they relate to the individual specifications
under which the system will operate.

• Determining criteria for violation of dependability 
requirements.   In typical dependable systems, violation
of dependability requirements is strictly disallowed and
so determining when a violation occurs is unnecessary.
Because survivability permits some leeway in this
aspect, decidable criteria for these properties must be
defined. Availability and reliability, for example, are
defined probabilistically, but their probabilities are
defined over some period of time that in the current
framework is unbounded. In practice, real-time require-
ments impose a bound whose interaction with other
requirements must be assessed in order to determine
when dependability properties are violated.

• Establishing composite system properties.   A surviv-
able system is broken into separate survivability specifi-
cations with separate probabilities, but these
specifications come together to form the overall system
specification. It is the properties of this overall specifi-
cation in which the user is interested for purposes of



determining delivered value. For example, proving that
a failure of the automatic landing system to alert pilots
when it malfunctions is extremely improbable does not
show that the autopilot will function as desired while
enroute. It is these properties that must be studied to
optimize decisions in functionality/dependability co-
design.

6. Research Challenges in Hardware/
Software Co-design of Survivable Systems

Survivability as a system concept has impact beyond
functionality/dependability co-design. It is quite possible
for it to be exploited to assist in the process of hardware/
software co-design because it provides a much more flexi-
ble software architecture than is found in current non-sur-
vivable designs. Also, effective hardware/software co-
design can magnify the benefits of survivable systems. We
discuss in this section several challenges in the area of
hardware/software co-design as it relates to survivability.
• Distribution of survivable software over available hard-

ware.   Faults in the software in a survivable system can
originate in damage to its underlying hardware, and
reconfiguration can be initiated by hardware failure. We
have presented a specification framework aimed at aid-
ing functionality/dependability co-design of the soft-
ware portion of the system. Further research is needed in
areas such as determining where critical pieces of func-
tion should reside; choosing how best to overlay the
software on available hardware, including analyzing
what sort of capability the hardware has in terms of car-
rying out software function in real time; and determin-
ing what sort of code replication is most efficient in
terms of space and time requirements.

• Analysis of tradeoffs between hardware cost and soft-
ware function in survivability levels.   Survivability can
be employed to avoid certain hardware-based solutions
to dependability issues. Since convenient but noncritical
functionality does not have to be dependable, a simpler
but more fragile hardware implementation of it could be
built. This would reduce development cost of the sys-
tem, but at the expense of user convenience or satisfac-
tion. Deciding what function belongs in each
specification, which then dictates the dependability level
at which that function must be implemented (including
what sort of timing characteristics must be guaranteed of
it), is an area that holds great potential for economic
research in system development.

• Refining software’s role in system risk analyses.   
Attempting a more rigorous definition of what confi-
dence means for software at certain dependability levels
implies that a new definition of what confidence in a

system means is also needed. For instance, if testing is
to give a certain amount of confidence in software, one
might question what hardware configuration is neces-
sary to carry out that testing. Alternatively, if certain
classes of software function are claimed to benefit from
design diversity, hardware might play a practical role in
this by providing options such as writing different ver-
sions of software for different hardware platforms.
Finally, software might be implemented on hardware in
such a way that the hardware prevents certain interac-
tions between components. How to construct a risk anal-
ysis of the overall hardware/software system and what
design decisions might facilitate that analysis are further
promising future research areas.

• Implementation feasibility.   Software specification lan-
guages can express functions not implementable in any
programming language, and dependability levels can be
required that are impossible to achieve with finite hard-
ware. For example, it is possible to specify an oracle to
the halting problem that has an availability of 1 and
returns a result within some specified time bound. The
question of whether a feasible implementation of a spec-
ification exists must be answered for any system, but
survivable systems can encompass a broader range of
functionality and dependability requirements since they
allow the tradeoff to be made in a gradual manner.
Research in efficient iteration between specification and
design stages of hardware and software development
could greatly increase the efficiency of processes for
building survivable systems.

7. Conclusion

As embedded real-time systems become larger and more
complex, issues in functionality/dependability co-design
will become increasingly important. Addressing these
issues becomes much easier with the observation that much
of the desired functionality is not essential for dependable
system operation. Separating safety-critical function and
designing it for ultradependability while implementing the
residual function in a less dependable way is a promising
solution. This strategy is currently employed in the domain
of networked information systems under the name surviv-
ability. We have discussed several definitions of survivabil-
ity, outlined a rigorous definition as applied to embedded
real-time systems, and presented future directions for the
research community to explore in realizing its benefits. 
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Abstract

Configuration management in co-design of distributed
real-time systems and applications is considered. In par-
ticular, an idea for modeling the dynamical behaviour of
embedded real-time applications with collections of timed
hierarchical state diagrams is indicated. By translation to
program code, schedulable objects are formed, represent-
ing the applications’ semantics. During execution, the real-
time operating system, being a part of a configuration man-
agement program, must ensure that the applications’ sys-
tem requests are serviced and their timing restrictions are
met. A distinction is made between active and passive ob-
jects. Active objects communicate among each other and
manage the passive objects and their co-operation. An ac-
tive “super” object, called Configuration Manager, is fore-
seen for configuration management at each node in a dis-
tributed system, and to handle the active objects and their
co-operation.

1. Introduction

In the last ten years the co-design discipline has moved
from an emerging discipline to a mainstream technol-
ogy [13]. Contemporary co-design methodologies have
emerged partly from previous projects (e.g.: [2, 3, 4]) and as
part of the development of a novel standard method for de-
signing embedded (real-time) systems – UML [5]. For ver-
ification of the designs partly formal methods and proofing
are used (e.g.: [10]), whereas on the other hand mostly co-
simulation is used for their validation. Additions of domain-
specific layers in system design (e.g.: security related is-
sues [11]) indicate that the completeness and maturity of co-

design methods has not yet been reached. Especially the tar-
get platform independence and fault tolerance options seem
to be a problem due to the large variety of hardware compo-
nents and existing applications, used in embedded systems.
In the scope of the article a Configuration Manager (CM) is
considered, whose function is amongst others to serve as a
hardware abstraction layer.

Two types of objects, which represent the functional
components of an automation application, have been iden-
tified, namely active and passive ones [1]. An active object
communicates with other active objects and manages the
resources and lifecycles of its passive objects. The passive
objects contain functionality, but do not act unless triggered
by an active object. In general, one may say that the active
objects represent tasks, whereas the passive objects repre-
sent procedures and functions with separate data spaces.

Active objects may or may not be dependent on the si-
multaneous presence of an operating system. In environ-
ments without operating systems one of them must take
over the duties of initialisation and resource management.
Under the supervision of an operating system, on the other
hand, the execution of active objects is scheduled on the
basis of their scheduling conditions, and the resources are
managed for them by the operating system. In this case, ac-
tive objects have the responsibility to manage their passive
objects, only.

In this article the separation of design concerns is done
on three levels of software (architecture) modelling: soft-
ware to hardware mapping, software architecture and pro-
gram task modelling. Each of them is managed by another
entity. The approach is part of the Specification PEARL
methodology for co-design and co-simulation of embedded
real-time systems [6].

In the main body of this article, the architectural mod-



elling is presented, followed by the description of the task
model and the functionality of the configuration manager.
To draw a conclusion, their rôle for building the executive
model and for Co-Simulation is discussed.

2. System Architecture and Program Modeling

In the mentioned methodology, hardware and software
architectures are described separately. A hardware archi-
tecture is composed of processing nodes, named stations,
whose descriptions also mention their components with
their properties. A software architecture is organised in the
form of collections of program modules, the latter combin-
ing program tasks, functions and procedures of the applica-
tion software. The collection is the unit of software mapped
onto stations, i.e., at any time there is exactly one collection
assigned to run on a station. Thus, the collection is also the
unit of dynamic re-configuration.

The merge of different models with configuration man-
ager and simulator structures is depicted in Fig. 1. To man-
age collections a Configuration Manager (CM) is required,
which is situated between the real-time operating system,
if any, and the applications. Its rôle is to function as (1) a
hardware abstraction layer, (2) a hardware/software inter-
face, and (3) as an “Inter-Collection” co-operation agent.

Figure 1. Interrelations of hardware/software
models

2.1. Application Program Model

According to [8], the computational model of most ap-
plications running in real time can be written in form of the
following “equation”:

Real-time program model = Dataflow model + State
automaton + Timing limitations

The tasks of a system represent the processes of the run-
ning system. Their main properties are trigger conditions
and timing limitations as well as being part of a certain col-
lection. This information is sufficient to build a coarse pro-
gram model, but it is not enough to determine its function-
ality. Therefore, timed state transition diagrams have been
introduced, representing their control and data flows as well
as their synchronisation and inter-communication by calls
to the configuration manager or real-time operating system
of the station, resp., executing the tasks. They are a varia-
tion of the Shaw’s Communicating state machines [12] and
are described in detail in [7]. A Timed State Transition Dia-
gram (TSTD) represents a single task, and has the semantics
of a timed hierarchical state machine.

2.2. Active and Passive Objects

The tasks, modeled in a top-level TSTD description,
form active objects, which are assigned global properties
such as trigger conditions, priorities or deadlines, whereas
the sub-level super-state defining diagrams represent pas-
sive objects, which share the global task properties of their
native tasks.

The idea, shown in Fig. 2, to represent timed state
transition diagrams as tasks is the following: the seman-
tics of a TSTD diagram are represented by the Main()
method of a task object (considering the existing mecha-
nisms for the translation of state charts to program code).
Then, the constructor/destructor methods represent initiali-
sation/finalisation actions.

Figure 2. Proposal of the configuration man-
ager (CM) object

Hence, from this emanates the idea to represent “tasks”
or “threads” as “schedulable objects”, which are executed
under supervision of a configuration manager. Its function-
ality is detailed in the next section. The transitions between
top-level states are performed in the Main() method, while
the sub-charts of composite states are represented by Main()



methods of its sub-classes, having the same names as the
composite states. After being instantiated by the super-
class, their execution continues within the local enumera-
tion of states, while the global enumeration is continued
upon returning to the same point after the corresponding
end state (return statement) is reached.

The “schedulable object” classes form class libraries
named “collections”. The configuration manager (CM)
class constitutes a separate library, being loaded in full or
partially to each station (processing node). The CM ob-
ject initially loads and manages the collection objects, con-
taining schedulable objects (tasks), activating the collection
objects, which correspond to the station state. It also es-
tablishes the necessary communication channels (ports) for
inter-collection/inter-task communication and co-operation.
The CM object is considered an active object, located above
the other active objects contained in collections.

3. Configuration Management

The executive program at each station is the configura-
tion manager object, combining the functionality of a con-
figuration manager and a real-time operating system. Ini-
tially, it loads the collections of task objects and activates
the initial collection by triggering the latter’s initialisation
task objects. In stations without a real-time operating sys-
tem this functionality is provided by the configuration man-
ager, whereas otherwise the CM represents a front end to
the operating system functions, i.e., an abstraction of a real-
time operating system.

Besides local execution, the CM is also responsible for
communication with other stations, and for co-operation
among the tasks of the same collection. Hence, it must
establish port-to-port connections through the interfaces of
the station, and appropriate local port connections for inter-
task communication. Synchronisation and system service
requests are serviced on the same station, in case the sta-
tion is configured to run the real-time operating system part
of the CM. Otherwise, these requests are forwarded to the
appropriate station.

The CM has information on station parameters and
SW/HW mapping. It represents an interface to the hardware
of the system and, since programmed in C, can be translated
for various types of processors and peripheral devices. Ap-
plication programs consider the CM as an abstraction layer
of hardware and operating system, while accessing the con-
figured hardware devices. Hence, the functionality of the
CM must provide the following services:

• initial loading of program collections,

• memory management (allocation, access,
de-allocation),

• inter-station communication through their interfaces
(also supporting r̂ole-dependent high-level communi-
cation protocols),

• internal station-state monitoring and reaction to state
changes (configuration management), and

• controlled shut-down of stations.

3.1. Functions and Properties of the Configuration
Manager

As indicated in Fig. 3, the CM has to react to three dif-
ferent kinds of stimuli: (1) messages between stations, (2)
service calls to a real-time operating system, and (3) proper
CM requests.

Figure 3. The configuration manager as a
black box

The application programming interface (API) of the CM
has the following functions:

Configuration management:

• Cm$Init – to load the initial software configuration,

• Cm$Load – to add a collection to the current software
configuration,

• Cm$Remove – to remove a collection from the current
software configuration,

• Cm$Start – to start execution,

• Cm$Stop – to shut down a station, and

• Cm$Reset – to re-start a station with an initial config-
uration.

Station state monitoring:

• Cm$SRGetstate – to retrieve the current state of a sta-
tion, and

• Cm$SRSetstate – to change the current state of a sta-
tion.



Inter-station communication:

• Cm$PortConnect – to create a port (establishing
point-to-point connection),

• Cm$PortDisconnect – to disconnect an established
connection,

• Cm$PortSend – to transmit a message through a con-
nection, and

• Cm$PortReceive – to receive a message through a
connection.

The configuration manager’s API is independent on the
station type, but its message routing is affected by the rôle
a station plays in a distributed system which is determined
by the type of the station. Hence, in order to be able to
correctly “understand” and process the messages it receives,
the CM has to “know” the r̂ole its station plays in the overall
system architecture.

The connections are established through ports of the SW
architecture and associated devices of the HW architecture.
The attributes of ports represent the communication param-
eters (smallest package, protocol, etc.) and routing param-
eters (VIA/PREFER). The routing affects the way the HW
communication devices are used. VIA determines the exact
line to use, while the PREFER attribute is usually assigned
to the most trusted line in a list.

In asymmetrical architectures direct calls to CM and
real-time operating system functions are not possible.
Hence, an additional function,Cm$System(parameters), is
needed for appropriate system request messages to the CM
or the real-time operating system, respectively. If a station
is configured with no real-time operating system, the pa-
rameters of system requests are routed to the appropriate
station. The parameters of such system requests are trans-
lated to system calls in accordance with the CM’s API.

The properties, specified for the hardware and software
architectures, form the base of an architecture data struc-
ture, through which the CM (its configuration management
and real-time operating system parts) is parameterised. This
information is taken into account when executing the sys-
tem services, listed above.

Between the hardware and the software architecture pa-
rameter structures exist the following relations:

• for a station one or more states are defined, and a col-
lection is associated with each of them,

• each station knows its rôle in the distributed system it
belongs to (based on its type),

• each collection knows the station it belongs to, and

• each collection knows its members and interfaces to
other collections and within the collection.

Figure 4. Hardware architecture parameters

Figure 5. Software architecture parameters

The hardware and software architecture properties (cp.
Fig. 4 and 5) are used as “architecture parameters” to pa-
rameterise the configuration manager. Fig. 6 presents the
structure of the entire CM module.

4. The Rôle of the CM in Co-simulation

Since the co-design methodology Specification PEARL
also includes model checking by co-simulation, the compu-
tation model for the co-simulation also addresses CM func-
tions. In this case the global framework of the system is
built around the CM, based on the system specification.

Our simulation method is based on co-simulation with
EDF (Earliest-Deadline First) scheduling and time bound-
aries. It is primarily meant for checking the timing proper-
ties of the modelled system in order to determine its feasi-
bility.

The designed system model is transformed into an in-
ternal representation (parameterised by the architecture pa-



Figure 6. Structure of the configuration man-
ager

rameters in Fig. 4 and 5) for co-simulation, whose pri-
mary result is a successful execution or failure, whereas
the secondary result is its execution trace, from which ad-
ditional information on bottlenecks, unreachable states and
resources, etc. in the designed prototypes, can be extracted.

For a successful simulation run, it is assumed that the
system model is complete and consistent. Intermediate
checks must be done during the design of the system ar-
chitecture to ensure this:

• Completeness check (all components, which are re-
ferred to, are present and fully described);

• Range and compatibility check (some parameters of
components may be range checked to discover obvious
mistakes and to discover possible incompatibilities in
the parameters of the associated components);

• Software to hardware mapping check (every collection
must be mapped onto a stations’ state considering its
and / or its supervisors’ resources; e.g.: the number of
tasks, which may be handled by a single RTOS pro-
cessing node is limited).

Co-simulation is done based on the following presump-
tions:

• there is only one global simulation clock in the sys-
tem and all Real-Time Clocks (RTCs) are synchro-
nised with it,

• the time events relate to the corresponding STA-
TIONS’ RTC,

The CM has an important role in the co-simulation (Fig.
7). It maintains the RTC of the station and represents the
HW abstraction layer for the executing application during
the co-simulation as well as during the execution on the tar-
get architecture.

Figure 7. The course of simulation

5. Conclusion

To address the complexity of distributed real-time em-
bedded applications, the Specification PEARL methodol-
ogy has been devised. By employing a CASE tool and se-
mantic methods for model checking and feasibility estima-
tion, the methodology has gained the desired practical us-
ability. Since it incorporates constructs and mechanisms to
ensure safety and fault tolerance, it stands out among con-
temporary design methods for embedded real-time systems.

The clear definition of the configuration manager (ac-
tive) object’s responsibilities and functions is crucial for the
Specification PEARL methodology, its syntax and seman-
tics, to produce executable results. Without such a con-
figuration management program it would merely represent
another description and specification language and design
method. With its help, and by ensuring portability of the
configuration manager’s code, the desired range of hard-
ware target platforms can be reached, on which real-time
application programs, written in PEARL or C++, using CM
real-time operating system service calls, are to run.
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Abstract

A survey that points out research issues and open prob-
lems in the area of integrated control and real-time schedul-
ing. Issues that are discussed include temporal robustness,
schedulability margin, optimal and direct feedback schedul-
ing, quality-of-control, and tools.

1. Introduction

The pervasive/ubiquitous computing trend has increased the
emphasis on embedded computing within the computer en-
gineering community. Already today embedded computers
by far outnumber desktop computers. Control systems con-
stitute an important subclass of embedded computing sys-
tems. For example, within automotive systems computers
are commonly denoted as electronic control units (ECU). A
top-level modern car contains more than 50 ECUs of vary-
ing complexity. A majority of these implement different
feedback control tasks, e.g., engine control, traction con-
trol, anti-lock braking, active stability control, cruise con-
trol, and climate control.

Embedded systems are often found in mass-market products
and are therefore subject to hard economic constraints. The
pervasive nature of the systems generate further constraints
on physical size and power consumption. These product-
level constraints give rise to resource constraints on the
computing platform level, e.g., constraints on computing
speed, memory size, and communication bandwidth. Due
to the economic constraints this is true in spite of the fast
development of computing hardware. In most cases it is
not economically justified to use a processor with more
capacity, and hence that is more expensive, than what is
required by the application. The economical constraints
also favor general-purpose computing components over
specially designed hardware solutions.

The resource constraints increase the need for co-design.
Co-design is needed at several levels. One example, is
hardware and software co-design. Which system functions
should be implemented in hardware and which should
be implemented in software? The possibility to use pro-
grammable hardware, e.g., FPGAs, further increases the de-

sign complexity. Another example is the co-design of the
mechanical design and the electrical design. The aim of this
paper, however, is the co-design of the control system and
computing system, with a special emphasis on integration
of control and real-time scheduling.

Co-design of control and computing systems is not a new
topic. Control applications were one of the major driving
forces in the computer development. In the early days of
computer control limited computer resources was a general
problem, not only a problem for embedded controllers. For
examples, the issues of limited word length, fixed-point
calculations, and the results that this has on resolution was
something that was well-known among control engineers
in the 1970s. However, as computing power has increased
these issues have received decreasing attention. Agood
survey of the area from the mid 1980s is [Hanselmann,
1987].

The aim of this paper is to highlight important principles
and unsolved research questions within the area of inte-
grated control and real-time scheduling. Issues that will be
discussed include temporal robustness, schedulability mar-
gins, quality-of-control, feedback scheduling, and co-design
tools.

2. Temporal determinism

Computer-based control theory in most cases assumes equi-
distant sampling and negligible, or constant, input-output
latencies. However, this can seldom be achieved in practice,
or is too costly for the particular application. In a multi-
threaded system tasks interfere with each other due to pre-
emption and blocking due to task communication. Execu-
tion times may be data-dependent or vary due to, e.g., the
use of caches. For distributed systems with networked con-
trol loops where the sensors, controllers, and actuators re-
side on different physical nodes, the communication gives
rise to latencies that can be more or less deterministic de-
pending on the network protocols used. The result of all
this is jitter in sampling intervals and non-negligible and
varying latencies. The resulting temporal non-determinism
can be approached in two different ways. Thehard real-
time approachstrives to maximize the temporal determin-



ism by using special purpose hardware, software, and pro-
tocols. This includes techniques such as static scheduling,
time-triggered computing and communication [Kopetz and
Bauer, 2003], synchronous programming languages [Ben-
veniste and Berry, 1991], and computing models such as
Giotto [Henzingeret al., 2003]. This approach has several
advantages, specially for safety-critical applications. For ex-
ample, it simplifies attempts at formal verification. The ap-
proach also has drawbacks. The approach has strong re-
quirements on the availability of realistic worst-case bounds
on resource utilization, something which in practice is diffi-
cult to obtain. A result of this could be under-utilizationand,
possibly, poor control performance, due to too long sam-
pling intervals. The approach also makes it difficult to use
general-purpose implementation platforms. This is particu-
larly serious, since it is these systems that have the most
advantageous price-performance development.

The second,soft or control-based,approach instead views
the temporal nondeterminism caused by the implementa-
tion platform as an uncertainty or disturbance acting on the
control loop, and handles it using control-based approaches.
Some example of techniques that can be applied are tem-
porally robust design methods and measurement-based ac-
tive compensation. The latter can be compared to traditional
gain-scheduling and feed-forward from disturbances. In or-
der to apply these techniques it is necessary to increase
the understanding of how temporal nondeterminism affects
control performance. This requires new theory and tools that
now gradually is beginning to emerge. It is somewhat sur-
prising, though, that the large robust control community not
yet has focused on temporal robustness. A large amount of
general theory and design methods have been developed.
However, almost everything is developed for plant uncer-
tainties, i.e., parametric or frequency-dependent uncertain-
ties. Although parts of this carries over to temporal robust-
ness it is likely that there is room for much more research
here. The approach also requires language and/or operating
support for instrumenting an application with measurement
code.

An important issue that still is lacking is theory that allows
us to determine which level of temporal determinism that
a given control loop really requires in order to meet given
control objectives on stability and performance. Is it neces-
sary to use a time-triggered approach or will an event-based
approach perform satisfactorily? How large input-output la-
tencies can be tolerated? Is it OK to now and then skip a
sample in order to maintain the schedulability of the task
set? Ideally one would like to have an index that decides
the required level of temporal determinism through a single
quantitative measure. One possible name for such an index
would be theschedulability margin.This measure would
need to combine both a margin with respect to input-output
latencies and a margin that decides how large sampling jit-
ter the loop can tolerate. For constant input-output laten-
cies the classical phase margin can be applied. The phase
margin is based on a graphical frequency-domain represen-

tation. Recently new theory has been developed that uses
the same graphical Bode-diagram representation, but which
applies to systems with varying latencies [Lincoln, 2002b].
The stability criterion is based on the small gain theorem.
The same theory can also be used to design dynamic latency
compensation schemes [Lincoln, 2002a]. The approach as-
sumes that the actual latencies can be measured and that a
high-frequency model of the process is available. It does,
however, not require any latency statistics information.

What is still missing in order to be able to define a rea-
sonable analytical concept for a schedulability margin is a
simple sampling jitter criterion. The criterion should ideally
tell how large variations around a nominal sampling inter-
val that the process could tolerate and still remain stable,
alternatively maintain acceptable performance.

3. Feedback Scheduling

The objective of feedback scheduling is to increase flexibil-
ity and to master uncertainty with respect to resource allo-
cation. Instead of pre-allocating resources based of off-line
analysis the resources are allocated dynamically on-line,
based on feedback from the actual resource utilization. In
general the resources can be any computational resources.
Here, we will however concentrate on the scheduling of the
execution of real-time tasks, and in particular of the execu-
tion of real-time controller tasks.

3.1 Optimal Feedback Scheduling

Most of the suggested approaches to feedback scheduling
have been more or less ad-hoc. Typically the aim has been
to adjust sampling periods or execution time demands in
such a way that the task set becomes schedulable or that the
deadline miss ratio is at an acceptable level [Luet al., 2002].

However, in order for feedback scheduling to really become
a realistic alternative it is necessary to take the applica-
tion performance into account. For example to adjust the
scheduling parameters in such a way that the global perfor-
mance is optimized. To do this it is necessary to have perfor-
mance metrics that are parameterized in terms of sampling
intervals, latencies, and the jitter in these. When the appli-
cations are control loops there are certain possibilities do
this. However, for more general applications this might not
be so easy. In [Cervin, 2003] it was shown that a simple
linear proportional rescaling of the nominal sampling peri-
ods in order to meet the utilization set-point is optimal with
respect to the overall control performance under certain as-
sumptions. It holds if the control cost functionsJi(hi), where
hi is the sampling period, are quadratic, i.e.,

Ji(hi) = αi +βih
2
i

or if they are linear,

Ji(hi) = αi + γihi ;

and if the objective of the feedback scheduler is to minimize
the sum of the control cost functions or a weighted sum of
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Figure 1 A general feedback scheduling structure. The re-
sources are distributed among the tasks based on feedback from
the actual resource use. The tasks can be use feedforward to no-
tify the scheduler about changes in their resource demands.

the control cost functions. The advantage of this is a simple
and fast calculation that easily can be applied on-line. The
linear rescaling also has the advantage that it preserves the
rate-monotonic ordering of the tasks and, thus, avoids any
changes in task priorities in the case that fixed priority
scheduling is used. Linear or quadratic cost functions are
also quite good approximations of true cost functions in
many cases. It is also possible to add more constraints to
the optimization problem and still retain a simple solution.
For example, one can use the nominal sampling periods
as minimal sampling periods and use these whenever the
utilization is less than the utilization set-point. However, the
linear rescaling property does not hold in all cases. If the
task set includes both tasks with quadratic cost functions
and tasks with linear cost functions, the solution is not as
simple, although it is still computable.

It is also possible to assign maximum sampling periods to
certain tasks. This leads however to an iterative computation
(LP-problem) in order to find the total rescaling of all
the tasks. This is equivalent to the calculations needed in
the elastic task model [Buttazzoet al., 1998] when the
tasks (springs) have constraints on how much they may be
compressed. However, it should be noted that the the cost
functions above only concern the task periods and not the
input-output latencies.

3.2 Feedback Scheduling Structures

Different structures are possible in feedback scheduling.
A pure feedback scheme is reactive in the sense that the
feedback scheduler will only remove a utilization error
once it is already present. By combining the feedback
with feedforward a pro-active scheme is obtained. The
feedforward path could be use to allow controller task to
inform the scheduler that they are changing their desired
amount of resources, e.g., changing their execution times
or nominal sampling periods, and to give the scheduler the
possibility to compensate for this before any overload has
occurred. The feedforward path can be also be used for
dynamic task admission. A block diagram of the feedback-
feedforward structure is shown in Fig. 1.

It is also possible to consider a layered or cascaded control
structure. The outer layer would consist of a feedback
scheduler that, based on a desired set-point for the overall

utilization, generates as outputs the desired utilization for
each controller task. Associated with each controller task
is then a local feedback scheduler that is responsible for
adjusting the timing parameters of the task in order to
fulfill the desired utilization. The utilization assigned to
each controller task can be viewed as its share of the total
resource, e.g., the total CPU capacity. This approach can
be combined with reservation-based scheduling in order to
provide temporal protection for the individual tasks [Mercer
et al., 1993]. Each task can then be seen as if it is executing
on its own virtual CPU. One example of a reservation-based
scheduling scheme is the constant-bandwidth server (CBS)
[Abeni and Buttazzo,1998]. Analysis of a reservation-based
feedback scheduler is presented in [Abeniet al., 2002].
The control server computational model for controller tasks
is based on reservation-based scheduling and feedback
scheduling [Cervin and Eker, 2003].

3.3 Direct Feedback Scheduling

Most of the feedback scheduling approaches proposed for
control applications are indirect. By adjusting the task pa-
rameters, e.g., period and execution time, one makes sure
that the task set is schedulable and has certain timing prop-
erties (latencies and jitter).These timing properties will then
indirectly determine the performance of the application. The
problem with this is the relationship between the timing pa-
rameters and the cost/performance. In most cases the re-
lationship only holds in stationarity and in a mean-value
sense. In direct feedback scheduling the idea is to base the
decision of which task to execute on the instantaneous cost.
This cost will grow the longer the control loop executes in
open loop and decrease when a control action is issued. The
instantaneous cost could then be used as a dynamic priority
similar to the task deadline in EDF. One example of how
this approach could be implemented is the following. Each
controller consists of two parts. The first part contains the
sampling of the measurement signal and evaluation of the
instantaneous cost function. The second part is the actual
control algorithm, which then would be optional. The total
control system would execute at a constant short sampling
period. The first part could be implemented by using inter-
rupt handlers and be executed for all the controller tasks in
the beginning of each sampling period. The scheduler would
then select and execute the controller part of the control task
with the largest instantaneous cost.

The resulting system would be a special case of an aperiodic
event-triggered sampled system. Although time-triggered
sampling is adequate for many simple control loops, there
are a lot of control problems where it is more natural to
use event-triggered sampling, e.g., control of combustion
engines. Another common case is in motion control where
angles and positions are sensed by encoders that give a
pulse whenever a position or an angle has changed by a
specific amount. Event based sampling is also a natural
approach when actuators with on-off characteristic are used.
Satellite control by thrusters is one typical example, [Dodds,



1981]. Systems with pulse frequency modulation [Skoog
and Blankenship, 1970], [Sira-Ramirez, 1989], and analog
or real neurons whose outputs are pulse trains, see [Mead,
1989] and [DeWeerthet al., 1990] are other examples.

Analysis of systems with event based sampling is related
to general work on discontinuous systems, [Utkin, 1981],
[Utkin, 1987], [Tsypkin, 1984] and to work on impulse
control, see [Bensoussan and Lions, 1984]. Much work on
systems of this type was done in the period 1960–1980.
Analysis of event-based sampled systems is considerably
harder than for time-based sampled systems. This is due
to the fact that sampling is no longer a linear operation.
There are several papers that treat special system setups,
such as observers for linear system with quantized outputs,
[Sur, 1996], [Delchamps, 1989] many of which use classical
ideas from Kalman observer design. In [Åström and Bern-
hardsson, 1999] it is shown that event-based sampling can
be more efficient than equidistant sampling. For example,
an integrator system driven by white noise must be sam-
pled 3–5 times faster using equidistant sampling than using
event-based sampling to achieve the same output variance.
However, we are still very far from a general theory for ape-
riodic event-triggered sampled systems.

In spite of the lack of theory it is possible to derive different
heuristic versions of direct feedback scheduling. A question
is then how the instantaneous cost function should look
like. It would be quite natural to include the controller error
in the function. The larger the error the more critical the
loop is in general. One could also consider including the
error derivative. The motivation for this would be to be
able to judge the decision whether to execute a controller
on a prediction of the error rather than on the actual error.
A loop with a large but decreasing error would be less
urgent than a loop with an increasing error of the same
magnitude. One could also consider the past history of
the error signal, i.e., include an integral term in the cost.
One possibility would be to judge the decision of which
controller to execute on a performance measure such as
the IAE (Integrated Absolute Error) or the ISE (Integrated
Square Error), possibly in combination with some forgetting
factor. Interestingly enough an instantaneous cost function
of this kind shows strong similarities with the well-known
PID controller. Another useful term to add to the function
would be a term that increases the longer the loop has been
running in open loop.

3.4 Scheduling Overhead

In order for feedback scheduling to be practically useful it
is crucial that the overhead associated with the feedback
scheduler itself is small compared to the dynamics and the
time intervals of the task set that is being controlled. Hence,
simple techniques such as linear rescaling is preferable over
methods involving more complex calculations.

Changing the task parameters in an indirect feedback
scheduling scheme gives rise to a mode change transient.
Although the task set may be schedulable both before and

after the mode switch, it is not at all sure that all task dead-
lines are met during the transient. The necessary analysis in
order to guarantee this is still not completely worked out,
e.g., [Tindellet al., 1992], [Pedro and Burns, 1998], and
[Buttazzoet al., 1998].

3.5 Anytime Controllers

A feedback scheduler can control the utilization of task
set by either changing the task periods or by changing
the task execution times. For controller tasks the first al-
ternative is the most natural. However, there are exam-
ples when also the execution times can be changed, e.g.,
Model-Based Predictive Controllers (MPC), see e.g. [Gar-
cia et al., 1989; Richalet, 1993]. In an MPC, the control
signal is determined by on-line optimization of a cost func-
tion in every sample. The optimization problem is solved
iteratively, with highly varying execution time depending
on a number of factors: the state of the plant, the current
and future reference values, the disturbances acting on the
plant, the number of active constraints on control signals
and outputs, etc. For fast processes with dominating time
constants in the same order as the execution time, the ex-
ecution time also gives rise to an input-output latency that
can effect the control performance considerably. The MPC
strategy has won widespread industrial use in recent years,
the main advantages being its ability to handle constraints
and its straightforward applicability to large, multi-variable
processes. However, because of the computational demands
of the control algorithm, MPC has traditionally only been
applied to plants in the process industry, with slow dynam-
ics and low requirements on fast sampling. The industrial
practice has been to run the MPC algorithm on a dedicated
computer, and to decrease the complexity of the problem so
that overruns are avoided.

In the terminology of [Liu et al., 1991] MPCs can be
viewed as anytime algorithms of the “milestone” task type.
In each sample, the quality of the control signal is gradually
refined for each iteration in the optimization algorithm, up
to a certain bound. This makes it possible to abort the
optimization before it has reached the optimum, and still
obtain an acceptable control signal. Another nice feature of
MPC is that it is not onlypossibleto extract a real-world
quality-or-service or cost measure from the controller, but
the control algorithm is indeedbasedon the same measure.
This enables a tight and natural connection between the
control and the scheduling. MPC controllers also fit nicely
with the imprecise computation model [Chunget al., 1990].
Each MPC task has a mandatory part that consists of a
search for a feasible solution that fulfills all the constraints,
and one optional part that is the actual optimization, i.e.,
the gradual refinement of the feasible solution. The use
of feedback scheduling for MPC controllers is reported in
[Henrikssonet al., 2002b; Henrikssonet al., 2002a].

Another area where the task execution time may be varied
is in visual servoing. A camera-based vision sensor can in
a certain sense be viewed as an anytime sensor, especially



if the visual feedback is based on the extraction of image
feature points. The more time available for the sensing the
better estimates of the feature points can be derived.

3.6 Quality of Control

When applying feedback scheduling the control perfor-
mance can be viewed as a quality parameter similar to
the quality-of-service parameters used within multimedia
and communication systems. Several important issues re-
quire attention. One issue is how performance specifica-
tions should be represented. Instead of specifying absolute
values of different performance parameters, e.g., overshoot,
steady state variance, etc, the designer needs to specify ac-
ceptable ranges of these values. An interesting issue is how
these specifications should be expressed. One possibility is
to use a minimum-maximum interval, i.e., in essence spec-
ify that the actual value of the performance metric should be
uniformly distributed. Another possibility is to use general
distributions.

Another important issue is how the run-time resource nego-
tiation should be expressed. The exact nature of which ne-
gotiation scheme that is most appropriate is still open. One
possibility is to use contracts that specifies how the control
loop performance depends on the assigned resource level.
Another possibility is to apply the Broker architectural soft-
ware pattern.

4. Co-design Tools

In order for integrated control and real-time scheduling to be
a reality it is necessary to have computers tools for simula-
tion, analysis, and synthesis. During recent years a few such
tools have emerged, e.g., the RTSIM scheduling simulator
extended with a numerical simulation module [Casileet al.,
1998], the Ptolemy system with its recently included timed
multitasking domain [Liu and Lee, 2003], and the simu-
lation tool presented in [El-khoury and Törngren, 2001].
Here we will focus on the two Matlab/Simulink tools that
have been developed in our group, Jitterbug and TrueTime
[Cervinet al., 2003].

4.1 Jitterbug

Jitterbug [Lincoln and Cervin, 2002] makes it possible to
analyze the impact of latencies, jitter, lost samples, aborted
computations, etc on controller performance. The tool can
also be used investigate jitter-compensating, aperiodic, and
multi-rate controllers. The basis of Jitterbug is the calcula-
tion of a quadratic performance criterion. The main con-
tribution of Jitterbug is the packaging that it provides of
the theory for linear quadratic Gaussian systems and jump-
linear systems in a user-accessible way and on a format that
suits the analysis of controller timing issues. However, the
tool also has a number of limitations that it is important to
be aware of.

Linear Systems: Jitterbug only applies to linear systems.
Although linear theory often provides a very good approx-

imation of non-linear systems there are a lot of situations
when non-linear issues are important. For example, all ac-
tuators have limited range, i.e., they saturate. During ac-
tuator saturation the control loop is effectively cut-off and
the controlled process runs in open loop. In order to avoid
that unstable controller states, e.g., the integrator state, ex-
plode (wind-up) during saturations all practical controllers
must be equipped with an anti-windup scheme. This can not
be analyzed using Jitterbug. The fact that Jitterbug is not
applicable to non-linear systems is, however, not surpris-
ing. Non-linear discrete-time systems is a very undeveloped
field. For example, there is not even a commonly accepted
sampled-time representation of general non-linear systems
yet.

Stationarity: The quadratic cost calculated by Jitterbug is
a measure of the controller performance during stationarity.
This is well suited for regulatory control systems where the
objective is to keep the controlled variables at constant set-
point values during the presence of stochastic noise. How-
ever, for servo-control systems where the main objective is
tracking of non-constant set-point signals and rejection of
deterministic disturbances it is the performance during tran-
sient conditions, e.g. overshoot and rise time, that is most
important. Although this is closely related to the type of per-
formance measures that Jitterbug calculates, Jitterbug is in
general not ideally suited for these types of control prob-
lems.

Statistical measure:The output of Jitterbug is a statistical
measure, i.e., an expected value. Latencies and jitter are
modeled using statistical distributions. A result of this is
that Jitterbug can never be used to formally prove that, e.g.,
the cost function for a certain timing scenario in actual
case will have a certain result. The results only hold in a
mean-value sense. Another effect of the statistical nature
of Jitterbug is that timing situations that have probability
zero will be disregarded in the analysis. A case where this
can be important is for systems with switching-induced
instability. Consider the following example from [Schinkel
et al., 2002]. The process to be controlled is modeled by

ẋ = Ax+Bu

where

A =

"
0 1
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#
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The system is stable with poles inp1;2 = �0:05� 100i.
The process has been discretized withh1 = 0:002s and
h2 = 0:094s. The two discrete-time systems are represented
by

xk+1 = Φixk+Γiuy

i 2 f1;2g

whereΦi = eAhi , Γ1 =
R hi

0 eAsBds. Both discretizations lead
to stable discrete systems with the spectral radiusρ(Φ1) �
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Figure 2 Jitterbug model of system with varying sampling
intervals: (a) signal model, (b) timing model with repeating
intervals h1, h2, (c) timing model with repeating intervalsh1,
h2, h2, and (d) timing model with random sequence of sampling
intervals.

1;ρ(Φ2) � 1, whereρ(Φi) gives the largest eigenvalue of
Φi. For each discrete-time system a LQ-controller has been
designed to minimize the continuous-time cost function

J= lim
t!∞

1
t

Z T

0

�
xT (s)Q1x(s)+uT(s)Q2u(s)

�
ds

where

Q1 =

8>>:20000 0

0 20000

9>>; ; Q2 = 50

The resulting state feedback law is represented byu=�Kix.

By looking upon the spectral radius forΦi�ΓiKi it is easy
to verify that the closed loop system is stable for both
sampling intervals. However, for the repeating switching
cycle h1h2h2 the system is unstable. This can be verified
by looking upon the spectral radius of the resulting system
ρ((Φ2�Γ2K2)2(Φ1�Γ1K1)1) � 1.

Using Jitterbug it can easily be verified that the closed loop
system is stable for both the two sampling intervals. It is
also possible to use Jitterbug to verify that the switching
sequenceh1h2h2 is stable. However, if it not known before-
hand that this sequence yields an unstable system, one may
easily be fooled. For example, if the sampling interval is
modeled as a two-point distribution with 33% probability
for h1 and 67% probability forh2 then Jitterbug gives a re-
sult that indicates that the closed loop system is stable. Us-
ing a feedback scheduler that dynamically adjusts the sam-
pling periods it is not impossible that a situation like this
could arise.

The Jitterbug models for different timing sequences situa-
tions are shown in Fig. 2. The simulated time sequences for
the switching sequenceh1h2h2 is shown in Fig. 3 and for
the random two-point distribution is shown in Fig. 4.
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Figure 3 Simulation of with switching sequenceh1h2h2. The
result is an unstable system.

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

Time

x

Figure 4 Simulation of with a random two-point distribution.
The result is a stable system.

4.2 TrueTime

TrueTime, [Henrikssonet al., 2002c], allows co-simulation
of distributed computer-based control loops and the con-
trolled plant. This is achieved by simulating the temporal
behavior of multitasking real-time kernels and network pro-
tocols in Matlab/Simulink. TrueTime was primarily devel-
oped as a co-design tool. However, TrueTime can also be
used as an experimental platform for research on feedback
scheduling. Using TrueTime it is possible to implement
user-defined scheduling policies, it supports deadline over-
run and execution-time overrun handling, measurements of
execution time is straightforward, and the application tasks
can be interfaced with the kernel level. Used in this way
TrueTime can be used to evaluate and test different new
real-time kernel features before they are implemented for
real. The possibility to run TrueTime in real-time makes
this even more interesting. Interfacing the computer to a real
process using A-D and D-A converters the setup can be used
to emulate a slow, multitasking computer controlling a real
plant.

Extensions:Although TrueTime is a quite powerful already
today there are certain areas that could be extended. The net-
work block only supports data-link protocols and only a sin-
gle network segment may be present. In current work we are
extending this by also implementing transport layer proto-
cols, e.g., TCP with acknowledgment messages, buffering,



congestion control, and flow control. We also allow multiple
network segments within the same model. This is necessary
in order to be able to model networked control loops over
switched Ethernet, a technology that is becoming increas-
ingly popular for real-time communication. Another area
where TrueTime needs improvement is execution time es-
timation. In TrueTime it is the user that assigns the time it
takes to calculate every code segment or interrupt handler.
This time should ideally match the actual time that it would
take to execute the equivalent code on the target platform
under consideration. However, assigning these times can in
practice be very difficult. It would be interesting to combine
TrueTime with an execution time analysis tool. However,
exactly how that should be done is still unclear.

5. Conclusions

Control systems constitute an important subclass of em-
bedded real-time systems. Control systems have tradition-
ally been relatively static systems. However, technology ad-
vances and market demands are rapidly changing the situ-
ation. The increased connectivity implied by Internet and
mobile device technology will have a major impact on
control system architectures. Products are often based on
commercial-off-the-shelf (COTS) components. The rapid
development of component-based technologies and lan-
guages like Java increases portability and safety, and makes
heterogeneous distributed control-system platforms possi-
ble. The evolution from static systems towards dynamic sys-
tems makes flexibility a key design attribute for future sys-
tems.

A key future challenge is to provide flexibility and reliabil-
ity in embedded control systems implemented with COTS
component-based computing and communications technol-
ogy. Research is necessary on design and implementation
techniques that support dynamic run-time flexibility with
respect to, e.g., changes in workload and resource utiliza-
tion patterns. The use of control-theoretical approaches for
modeling, analysis, and design of embedded systems is a
promising approach to control uncertainty and to provide
flexibility. A related area is quality-of-service (QoS) issues
and feedback scheduling approaches in control systems. In
order to support this development it is important that the
control community increases its efforts on development of
control theory that it is aware of implementation-platform
resource constraints. It is also important that the real-time
computing community work hand in hand with the control
community to develop models, methods, tools, and theory
that match their respective requirements..
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¨ �����t�����p���u£��8�t¢¦� ± ���v
¹ ± ¢·�j©2��©I�R�;¡¤�v���·� Ä ¢¦� ± �t�����¦«=��¢¦����� ¨ ± �v¡¤¥¤�¦¢u�¤£V���K¡ ¨ ���L«���t�8� ¨ ��«º¡L����¢u£��j��;¢u�c����¸B�8�-¢u��Ö �XÙ6¸ Ä ��������¢¦���t�v�t�������v¡?¢¦��»�v�v¡L°K� ¨ ¶�� ¨ ± �v¡L¥K�¦¢u�¤£K¸L¢6 �� Ä �'��¢¦�!�t�ª��¡� �¥2���É�8�L«6�u¢u�¤�$� ± �

������©¤�u¢¦�K£§©2�v�t¢u�L¡¤�-���Á� ± � ¨ �8�8���t�8�¦�u�R�c��¢u�|���c¡L�v���t�q�U�v�[�� ± � ¨ �8��©¤¥L�t¢u�¤£����v�t��¥¤� ¨ �'���v´�¥¤¢u�t�v�U�v�����v�¹ ± ¥2�R¸L� ± ��©¤����«
¨ �v��� ¨ �8�8���t�8�¤©K�������U�R�t�v���
���t� ¨ ± ���¤£���¡U���L«³�¦¢u�¤�V� ¨R¨ ���c¡L¢¦�K£���f� ± �l�t��´8¥K¢¦���v¡�������©¤�u¢¦�¤£f©I�R��¢u�.¡K�R!�¤¥K��� ± �R����������� ± �
©¤��� ¨ ���t� ¨ �8���t�����
¡L�v�t¢u£��§�c��¶8�v�'¢u�8����� ¨R¨ ��¥¤��� ¨ �8�8���t�8�r¡¤�[«�·�}�L�"� ± �X�V���t�$¥¤�K�}²8��¢·¡¤��°K�¦�$¢¦�����v����«6�t¢u��� ¨ �����t�����
Ö "XÙ³
Õq�± �v�t��©¤�t�X².¢·¡L���G�����X�����»�R��¡L°K� ¨ ¶ ¨ �8���t�����j�·� Ä �»�8�a¡L¢·� ¨ ���[�t��t�L�����R�ª� Ä ¢¦� ± ¨ �����t������¡L�v�u�}�8¸H� ± �G©K���������[�t�v���'��� Ä ± ¢ ¨ ±¡L�v©2�v�K¡������ ± �(�t���U©K�¦¢u�¤£�©2�v�t¢u�L¡����;� ± � ¨ �8���t�����u�¦�v���v
¹ ± ���8¥L�t�u¢¦�K�U����� ± �U©2��©I�R��¢·�V� ± ���»���u�u� Ä ¢¦�¤£2-À.� ¨ �t¢u���

�§�t� ¨ ���u�·�'� ± �������X���G��� ¨ �����t�����"� ± �v����� Ä  �� ��q������©¤�u¢¦�¤£���K¡-¡¤�R�·�}�.� Ä ± ¢u�¦�:�t� ¨ �t¢u���#"a�R�K�¦¢u£ ± �t�v�K�4���8���B¡L�RÔ ¨ ¢u�R� ¨ ¢u�v�°I�[� Ä �R�v�§©2�8©¤¥¤�·���a�t�����¦«=��¢¦���(©K�����8¡L¢u£��ª�V���K¡ ¨ �8�8���t�8�H���[«´�¥¤¢u�t�v���R�����vBÀ.� ¨ ��¢¦�8�%$ª©¤�t�X².¢·¡L�v�Á£8¥¤¢·¡L�R�u¢¦�K�v�Á�»�8�V�ª���c�X��¢ ¨¢u��©¤�¦�v���R�������t¢u���|��� ¨ �u�8�t�v¡.«³�¦�.�8© ¨ �����t�����w���L���t�R�ª�vqÀ.� ¨ «��¢¦�8�&�§©¤�t�����v�����-� ± � ¨ ���K�t¢u¡¤�R���v¡|��� ¨ ± ¢¦�t� ¨ ��¥¤�t���»���U�»�R��¡.«°K� ¨ ¶ � ¨ ± �v¡L¥¤�u¢u�¤£¬���K¡ � ± �?¾a¥2���u¢����¬���ª�w�������t�8��Â³¾a�.�ÁÅ�t©2� ¨ ¢¦Ô ¨ ���t¢u���K�v ®É��¢u�u�¦¥K���t�c�X��¢¦²8�|�[½¤���U©K�¦�|���G�¬��¥¤�¦�t¢¦«
�c���t¶.� ¨ �8�8���t�8�"�t�.���t�v�Ú¢·�-©¤�t�����v���t�v¡�¢u�|�t� ¨ ��¢¦�8�(' Ä ± �v�t�� ± �É��¡L²X���8�c��£8�"���2� ± �:©K�t�8©2������¡(���[� ± �L¡L���u��£8��¢u�r�R��© ± �X«
�t¢u�t�v¡jw¹ ± ��©K��©2�v�É�R�2¡¤� Ä ¢¦� ± ���8��� ¨ ��� ¨ �u¥K¡L¢u�¤£ª�t�v�ª����¶.����K¡¿�»¥¤��� ± �R�:���v�t�v��� ¨ ± ¡L¢u�t� ¨ �t¢u���2�R

)+* Î Í �R�XÎ-,w� Í Ï¬��Ñ/.|Ñ Í10

áa� ¨ �V� ¨ �����t�����K���¦£8����¢�� ± � ± ���
°I�R�v��¡L����¢u£��¤��¡p¸.�'ÔK�c���
 ��8° ¨ ���K�t¢·���c��¢¦��©K������¢���¢¦�8�¤¢u�¤£�¢���¢u���t���c���t¶.�����K¡q� ± �v�f¢¦�� ± �G������¢u£��K�U�v���'���w��¢¦��¢u�¤£§©K���������[�t�v���v¸p¢6 �8G©2�v�t¢u�L¡¤�����
�c���t¶.�U���2¡fÜtÓ�á �·�X�t�v� ¨ ¢u�v�v¸��t�§� ± �X��� ± � ¨ �������t�8�¦�u�R�32 �(¢¦�U«
â³ð54}æ:å è�ð=æ�ä�687-ñ9�;ð:4}æ:ò�æ�å è�7(ï�æ�ð<;@æ�æ�äUð54}æÁñçä3�=ð6ècäRð"ãcêjèVì:ætè��=õ}ë6æ
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©¤�u�R���R���c�X�t¢u���|���X��¢u��ÔK���'� ± � ¨ �������t�8�
��°  �� ¨ �t¢u²��8��w�8���t������ ± �R�����ª�»�8�É�¦¢u�¤�����É�t�.���t�v�ª�:�t���U©K�¦��¡����ÁÔ¤½L�v¡������t���R¸¤©I�8��«
�t¢¦°¤�u� Ä ¢�� ± �������	��
����
�����
��������������	�w¡L�R�·�}�L�R¸ ± ���"°2�v�R��v������°¤�u¢u� ± �v¡��f�u���K£��t¢u�U�q��£��2OÀ.�8�U�l�U�8�t����� ¨ �R���G���[«�t¥¤���c�4¡L�v��� Ä ¢¦� ± ²X������¢u�¤£É�8�;¥K�¤¶.�¤� Ä �-¡L�v�u�}�L�;���4�t����©¤�¦¢u�¤£�c�X�t���Á¢¦� ¨ �����t�����p�u�.��©K�v¸K���t¢u�¦�H¢¦��� ± �'�»������� Ä ����¶ª���
�¦¢u�¤������t�.���t�v�ª�R¸w�� £K�Ö�×3"}Ù6¸'Ö ØXÙ³! V�L�»���t�t¥K�K�X���R�u�|���8�������v����«³�u¢��»�
�t�.���t�v�ª�(�����ª�¤���¤«6�u¢¦�K�v�����¹ ± ���[½.�t�c��©I���·�X��¢¦�8�q���B��¢¦��¢u�¤£
�����t¢¦£8�¤���R���"� ± �t�8¥¤£ ± �¦¢u�¤������¢u�t¢¦�K£���� ���R�¿£�¢u²��v�w����¥¤£ ± �v���t¢¦«
�ª�X��¢¦�8�K�4���@���u�¦� Ä ��°¤�u�B©2�v�t¢u�L¡¤�
���K¡-�·�X�t�v� ¨ ¢u�v�4�8�4�R²��v� ¨ ���°I�§���v���K¢¦�¤£8�¦���t�v�¹ ± ¥K�G�t�¦¢ ¨ ¢u�¤£f� ± � ¨ �8���t�����V���¦£8����¢�� ± ����2¡?�t�[�t�t¢u�¤£|��¡L��´�¥K�X����²X���¦¥¤���U�»����� ± ���t¢u��¢¦�¤£�©K���������[«
�t�v���G����©¤¢u¡¤�¦�f�E���¦�·�ª¢u���t� ¨ �8���§���t¥K¡¤¢¦���ª°K���t�v¡?���¬�t¢¦�-¥¤�·�X«�t¢u���q���K¡l�[½L©2�v�t¢u���R�����v�À.¥ ¨ ± ¨ ���t�[«º����¥K¡L¢u�v�É�ª�}��°I�R�¤�RÔ¤��»����� ��ÝI«6�u¢u�¤� ¨ �����t�����»ÓX� ¨ ± �v¡¤¥¤�¦¢u�¤£ ¨ ��«³¡¤�v�t¢¦£8�j¸:�� £KmÖ�×3'}Ù
¥K�t¢¦�K£?��Ý2«³�¦¢u�¤�q¢����R�c�X�t¢u²��q��©L��¢¦��¢·�t���t¢u���j¸V�t� ¨ �8�U©K¥L�t�������¡¤�v´�¥K�X���l�t�[����¢¦�K£����(©I�R��¢u�.¡K�R¸É�·�X���R� ¨ ¢¦�������K¡¬£8��¢¦�2�G���[«�t¥¤����¢¦�K£¿¢u�q�¿�t��´�¥¤�v���t��¡ ¨ �8�8���t�8�;©I�R�t�»�����ª��� ¨ �-� ¨R¨ �8��¡¤¢¦�¤£�t��� ± �(�}²X��¢u�u��°¤�u� ¨ ����©¤¥L��¢¦�¤£ª���v�t��¥K� ¨ �$���K¡�¢u��©¤�u�R���R������«�t¢u��� ¨ ���K���t�c��¢u�����v
�w�������t�8���t�L�����R�ª�|���t����� ���R� ¨ ¢����v¡ß���f�R½¤����©¤�u�v�����

"�± ���c¡ ���v����«6�t¢u���|���L���t�R�ª� " Ä ± �R���|¡L����¡L�u¢¦�K�f²�¢u���·�X��¢¦�8�K������(���t��¢ ¨ �t�u���»�8�t°¤¢·¡¤¡L�v�j:Üº���E� ¨ �V�R½.©I�R��¢u�U�v�����V� ± � Ä � ± �X�� ± ¢u�'�����t¥¤��©L�t¢u���§�ª�}��°I���E���u�t���»�8� ¨ �¦������¡.«³�¦�.��© ¨ �����t�����6®É�.��©¤�c� ¨ ��¢ ¨ ���
�»�v�v¡L°2� ¨ ¶����L���t�R�¯¢·��¡L����¢u£��¤��¡q�t�§�8°L����¢¦�
�t�����a������°¤¢¦�u¢¦���ª�����t£8¢¦�¿���K¡��t�8°¤¥K���t�¤���t� Ä  �� ��4� ± �$©¤�·�����©K�������U�R�t�v����¥¤� ¨ �v���c��¢u������ ¹ ± ¢·�����u�t�|©¤���X².¢u¡¤�v�¿�t�8°¤¥K����«
�¤���t� Ä  �v �v���¢¦��¢u�¤£�¥¤� ¨ �R�t����¢u���t¢u�v�vÛ ¨ �¦������¡.«6�u�.��©§�t�L�����R�ª������-��°¤�u�(�t�¿�t�8�¦�v�����t�U���8�U�U������¥K�8�$���w������©¤�u¢u�¤£�©I�R��¢¦�L¡
���2¡ ¨ ����©¤¥¤�t¢u�¤£a¡L�v�u�}�L�;¡L�R².¢·�X�t¢u���2�R¸? �¢��t�t�v�r���K¡�� ¨R¨ ���t¢¦�8�K���¡¤�����$�¦���t� Ä ¢¦� ± �¤�'�¦���t�r���I������°K¢¦�u¢��������4¢¦�����R£���¢¦����¸�°¤¥¤�4�8�¤�u�¡L¢·����¥¤��°K��� ¨ �v�v�¹ ± � ± ����¡l�t�����¦«=��¢¦����������¥¤��©L��¢¦�8�q� ± ��¥K�u¡°I� ¨ ± ���¤£8�v¡��»�8��� " Ä ����¶.�u� ± ���c¡ " �8�¤��¸ Ä ± �R������°K�t���u¥L�t�¡L����¡L�u¢¦�K�v� Ä �8¥¤�·¡f°2�����R©¤�·� ¨ �v¡f°.�|�������t¢·����¢ ¨ ���Á���¤���R¸
�8 £2� ± �?���u�u� Ä ��°¤�¦�f�8¥L�t©K¥L�� �¢¦�����R� ¨ ����©¤�u¢·����� Ä ¢¦� ± � ± �?¡L�R«�t¢¦���v¡ ¨ �8���t�����É©I�R�t�»�����ª��� ¨ ��$#�²��v��¢�� ¨ �8��©¤¥L�t¢u�¤£��t¥ ¨ ±�����X��¢u���t¢ ¨ ��¢·����¥¤�����V� ± �§� ¨ ��©I����� ¨ ¥¤���t�v�8� ¨ �8���t�����B� ± �R«������¸�� ± ¢·�w¢¦���t��¢u�K��¢ ¨ ����°¤¥2�����¤�v���
��� ¨ �¦������¡.«6�u�.��© ¨ �8���t�����u�¦�v���£�¢u²����w������¡K¡L¢���¢¦�8�K���p¡L�v£����R�a���j�»���R��¡L��� Ä ± ¢ ¨ ± ¨ ��� ¨ ���U«©¤�u� Ä ¢�� ± ¾a¥2���u¢����f���$À.�R��².¢ ¨ ��Â³¾a��À¤Å ¨ �8��©¤¥L�����t¢u���Ã���K¡
%K�R½.¢u°¤�u�(� ¨ ± �v¡L¥¤�u¢u�¤£ª¡L�v�t¢¦£8�j
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 V�t¥K���¦�u��¸Á���v���¦«6�t¢u�U���t�L�����R�ª�G���������L¡L�R�u�¦��¡�°.�?�f�t�[�
���:��� ¨ ¥¤�t���R�����c���t¶.�-������¢u£��K�v¡q�t�q���¤�G�8���t�R²��v������©¤��� ¨ �v��«�t���c�r���K¡�� Ä �8����� ¨ ���t�Á�t����©I���2���B�t¢u���v�4��� ¨ ± �K¢u´�¥¤�:¢·�
¥K�t�v¡�t�O���K���¦�L�t��Ô¤½L�v¡.«³©¤��¢¦�8�t¢¦��� ���v����«6�t¢u���|���L���t�R�ª�q���§¢u�¤¢¦�t¢¦«
�X���v¡ ¢¦�ßÖ�×.-}Ù³ Õ��R�u��¶��K� Ä �O� ¨ ± �v¡L¥K�¦¢u�¤£Ã©2�8�¦¢ ¨ ¢u�v�v¸$�t¥ ¨ ±����àÉ���t� Ò �8�¤�������¤¢ ¨ �»���UÔ¤½L�v¡?©¤��¢¦�8�t¢¦�t¢u�v�����2¡/# Þ ���»�8�¡L�.�K���U¢ ¨ ©¤�t¢u����¢¦�t¢u�v�UÖ � "}Ù6¸j�8�t�t¢u£��§©¤��¢u����¢���¢¦���a� ¨R¨ �8��¡¤¢¦�¤£G�t��t¢u��¢¦�K£�©K�������U�R�t�v���v¸����v�t©2� ¨ ��¢¦²8�R�u�U������©¤�u¢¦�K£(©2�v�t¢u�L¡¤�B���K¡¡L����¡L�u¢¦�K�v�v4¹ ± �R�¿���t�'����¢·¡10t��©L��¢¦�ª��� " ���B� ± �R�G�ª��½.¢u��¢u�t�
� ± �a�.¥¤�-°2�v�w���p�����t¶L�"�t�[�c� Ä ± ¢ ¨ ± ¨ ���G°I�a� ¨ ± �v¡¤¥¤�¦��¡ Ä ¢¦� ±���v�t©2� ¨ �����:¡¤�v��¡¤�¦¢u�¤�v�v¸4¥¤�K¡L�v�-�t�����G���v���t��¢ ¨ �t¢u²��G�8�t�t¥¤��©L«�t¢u���2�R§¹ ± �v�f�����ª²��R����©2�8©¤¥¤�·����°K¥L��� ± �R����¥K���-�K���-°I�
¥K�t�v¡�°¤�u¢¦�2¡L�¦�8

¹ ± �v� ± ����¡¤�¦������¶8�Á¢¦���t�(� ¨R¨ ��¥¤����©¤��� ¨ �v¡L�v� ¨ �:���2¡ª���.�L«
¨ ± �����K¢u���X��¢¦�8� ¨ �8�K���t�c��¢u�8�c� Ä ± ¢ ¨ ± �K���t¥¤�c���u�u�l��©¤©I�v����¢¦�f�
¨ �����t�����H���¦£8����¢�� ± ��É¹ ± �����R�·�X��¢¦²8��¥¤��£��R� ¨ ����� ¨ �t¢¦�t¢ ¨ ���¦¢¦������;� ± � ¨ �8�8���t�8�@���8��¶L� ¨ ���¿°I�(¥¤�K�t�v�u���t�v¡ Ä ¢¦� ± � ± �(�t¢u�U¢u�¤£©K���������[�t�v���v ¹ ± ¥K�v¸B� ± ����¢¦��¢u�¤£|���v´�¥¤¢u�t�v�U�v��������� ¨ ���L«���t�8�H���L���t�v��� Ä  �� �vB� ± �-¡L�v�t¢¦���v¡ ¨ �����t�����j£8�8���p�[½L©¤���v������¡�8���¿©I�R�t�»�����ª��� ¨ �-¢u�K¡L�R½q¡L���¤���$ÔK� Ä �v�¦� Ä ¢¦� ± � ¨ ± �v¡L¥K��«¢u�¤£�©2�8�¦¢ ¨ ¢u�v��©K¥¤�t�v�¦�f°2���t�v¡?���?� ¨ ± ��¡L¥¤�·��°¤¢u�¦¢¦���f���v�����v?Ü³�± �8�U°2�v�R��� ± � Ä �|� ± ����¥¤£ ± �R½.©I�R��¢u�U�v�����v¸��� £K Ö "}Ù³¸�� ± �X���°¤�u¢¦�2¡�¥K�������Á�t¥ ¨ ± �t�c��¡L¢¦�t¢u���2����� ¨ ± �v¡L¥K�¦¢u�¤£�©2�8�¦¢ ¨ � ¨ ����u�v�8¡¬�t�����O¢¦�K��� ¨ ¢u�R��� ¨ �8�8���t�8�¦�u�R�¿¢¦��©¤�u�R���v�8�c�X��¢¦�8�j¼(���� ± ����� ± �v� ± ���K¡��G� ¨ ± �v¡L¥K�¦¢u�¤£G©I���u¢ ¨ �¿°2���t�v¡����§��©¤©¤�u¢ ¨ �X«��¢¦�8� 2 �a���v´�¥¤¢u�t�v�U�v�����v¸2�����t� ¨ ¢u���t��¡ Ä ¢�� ± �ª��¢¦£ ± �a©K������¢���¢¦�8����w� ± � ¨ �8���t���������u£��8�t¢¦� ± �È¢¦�������t�����¦«=��¢¦�������.¡¤¥¤�¦���(�ª�}�
£8¢¦²8�$°I�[�t�t�v�É�t����¥K���c�R
®V�¤��� ± �R�w�[½¤����©¤�u�:���p¥¤�K�t¥¤¢¦����°¤¢¦�u¢¦���-°I�[� Ä �R�v� ¨ ����©¤¥¤��«¢u�¤£ª���K¡ ¨ �8�8���t�8�@�t��´8¥K¢¦���R���R���c�w���t¢·����� Ä ± �R��¥K��¢u�¤£�©¤��¢¦�8��«¢¦����¢¦� ± �R��¢��c��� ¨ �����a©¤��¢¦�8�t¢¦��� ¨ �R¢u�¦¢u�¤£¿©¤�t���t� ¨ �8�u�:�t��°.�.©K�8�t�©¤��¢u����¢�����¢u��²8�R�c��¢u��� ¡¤¥¤���t���-¥L�t¥2�����[½ ¨ �¦¥K�t¢u���j¸É�8 £2ß�t�

�v�K��¥K�t��� ± �¿¢¦���t�v£���¢��������$� ± ���t��¡f¡¤�X�c�¤qÕ ± ¢¦�u�¿� ± �v�����t�
¡L����¢u£��K�v¡¬���¬�}²���¢·¡ ¡L����¡.«³�u� ¨ ¶L�����2¡ ��¢¦�K¢¦��¢·����©¤��¢¦�8�t¢¦���¢u�.²��R�c�t¢¦�8�¬�¦�v�¤£�� ± �R¸'�t¥ ¨ ± ©¤������� ¨ ���·�  ��v��©K����¡¤¢u�t�q������¥¤�L«��¢¦���a� ± �$¢¦�K¢���¢u���@� ¨ ± ��¡L¥¤�u� Ä ± ¢ ¨ ± Ä ��� ¨ ���t�R�»¥¤�¦�u�ª¡L�v�t¢u£��¤��¡���l���R�R� ¨ �����t�����w�t��´8¥K¢¦���R���R���c�Rl®a��� ¨ �8�K����´�¥¤�R� ¨ ���·�X«���R� ¨ ¢¦���$���¦�8�¤£��t����� ¨ �����t�����r©K��� ± � ¨ ���l°I�-¢u� ¨ ���v�8����¡��t�²X���u¥¤���$�E���'�X²��v�V� ± �R¢u�(¡L�v�t¢u�t��¡§²X���u¥¤��¸H�¦����¡L¢u�¤£¿�t���¿©I�.���
¨ �����t�����@©I�R�t�»��������� ¨ �'�8�:�R²��v�¿¢u�K������°¤¢¦�u¢¦����
Þ �v�t¢¦£8�f���K¡���Ý2«³�¦¢u�¤��� ¨ ± ��¡L¥¤�·��°¤¢u�¦¢¦���q���K���u�L��¢·�'���R�u�l����l�t¢u£ ± �-������¢¦�ª���t¢u���|���É� ± �¿���8��¶L� Ä �8����� ¨ ���t�G�[½L� ¨ ¥L�t¢u�����¢¦����2#�²8�R��¢¦�f�v��°I�v¡¤¡L��¡����L���t�R�ª�'� ± �ª©¤��� ¨ �v���t���c�a¥2���

¨ � ¨ ± ���É���K¡�©K¢¦©I�R�u¢¦�K�v�V�t�G¢u��©¤�t�X²8�'� ± �U�}²��v����£�� ¨ ����©¤¥¤��«¢u�¤£l�t©2�v�v¡ Ä ± ¢u�u�¿¡L� ¨ ���v���t¢u�¤£�� ± ���t¢u�U¢u�¤£§©K�t��¡L¢ ¨ ����°¤¢¦�u¢¦����®V�¤��� ± �R�U���8¥¤� ¨ �G���:¥¤� ¨ �R�t����¢¦�������ª�}� ¨ �8���G�»����� ���8�U�
©¤¢u� ¨ �v�:���;� ± � ¨ �8���t�����j���u£��8�t¢¦� ± ����K���:�R½L����©¤�¦�8¸L� ± �(¡L¥L«�c�X��¢¦�8�ª���;��².¢·��¢u����©¤�t� ¨ �v��� ± ¢u£ ± �u�ª¡L�R©I�R�2¡¤�B���G¢u� ¨ �8��¢¦�¤£¡¤�����'�»�����ß�(¡L�.�K����¢ ¨ � ¨ �v�¤��4®É�·�t�����8���V���u£��8�t¢¦� ± �ª�����t�¢¦�t�v�����t¢u²�� Ä ¢¦� ± �V°2��¡L�u�'¶��K� Ä � ¨ �8�.²��R��£��v� ¨ �
�c�X����¸��t�É� ± �X�� ± �V��¢¦���$°2�R�»�����É���v� ¨ ± ¢¦�¤£-�(©¤���v¡L�RÔK�¤��¡�� ± ���v� ± �8�u¡ª¢·�w¥¤�L«¶.�¤� Ä �lÂ=���K¡¿��¥2���Á°2�$°I��¥¤�K¡¤�v¡¿°��ª���t¢u���R��¥¤�cÅ]��r¢u�K���u�u��¸¢u�¿�U¡L�.�K����¢ ¨ �v�.²�¢u�����¤���R���Á���8�U� ¨ �8�8���t�8�I� ¨ ��¢¦².¢¦�t¢u�v� ¨ ���°I�a�t¥K�t©2�v�K¡L�v¡��8�����v�t¥¤���v¡ª���2¡ ¨ �������t�8�K���u£��8�t¢¦� ± �ª� Ä ¢¦� ±¡L¢¦Ý@�R���R��� ¨ �8����� ¨ ���l°I�ª� ¨ ± ��¡L¥¤�u�v¡q� ¨R¨ ���c¡L¢u�¤£G���¿²X����¢u��¥K�
¨ �����t�����j���L¡L���:�¦����¡L¢u�¤£����G�u���t£8�'²}���t¢·�X��¢¦�8�K�:¢u��� ± � ¨ ���U«©¤¥¤�t¢u�¤£��¦����¡pª¹ ± ¥K�'���v����«6�t¢u��� ¨ �����t�����
¡L����¢u£���°K���t�v¡q���
Ä ���c��� ¨ ���t���R½L� ¨ ¥¤�t¢u�������K¡����t��¢ ¨ ��¡L�v�8¡L�¦¢u�¤����¢¦�¤�v².¢��c��°¤�u��u�v�8¡¤���t�¬�Ã�¦� Ä �}²��v����£��l¥2�t��£������U� ± � ¨ ����©¤¥L��¢¦�¤£����[«�t��¥¤� ¨ �8

3+* Î Í �R�XÎ ,Á�54j�R�.) .|��� Í Ï Î76�*t�.8�)9*c�58,) ,;:=< '?>A@

¹ ± � ¨ �8�8���t�8�¦�u�R�;¢u�;���8���;��� �t�R��¢¦��©¤�u�R���R�����v¡��8�;�a���R�;������L¡L¥¤�u�v�v¸K��� ¨ ± ���r� ± �v� �v� ¨ �L¡L¢u�¤£���©K¢¦� ¨ �GÂ �»¥K� ¨ ��¢¦�8�2Å:���� ± � ¨ �����t�����4���u£��8�t¢¦� ± ��'®B�'�t¥¤�¤«=��¢¦���-� ± � ¨ �8�8���t�8�H���L¡.«¥¤�u�v�"�����w°K�8��¢ ¨ ���¦�u�(©I�R��¢¦�L¡L¢ ¨ ���K¡����t�Á� ¨ ± �v¡L¥¤�u�v¡-¥K�t¢¦�K£'� ± �°K�8��¢ ¨ �»���X��¥¤�t�������É� ± ��à4¹Vá'À@¸4¢6 �8�©K�t¢u����¢�����°K�8����¡f©¤���[«�v�U©¤�t¢u�������K¡��t��� ¨ ± �t�8�¤¢·�t���t¢u����©K�t¢u��¢���¢¦²8�v�v



3��EÊ�� �XÑEÎ2�XÑ»��4?�¤����Ñ 0IÍ .+) Í �
® ¨ �����t�������t�L�����R�È�»�8��������°I����¸;���2¡��U�8�t��£8�R�¤�v�����¦�u�

�»����©¤�t� ¨ �v��� ¨ �����t�����6¸ ¨ ����°2�¿��©¤�u¢¦�(¢¦���t�§�t�R²8�R�c��� ¨ ��� ¨ ¥¤�·�X«�t¢u����©K��� ± ��Ö¦×[Ù�Û.� ± �(¡L¢u�t� ¨ � ¨ �8�8���t�8�2©2�X� ± ¨ ����©¤¥L���v� ¨ �8�L«�t�����¤�t�[�t«6©I��¢u�����r�»����������� ¨ ¶.¢¦�¤£$�R�������c�;���K¡U��¥K���
�t¥¤� Ä ¢¦� ±�'���ª���¦�¤©I�R��¢u�.¡����K¡��a�u� Ä �·�X���R� ¨ �(�����R�K�t¥¤���w� ± �:©¤��� ¨ �v���������°K¢¦�u¢����8�¹ ± �'�t����©I� ¨ �:���H� ± ����°I�X²��a�t¢u��¢¦�¤£ ¨ ���K���t�c��¢u�����¢·� ¨ ��¢���¢ ¨ ��� Ä  �� �v;� ± � ¨ �8���t������©2�v���»�8�t�ª��� ¨ ��¸X¢6 ��;� ± ¢·�4©K���t����w� ± � ¨ �����t�����u�¦�v� ± ����� ± ¢¦£ ± ���R�·�X��¢¦²8�-¥K�t£8�R� ¨ ���áV� ± �R�c�¥¤��£��v�8�'� ¨ �t¢u²�¢¦�t¢u�v�'���t� ¨ ��¢���¢ ¨ ���r���8��¶L� Ä ± ¢ ¨ ± �����¤¢¦�t�8�a� ± ��t�.���t�v� 2 ��� ¨ �t¢u².¢��������K¡ Ä ± ¢ ¨ ± ���������t¢u£�£8�R���v¡q°��§� ± �G¡L�R«�t� ¨ ��¢¦�8�����"¡L�v²�¢·�X��¢¦�8�K�Á�»����� � ± ���¤����¢u�K���;°2� ± �}².¢¦�8¥¤�vÁÜº�
�E� ¨ ���t�����¿���É� ± �v�t�¿�v�t�����-�t� ¨ �X²8�R���l©¤��� ¨ �v¡¤¥¤�t��� ¨ ����°I�°I�[�����R�B�t��¢u£�£��v�t��¡U°���¢u���t�R����¥¤©L���w�c�X� ± �R��� ± ����°���©I�R��¢¦�L¡L¢ ¨©I���u�¦¢u�¤£K
áV� ± �R�:�c���t¶.�a������¥K�t�v¡��t��¥¤©I¡K�X�t�U���u� Ä �u��²X�����.¢¦�¤£ª©2�X«�c�����[���R�c�a���"� ± �ª�¤���¤«6�u¢¦�K�v���'©¤�·���������L¡L�R�6G¹ ± �v�t�U���8��¶L�

�����(��� �t�R��¡¤�X�c�X« ± ���2¡L�¦¢u�¤£G¢u���t�v�K��¢u²��8¸2�8 £2V¥K�t¢u�¤£G���t¢u£��8�¤��«
���[���t¢ ¨ �»¥K� ¨ ��¢¦�8�K�$���$�����t��¢�½§¢u�.²��v���t¢¦�8�j'¹ ± �R¢u��¡L¥¤�c�X�t¢u���
¨ ���§°I�(�E���$�u���¤£8�R�É� ± ���§� ± �-©2�v�t¢u�L¡l�����t¢¦£8�¤�v¡¿�t��� ± ��¡L¢¦«��� ¨ ��©K�X� ± ¸É°¤¥¤��¡L�v�u�}�.¢u�¤£f� ± �R¢u�¿�v�K¡L¢u�¤£�¢u�K���������c� ± �8���
Ä �v��¶��[Ý@� ¨ �¿���Ã� ± � ¨ �������t�8�¦�u�R�ª©I�R�t�»�����ª��� ¨ ��¸B�� £K � ± �
¨ �8���t�����D �¢��t�t�v�:���Á� ± �'�t�L�����R� 2 �:���c��°¤¢u�¦¢¦����
¹ ± ¥K�B� ± �R� ¨ ���°I�¿�����t¢¦£8�¤�v¡f���u� Ä ©¤��¢¦�8�t¢¦���q�t��� ± �X��� ± �R¢u�U�[½L� ¨ ¥L�t¢u���f¢·�©¤���R�v�U©¤�t�v¡§°����v²��R�����[½L� ¨ ¥L�t¢u�������
� ± ��¡L¢u�t� ¨ �a©2�X� ± ¨ ���¦«
¨ ¥K�u���t¢u����Ö�×�Ø}Ù6
¹ ± � Ä ± �8�¦�:�t�.���t�v�Ì¢·�4¥K��¥2���u�¦����¥¤�U�X²��R�
�$��¢u�¤£8�¦�V���  �¸

���'�8�q�¿�¦¢u��¢����v¡��.¥¤��°I�R�'���É���  a� Ä ¢¦� ± �����c�X�t¢ ¨ ©K���t�t¢¦«�t¢u�������r� ± �a�c���t¶L�R�� � �;��� ��� �;�	��� �
����� � ���� ��� 
���� � � � ������
�������� ����
�� � ����� � ��� ����� ��� ����������� � 
��	�X¸����$� ± �X�"� ± ¢u£ ± ¨ ��¢��t«¢ ¨ ���u¢¦���-���L¡L¥¤�u� ¨ ���ª©¤���R�v�U©¤�"� ± �V�[½L� ¨ ¥L��¢¦�8�ª���j���u�v���"¥¤�t«£��v�������¤� Ä ± �v��¢��"°I� ¨ �����v���t¥¤�K�K��°¤�u��4¹ ± ¢·�"���u�t�'�R�K�t¥¤���v�� ± �X��¢¦� ¨ �8���-���B�X²��R���u�8��¡�� ± �U���8��¶L� Ä ± ¢ ¨ ± ���������v�t².¢ ¨ �v¡�����t¢u��� Ä ¢u�¦�@°I�V� ± �'���8��� ¨ ��¢¦�t¢ ¨ ���@�8�¤�v�a¼L��°.².¢¦�8¥K�t�¦�U©¤����«².¢u�t¢u������¥K���(°2�����8¡L���t���}²8��¢·¡q���q�8©2�v�����t¢u�¤£����L���t�R� 2 �
¨ �c��� ± ¢u� ¨ ���t�U���w�X²8�R���¦����¡��8�'�t�v©2���X�t��¡l¡L����¡L�u¢u�¤�v�'��¢·�t�v®V�a�E���'�8�É� ± � ¨ �������t�8�r���¦£8����¢�� ± � ¡L�.�v�$�¤��� ¨ ± ���¤£��8¸2� ± ����R�·�X�t¢u²��l¥¤�t£8�R� ¨ �?���(���.¡¤¥¤�¦���¿¡¤�������K��� ¨ ± ���¤£8�§�R¢¦� ± �v��t�G� ± �X�'©¤�t¢u����¢¦�t¢u�v�a¢¦�K�t¢·¡L�(� ± � ¨ �����t�����4���u£��8�t¢¦� ± � ¨ ���l°I������X��¢ ¨ ���u�¦�§�8�t�t¢u£��¤��¡p�®É�.� Ä �}�¿� ± ���t�v�u���t¢u²��-¥¤�t£8�R� ¨ ��°2�R«� Ä �R�R�����8��¶L�B�ª�}� ¨ ± ���¤£8�a¡L¥¤��¢u�¤£U�-���v���t��¥ ¨ ��¥¤�t¢u�¤£-���H� ± ��t�.���t�v��¸
�� £K��»�8�-��¡¤�U¢·����¢u���f���É�¤� Ä ¨ �����t�����"�����t¶L�G¼w¢¦�� ± �X� ¨ �8���U� ± ¢u�'¢·�(¡L�8�¤�ª�X�����c�X�t��¢u��©2������¡l°.�§� ± � ¨ �8�L«�t�����u�u�v¡��t�.���t�v�S���K¡'�R�.².¢u�t�8�¤���R��� 2 �j¡L�.�K���U¢ ¨ �v¸}�¤���r�X�H� ± �� ¨ ± �v¡L¥K�¦�v� 2 �Á�����t�$�¦¢u¶���¢u� # Þ �B

�É� Ä �R²8�R��¸j¥K�t¢¦�K£§���¤�u�l©K�t�v�R��©L�t¢u���f¢·�(�K�����v�¤��¥¤£ ± �t�� ¨v¨ ¥¤�c�X���R�u���t©2� ¨ ¢¦�»�G� ± � ¨ �8�8���t�8�¦�u�R��¸L¢u��©2���t�t¢ ¨ ¥¤�·���:¢¦� ¨ ���L«�¤���(��� ¨ ¢u�R���t�u�q����¶8��¢¦���t�q� ¨R¨ ��¥¤���'� ± �G©¤��� ¨ ��¡L�R� ¨ � ¨ �8�L«���t�c��¢u�8�c�Á°2�R� Ä �v�R����¥K°K���R���:���H� ± � ¨ �8�8���t�8�p���u£�����¢¦� ± ��

3�� ) @ 4 Í � 8;�}Î Í ÑE���L�vÑ=Î Í � Í Ï¬��Î-.(.�Ð Í ÑE�8�L�vÑ=Î Í
®È©2���t�t¢·���a�t�.� ¨ ± �����¤¢·���X�t¢u���¬�������8��¶L�����¦�u� Ä �ª�»�8��� ± ��t©2� ¨ ¢¦Ô ¨ ���t¢u���Ã���a©K�t� ¨ �v¡¤�R� ¨ � ¨ ���K���t�c��¢u���������K¡�� ± ¥K��¢u�U«©¤���X²����"� ± � ¨ �8���t�����p©I�R�t�»��������� ¨ �'°.�G��¢u�¤¢¦��¢·��¢u�¤£�� ± �(�·�X«�t�v� ¨ �¿��� ¨ ��¢���¢ ¨ ���p©K��� ± �v
�$�R�K�R�c���u�¦�8¸�� ± �V°I�v���B¡¤�����'���(°2�a¥K�t�v¡ª¢u������� ��� ����� � �5���

¨ �8���t�����"���¦£8����¢�� ± �µ¢·��� ± ���·���������K�G©¤���.¡¤¥ ¨ ��¡p¸H� ± ¥K�(� ± �

°¤¥¤ÝI�v���Á°I�[� Ä �R�v�¿���L¡L¥¤�u�v�Á�ª�}� ± �}²8�a�8�¤�¦�����¤�'���u����¸¤���K¡� ± �É¢u� ¨ �8�U¢u�¤£�¡K�X���'�X²8�R� Ä �t¢¦�t���r� ± �V���·¡����¤�8r¹ ± �É�»���u�¦� Ä «¢u�¤£$°K���t¢ ¨w¨ �8�U�-¥¤�¤¢ ¨ ���t¢u���IÓ����.� ¨ ± �����K¢u���X��¢¦�8�'� ¨ ± �v�U���;���t����'©2���t�t¢ ¨ ¥¤�·���ª¢u���t�R���v���G���f¢¦��©¤�u�R���R��� ¨ �u�8�t�v¡.«³�¦�.�8© ¨ ���L«���t�8�¦�u�R�c�$Û
«HÀ.�.� ¨ ± �����K¢u�t¢¦�K£V� ± �:���c���t�t¢u�¤£a���I�$���L¡L¥¤�u�B�8��� ± �Á�R�K¡���I���K��� ± �R�4���.¡¤¥¤�¦��Â=¡¤�X�c�a©K�t�L¡L¥ ¨ �t¢u���2ÅH¢·�4���2©K�t¢u���B¢u���t�v��«�����:���G��©I� ¨ ¢��»��¡¤�X�c�U¡¤�R©I�R�K¡L�v� ¨ �����2¡G���ª�R�K�t¥¤���$�·�X���R� ¨ ���¢u�¤¢¦��¢·�t���t¢u���¿�����t����� ¨ ��¢���¢ ¨ ��� ¨ �������t�8�K©K��� ± �'Ö¦×vØ}Ù³¼L��¥ ¨ ±�8�¤� Ä �}�G�t�.� ¨ ± �����¤¢·�t���t¢u��� Ä ¢�� ± ���t�.���t�v� 2 � ¨ �¦� ¨ ¶G¢·�:���·����U£��.�L¡ Ä �}�ª����©¤�t�X².¢·¡L�a�»���É©I�R��¢¦�L¡L¢ ¨ ���8��¶L�v
«'®V�t��� ¨ ± �t�8�¤��¥2� ¨ �8�U�-¥¤�¤¢ ¨ ���t¢u���f��¥2���U°2�¿¥K����¡f°I�[«� Ä �R�v�����L¡L¥¤�u�v� Ä ¢¦� ± ¥¤�¤���R�·�X�t��¡-������©¤�u¢u�¤£a�c�X���v�v;®a�;�-¥L«��¥K���@�[½ ¨ �¦¥K�t¢u�����8�¿� ± �����v¡�¡¤�X�c��¥K�t¢u�¤£��-¥L�t�R½�¢¦�����t�L¡L¥ ¨ �v��t¢u¡¤�f�[Ý@� ¨ �§��¥¤�L«6�t¢u���f���.� ¨ ± �����K¢u���X��¢¦�8� Â»©K�t¢u����¢���� ¢¦�.²��v��«

�t¢¦�8�2Å]¸a�¦� ¨ ¶�«6�»�t�v�l� ± �����v¡ ¡¤������©¤�t���t� ¨ �t¢u��� �U� ¨ ± ���K¢u�t�ª�R¸�8 £2ÉÖ � -}Ù6¸L�-¥K���É°2��©¤���[�»�v�t���v¡j¼
«(À��t�����K£q�t��� ¨ ± �t�8�¤¢·�t���t¢u���¬Â � ± � Ä �v�¦�B¶.�¤� Ä �|���R�K¡L�"![«²8��¥K�cÅr��¥K���"°I�V�t©K����¢¦�K£��u��¥K�t�v¡p¸.���2¡-¢¦���w��©¤©K�t�8©¤�t¢·�X���R�¤���t�

Ä  �v �v"� ± �-��©¤©¤�u¢ ¨ �X��¢¦�8���t��´8¥K¢¦���R���R���c�Á��¥K���V°I� ¨ ���t�R�»¥¤�¦�u�
¨ ���K�t¢u¡¤�R���v¡U���4¢¦�"¢u�
�'²8�R���(��� ¨ ¢¦�v�8�"¡¤�v��¡L«6�u� ¨ ¶�£��R�K�R�c�X�t�8�v
À.�8��� ¨ ����©¤��� ± �v�K��¢u°¤�u�q��¥¤�u�v�v¸a°2���t�v¡O��� ¨ �����t����������«£8����¢�� ± � ���K���¦�L�t¢u�v¸:�u�}�8�R�c�ª�����������t¢ ¨ ©¤��¢u����¢��������K¡ ¨ �����[«�»¥¤�-���.� ¨ ± �����K¢u���X��¢¦�8�j¸a���¦�u� Ä �¿�»����� ± �|¡L�v�t¢¦£8�O���-�c�X� ± �R�

¨ ����©¤�u�[½ ¨ �8�8���t�8�¦�u�R�c���c��¶.¢¦�K£�¢u�8���?� ¨R¨ �8¥¤����� ± � ¨ �����t��������v´�¥¤¢u�t�v���R�����v¼K� ± �R�����u�t�G�u�v��¡��t����Ý2«³�u¢¦�¤�-���K���¦�L�t¢u�V¢¦�K¡¤�[«
©I�R�K¡¤�R���t�u�����;� ± ��©¤��¢¦�8�t¢¦���G������¢u£��K�U�v���v¸L�� £K:Ö¦×"#}Ù³

�V� Ä �v²��R��¸L� ± �-¡L����¢u£��§���K¡§� ¨ ± �v¡¤¥¤�u��°¤¢u�¦¢¦�������K���u�L��¢·�:����t�L�����R�ª��°K�8����¡q�8�f���c�X�t¢ ¨ ²X���u¥¤�v�����B� ± �¿� ¨ ± ��¡L¥¤�u¢¦�K£�©K�X«�c�����[���R�c�w�8�t�t¥¤���v��� ± � � ��� �;��� �I¶��K� Ä �¦��¡L£��É���j� ± � Ä ���c���
¨ ���t�-�R½.� ¨ ¥L��¢¦�8�l��¢¦�������w� ± �U�c���t¶.��Ö¦×3��Ù³�¹ ± ¢u�'¢·����� Ä �}�.�¡L¢ � ¨ ¥¤�¦�H���É���v�8��¥¤����¸����K¡ ¨ ���'�u�v��¡$���V�:�t�R²��v�t�
¥K�K¡L�R�t«³¥K������I� ± � ¨ ����©¤¥L��¢¦�¤£�©2� Ä �R� Ä ± �R��� ± � ¨ �8�U©K¥L�t¢u�¤£(�u�8�8¡ ± ����·����£��É²X���t¢·�X��¢¦�8�K�R¸8�� £Kr¢¦��²�¢·�t¢¦�8�L«6°2���t�v¡ ¨ �8���t�����6;®É�K��� ± �R��t��¥¤� ¨ �Á���2��¢¦��¢u�¤£(¥¤� ¨ �R�t����¢¦���������t¢·�����r�»�t�8� ²X����¢·��°¤�u� ¨ ���U«�-¥¤�¤¢ ¨ �X��¢¦�8�|¡L�R�·�}�L� Ä ± �v��� ± � ¨ �����t�����u�u�R�(¢·��¡L¢·���t��¢¦°¤¥¤�t�v¡�X²8�R���q�u� ¨ ���Á���t���§�¤�R� Ä �8�t¶@¸��u�v�8¡L¢u�¤£l�����U�����t¥¤��¢¦�¤£  �¢¦��«���R��$�4�v����¥¤��°K�X��¢¦�8�K�ª���Ã� ± �q�t�L�����R� 2 � ¨ �8�U©K¥L�t¢u�¤£|�u�8�8¡���u�t�?���t¢·���q¡L¥¤��¢¦�¤£Ã���v���t��¥ ¨ ��¥¤�t¢u�¤£�¡¤¥¤�l���Ã�8¡L��¢u���t¢¦�8� ���
¨ ��� ¨ �R�u�u���t¢u������� ¨ �����t�����:� ¨ �t¢u².¢���¢¦����¥¤©I���Ã� ¨v¨ ¥¤�����R� ¨ �¿����v²��R���c� ¨ ����¢¦�K£��»�t�8� �l¡L�.�K���U¢ ¨ �v�.²�¢u�����¤���R����l®V¡¤��©L«��¢¦�8� ��£���¢u�K���ª��¢¦��¢u�¤£�¥K� ¨ �v���c��¢u�8��¢¦��� ¨ ��¥¤�·¡�°2�q©¤���X²�¢·¡L��¡°.�G��������%K�[½L¢u°¤�u�(� ¨ ± ��¡L¥¤�u¢¦�K£U©I���u¢ ¨ ¢u�v�v

%'& ÐH�}�.8�)��G��).�vÐ@,»����Î Í : )�).Ï *��r�¤�)(��v� 8,).Ï;Ð@,EÑ Í10
Ü³��¢·�f�R½.©I� ¨ �t��¡�� ± ���?��� �8���u¢u�¤� ��¡K��©L��¢¦�8������� ± �

� ¨ ± �v¡¤¥¤�¦¢u�¤£�©K���c�����R�t�R�c�É���"� ± � ¨ �����t�����u�u�R�$���}��¢u� ¨ ���v�8���¢¦���'�X²8�R�c���u�H��� ¨ ¢¦�v� ¨ � Ä  �� ��(�t¢u��¢¦�K£�¥K� ¨ �v���c��¢u�8��¢¦��� ¨ ���U«¢u�¤£��»�����È� ± �ª¥¤�¤¶.�¤� Ä � ¨ �����t�����u�¦��¡l�v�.²�¢u�����¤���R����G®É�·���
Ä ��¶.�¤� Ä �»�t�8� ¨ �����t������� ± �v�����V� ± �X� ¨ �¦����¢u�¤£:� ± �"�u�.��©��ª�}�¢u� ¨ ���v�8����©I�R�t�»��������� ¨ �����K¡?����°¤¥K���t�K�v���U��£8��¢¦�K���U¡¤¢u���t¥¤�t«°K��� ¨ ��� Ä ± �v��©¤�t�8©2�v�t�u�¿¡¤�v�t¢¦£8�¤�v¡����2¡���¥¤�¤��¡|Â»��� ± �v� Ä ¢·���¢¦�w�ª�}�U�¦����¡U�t��¢¦�K������°¤¢u�¦¢¦���¤Å]
¹ ± ¥K�
� ± �V¢·¡L�v�(���@�»�R��¡.«6°2� ¨ ¶� ¨ ± �v¡¤¥¤�¦¢u�¤£§��� ¨ �R���t�u�������8�t�U°I��� ± �»�����Ú� ± � ¨ �������t�8�"��¢·¡L�



Ö '¤¸ �XÙr���2¡��»����� � ± �(�t�����¦«=��¢¦��� ¨ ����©¤¥L��¢¦�¤£G�t¢·¡L��Ö � �.¸;×�×]Ù³®É�.� Ä �}�?� ± ��¡L�v�t¢¦£8� ������� ¨ ¢u�R�����»�R��¡.«6°2� ¨ ¶¬� ¨ ± �v¡L¥¤�u�R�c���¥2�������c���t� Ä ¢�� ± �|���X�»�q¡L�v�t¢¦£8� ���(���t�����¦«=��¢¦���§¢u��©¤�¦�R«���R�������t¢u���'°K�8����¡a�8� ¨ �8�8���t�8�X�t��´�¥¤¢¦���R���v�8�c�p���p©K�t�v²�¢u��¥2���u�¡L��� ¨ �t¢u°2��¡OÂE¢= ��¬���¦£8����¢�� ± � ©K���t�t¢¦�t¢u���H¸"©¤��� ¨ �v¡L�v� ¨ � ¨ �8�L«���t�c��¢u�8�c�:���K¡¿©¤��¢¦�8�t¢¦���G�����t¢¦£8�¤���R���cÅ[
�r¢¦£8¥¤����×�£8¢¦²8�v�G�����X²��R��².¢¦� Ä �������»�R��¡.«³°K� ¨ ¶Ã� ¨ ± ��¡.«¥¤�u�R� Ä ± �v�t�����?��¥L���R���u���8©OÂ»� ± � ���� ����� � ��

� ����
7� � ����� � ��Å

± �8�a°I�R�v�q�8¡¤¡L�v¡§�t�¿� ± ��©¤��� ¨ ���t� ¨ �8�8���t�8�¦�u�R�V�t����¡¤��©L�'¢¦����v���¦«6�t¢u�U�B� ± �É� ¨ ± �v¡L¥¤�u¢u�¤£'©K���c�����[���R�c�B¼�¢¦�
����¶8�v�
�8�4¢¦�¤©K¥L����v�8��¥¤���v�
����¶8�R�����ª°I��� ± � ± � ¨ �8�8���t�8�¦�u�v¡U©¤��� ¨ ���t�
�8¥L�t©K¥L�Â»�8 £2r� ± �a�t�c� ¨ ¶.¢u�¤£(�R�������]Å
���K¡����ª� ± � ¨ ����©¤¥¤�t�R�32 �B� ¨ ��¢¦²�«¢¦����ÂE�� £KB� ± � ¨ ����©¤¥¤�t¢u�¤£G�u�8��¡2Å] � ����¢·¡L���:� ± ¢u� ¨ �������t�8�¦�u�R�
Ä ����¶�¢u�¤£|©I�R��¢u�.¡¤¢ ¨ ���u�¦�¬�X�����c�X��� Ä ± ¢ ¨ ± ¢·��¢��c���v���(���?°I�¡L�R�t�R����¢¦�K�v¡p¸@� ± �ª���L���t�R� 2 �'�����t¥ ¨ �t¥¤�����ª�}���v²����u²��-���u���¤£�§¡L¢·� ¨ ���[�t����¢¦����� ¨ ���u�ª¥¤©2�8�f� ¨R¨ ¥K�t���R� ¨ �ª���Á�R²8�R�����v¸;�8 £2�»���w�¤� Ä �c���t¶L����¡L��¢·�t�t¢u���ª���"�[½ ¨ �v©L�t¢u��� ± ���K¡L�u¢u�¤£K4¹ ± �v�t�¡L� ¨ ¢·��¢u���K���@©¤�t� ¨ �v�������B���t� ± ���K¡L�u�v¡¿°.�����¤��� ± �v�:�t�����¦«=��¢¦������8��¶@¸a� ± � ���� ����� � ��
�� � ��
���� � �]¸ Ä ± ¢ ¨ ± ¢·���¤�����»¥¤�t� ± �v�¡L�R����¢u�u�v¡Ã¢¦�Ã� ± ¢u�G©K��©I�R�� �����R�u¢¦��¢u�K�����|����¥K¡L¢u�v�G���K¡?�[½.«
©I�R��¢¦���R���c�-� ± � Ä � ± ����� ± �G�����8�u���¤�R��¡L�v¡f�t� ± ���K¡L�u�G� ± �
���v�8��¥¤���R���v�8�c�:���K¡�� ¨ �t¥2�X�t¢u�����c���t¶.�v¸¤�8 £2�©¤��� ¨ ¢·�t�'�t¢u�U�R«��������©¤¢u�¤£-���H�v²��R���c�R¸L���u���v��¡¤�-�R½.¢·���w¢u�¿���8���w��Ý2«6� ± �[«º� ± �v���
à4¹Vá'À�¼�� ± ¥K�w� ± �v�t� ± ��¥K�t�R¶8�R�v©¤¢¦�K£����8��¶L� ¨ ���G°2�'°¤¥K¢¦�¦�:¢¦��U��¢u¡¤¡¤�¦� Ä ���t�'�·�}���R�Á°I�[� Ä �R�v�¿� ± ��¶��v�t�K�R�j���2¡G� ± �(��©¤©K�¦¢¦«
¨ ���t¢u�������8��¶L�:���K¡ Ä �(¡L�ª�K���V�¤�v�v¡¿�t�ª©2�X� ¨ ± �����R½L¢u���t¢u�¤£���v���¦«6�t¢u�U�'¶8�R���¤�R�6

Function
Task

Scheduling

Processus

U

Control

Requests

periods

RTOS (Linux/RTAI)

Controller
Scheduling

Manager
Desired load

Admission/Reject

Process Controller

laxity

Y

Y

QoC

Eve
nts

QoS processing
Requests processing 
Exception handling
Processus based decisions

Middleware housekeeping

ClocksComputer activity
measurements

Measured load

& Ñ 0 ÐH��) Ê�� �¤�R��¡.«³°K� ¨ ¶G� ¨ ± �v¡¤¥¤�¦�v�É�����t¥ ¨ �t¥K�t�
¹ ± ��©¤����°¤�u�R� ¨ ���l� ± ¥2��°2�G�������t��¡��8��¾a�.�ßÂ³¾a¥K���u¢¦���

���
�w�����t����� Å4��©¤�t¢u�U¢·���X�t¢u���¿¥¤�K¡L�v� ¨ ���K���t�c��¢u���w���H�}²}��¢¦�·��°K�¦�
¨ �8��©¤¥L�t¢u�¤£a�t�����8¥¤� ¨ �v�v Þ ¥K�t¢u�¤£V�R½L©2�v�t¢u���R�����r���(������¢¦�ª���t����r� ± � ¨ ¥¤���t�v���B¥L��¢¦�u¢·�t���t¢u�����ª�}�G°2� ¨ ����©¤¥L���v¡����vÛ

��� �� 	

 �

� 	� 	

Ä ± �v�t��
	
¢·�É� ± �-������¢¦�ª���t�v¡§�[½L� ¨ ¥L�t¢u������¢¦���U���
� ± ���c���t¶� ¸¤���K¡ � 	 � ± �(������©¤�u¢u�¤£�©2�v�t¢u�L¡¿�8�t�t¢¦£8�¤�v¡��t�U�c���t¶ � 

�����R�u¢u�U¢u�K���t�$����¥K¡L¢u�v�"Ö 'XÙL�t¥¤£�£8�v���p� ± ���r�É¡L¢u��� ¨ �4���.��� ± �[«�t¢u�����w� ± ��� ¨ ± �v¡¤¥¤�¦¢u�¤£����R£�¥K�u���t���(�8��������©¤�t¢u����� ¨ �8���t�����©¤����°¤�u�R�m�u�v��¡K�R¸ Ä ± �R�§¢¦�a¢·�V�t�c� ¨ �c��°¤�u��¸K�t�������8�¦¥L��¢¦�8���t�.�
¨ �������¦�¿�t��°2�-¢¦��©¤�u�R���R�����v¡�¢u�§���v���¦«6�t¢u�U���X �"��� ¨ �t¢ ¨ ���H�t��«�u¥L�t¢u���K� Ä ¢u�¦�r°I���»�8¥¤�K¡§¢u�§� ± ���}²}��¢¦�·��°K�¦� ¨ �����t�����;�t�.�8�¦°I�}½��ë6æ�6�ècåçå�ð54Xè�ðjð:4�ærêuæ�æ�ò�ý ï}è�6�� �:6 4�æ�ò�õ}åçæ�ë ;Hñçåçå�ï�æ4ñ ð5�6æ�å ê¤è�ë6æ�ècå ý·ð=ñçì:æð6è����Éåçã[ècò}ñçä�BBð54}æ��:4}ècë6æ�ò 6�ã]ì��}õ�ð=ñçä�BÁë=æ��6ã]õ}ë56�æ�I�IGI

�8�w¢u�G�R� ± ��� ¨ �R���R���c�w���K¡G��¡K��©L�c�X�t¢u������� ¨ ¥K�t���R��� ¨ �����t������ ± �R�8�t�8 �¤����¢u�K������� ¨ ��� ± � ¨ ��� ¨ ¥¤�u���t¢u�������B� ± �ª�K� Ä �����t¶
©I�R��¢¦�L¡¤� ¨ ����°I�(¡L���¤�'°.�ª� ± ���t��� ¨ ���u¢¦�K£�Ö $�Ù³Û

� �����
	 � � 	 ����� �!��"$# ��&%�'

Ä ± �v�t� �(%)' ¢·�Á� ± ��¥¤�t¢u�¦¢·�t���t¢u�������R��«³©2�8¢¦����
¹ ± �É�»�R�v¡¤°K� ¨ ¶�� ¨ ± �v¡L¥¤�u�R��� ± �v� ¨ �8�8���t�8�u�
� ± �É©K�t� ¨ ���t�t���¥L��¢¦�u¢·�t���t¢u����°.�U�8�t�t¢¦£8�¤¢u�¤£$�����t¶(©I�R��¢¦�L¡¤��� ± ������©L��¢¦��¢·���É� ± �

�X²8�R�c���u� ¨ �����t�����@©I�R�t�»�����ª��� ¨ ��

% �EÊ � Í )+* : )�).ÏH�4�¤�)(¬�v� 8,).Ï;Ð@,EÑ Í10 �L�X� 8;ÑE�5).����ÐH��)
Üº�'���c¡L�v�p�t�É�8¡� �¥K���H���L«³�u¢¦�¤�4� ± �"� ¨ ± �v¡¤¥¤�¦¢u�¤£:©K���������[�t�v������K� ± � ¨ �����t�������c���t¶.�v¸�� ¨ �������t�8��«º� ¨ ± �R���w� ± ��¥K�u¡-°2�Á�����c��°L«�u¢u� ± ��¡U�»���
� ± �V� ¨ ± �v¡L¥K�¦�v�v¸�����¡L�8�¤�:¢u�§Ö �XÙ6
®V�"���.� ¨ �����t�����¡L����¢u£��¬©K�t�8°¤�¦�v�ª�R¸B� ± �l¢u�U©I���t�������G¢u����¥K�v�����t��� ± �R���[�»�8�t�

� ± �-�t©2� ¨ ¢¦Ô ¨ ���t¢u������� ¨ �����t�����H¢¦�¤©K¥L���v¸@�U�����t¥¤���R���R���É��¥¤��«©¤¥¤���É���K¡ ¨ �������t�8�@���t��¥ ¨ �t¥¤����

% �EÊ �EÊ * Î Í �R�XÎ ,Á�v�R�XÐr���vÐ;��) � �¤�R��¡L°K� ¨ ¶¿� ¨ ± �v¡L¥K��«¢u�¤£G¢·�a��¡L�.�K����¢ ¨ ��©¤©K�t��� ¨ ± ���u�¦� Ä ¢u�¤£��t�¿°2�R�����R�V¥2����� ± �
¨ ����©¤¥L��¢¦�¤£����v�t��¥K� ¨ �v�v¸X¢¦�ª©K������¢ ¨ ¥¤�·��� Ä ± �R��� ± � Ä ����¶��u�8�8¡
¨ ± ���¤£����
�� £K4¡L¥¤�É�t��� ± �V� ¨ �t¢u²X�X�t¢u�������p���G��¡L��¢¦�����v¡��¤� Ä�c���t¶IOÕq�l©¤�t�8©2������¢u�ÃÔK£�¥¤��� ��� ± ¢u�R�c��� ¨ ± ¢ ¨ ��� ¨ �����t��������t��¥ ¨ ��¥¤�����¹ ± ���»�R��¡L°K� ¨ ¶§� ¨ ± ��¡L¥¤�u�R� ¨ �8���t�����·�V� ± �����  
� ¨ �t¢u².¢����'� ¨v¨ �8��¡L¢u�¤£B�t�É� ± � ¨ ����©¤¥¤�t¢u�¤£É���v�t��¥¤� ¨ ���}²X��¢u�·��°¤¢u��«¢¦���?ÂE�U�����t¥¤���v¡l� ± ����¥¤£ ± �t����� ¨ �8�U©K¥L�t¢u�¤£��u�8��¡q���[���t¢ ¨ Å°.���8¡� �¥K���t¢u�¤£U� ± �'©I�R��¢¦�L¡¤�Á���H� ± �a�c���t¶L�w¥2����¡�¢u��� ± �'©¤����«
¨ �v��� ¨ �������t�8�¦�u�R�}ÂE�cÅ]

Computing
resources

QoS
Scheduler
Feedback

Task
periods

Process

CPU activity

reference

Controller

perturbation

output
Controlled 

h

QoC
Process

& Ñ 0 Ð;��) ),� �É¢u�R�c��� ¨ ± ¢ ¨ ��� ¨ �����t�����p���t��¥ ¨ ��¥¤�t�
áa�-� ± �:��� ± �v� ± ���2¡(� ± �:¢¦�����R���K���L©¤��� ¨ ���t� ¨ �����t�����u�¦�v�;¢·�± �v�t��¡L����¢u£��¤��¡������c��¶��U¢u�8����� ¨R¨ ��¥¤���V��¢¦��¢u�¤£�¥¤� ¨ �R�t����¢u�L«��¢¦���R¸4�� £K�¡L¥¤�G�t�§©¤���R�v��©L�t¢u���K� Ä ± ¢ ¨ ± ���t�ª¥K�K�}²��8¢u¡¤��°¤�u�¢u�����v����«6�t¢u��� ¨ �8�8���t�8�2���K¡�¡L¢ � ¨ ¥¤�¦�B�t�-� ¨R¨ ¥¤�����t�v�¦�U©¤���v¡L¢ ¨ �¢u�Ã��¡L�.�K����¢ ¨ �R�.².¢u�t�8�¤���R���v?Üº�K¡L�R��¡�¥K�¤¶.�¤� Ä �?¢u�¤©¤¥¤��«�8¥L�t©¤¥¤�¿�·�X�t�v� ¨ ¢u�v� ¨ ��� ¡L�[���R��¢¦�8�����t��� ± �q©K�t� ¨ ���t�G©2�v���»�8��«�ª��� ¨ �v�����K¡����c��°¤¢u�¦¢¦���@¼j� ± ¥2�$� ± � ¨ ���K�t¢u¡¤�R���v¡�¾a¥2���u¢���������w�8�8���t�8�L���v���t¥¤���:¢u� ¨ ����©I�8�t�v¡U���I� ± �É¥K�t¥K���L����� ¨ ¶.¢¦�¤£'�v��«�����:���2¡�� ± ������°¤¥K���t�K�v��� Ä  �� �:��� ¨ �����t�����j¡¤�R�·�}�.�v
- ���t�"� ± ���r¢u�(� ± ¢·�;©K�t�v�¦¢u��¢¦�K���t�����t¥K¡¤�'� ± ¢·�4�����t¥ ¨ �t¥¤���"¢·��t¢¦��©¤�u¢¦ÔK�v¡ ¨ �8��©K�����v¡ Ä ¢�� ± � ± ���8�¤�'���rÔK£�¥K�t��×ªÛ
¢·¡L�v���¦�u�� ± �-¾a�.�Ã�������t¥¤�t��¡ª�»����� � ± � ¨ �8���t�����u�¦��¡G©¤��� ¨ �v��� Ä �8¥¤�·¡°I�����u�t���»�v¡�°K� ¨ ¶q�t�l� ± ��� ¨ ± �v¡L¥¤�u�R�����2¡�°2�¿����¶��R�f¢u���t�� ¨R¨ �8¥¤���:¢¦��� ± �-¾a��À ¨ ����©¤¥¤���X��¢¦�8�j



% �EÊ � )(@ ) Í ��ÎK�X�l� Í Ïß�¤���vÐr�L�vÎ2�X� � ®a�-�������t�v¡|¢¦�
�t� ¨ ��¢¦�8� $2¸L©¤��¢¦�8�t¢¦�t¢u�v�Á�-¥K���É°I�(�����t¢¦£8�¤�v¡G�t� ¨ �8�8���t�8�@���8��¶L�� ¨v¨ �8��¡L¢u�¤£U�t�G� ± �v¢¦�$�t�v�u���t¢u²���¥¤��£��v� ¨ �q¼K� ± ¢·�É���c¡L�v�t¢u�¤£ª���[«�ª��¢u�K��� ± ���t�����G¢¦��� ± � ¨ �8���¿���V�l¡¤���2����¢ ¨ � ¨ ± �v¡L¥¤�u�R��Þ ���2����¢ ¨ ©¤��¢¦�8�t¢¦�t¢u�v�v¸4�� £Kf���-¥K�t�v¡�¢¦�1# Þ �B¸4���K�¦�|�������R�� ± �G¢¦�����R���¦���}²�¢u�¤£����Á��¥¤�¤�¤¢u�¤£����8��¶L�(���K¡ Ä ¢¦�u���E��¢¦�w¢¦�|�8¡.«
 �¥K���t¢u�¤£-� ± � ¨ �8��©¤¥L�t¢u�¤£U�¦����¡ Ä  �� ��r� ± � ¨ �8���t�����K���v´�¥¤¢u���[«���R�����B���v�8��¥K�t��¡ª°.�-� ± ��¾a�.�a�Üº� ¨ ���K�t�v´�¥¤�v� ¨ � Ä � ± �}²���R�u� ¨ �t��¡�� ± �������t¶L�:©I�R��¢¦�L¡¤�É�t�G°I��� ± �(�ª��¢u�§� ¨ ��¥K�X�����c�:���� ± �����L���t�v�µ��¥¤�¤�¤¢u�¤£���������©f���:��Ô¤½L�v¡�©K�t¢u����¢����q� ¨ ± ��¡.«¥¤�u�R����:®É�.� Ä �}��¸¤���G°I� ¨ �8�U©K�¦¢·����� Ä ¢¦� ± ¨ �����t�����p���v´�¥¤¢u���[«���R������� ± � ¨ �������t�8�K���u£��8�t¢¦� ± �ª�4�-¥K���w°2�:Ô2�����w��¡¤�v´�¥K�X���R�u��t�¦¢ ¨ ��¡q¢u���t�§�t�[�c�����:���c¡L�v�t��¡q�t�.� ¨ ± �����¤¢·����¡l���K¡ ¨ �8�U�-¥L«�¤¢ ¨ ���t¢u�¤£��t�����¦«=��¢¦���$���8��¶L�:���Á¢u��� ± �(�������t¢ ¨'¨ ���t��
áa¥¤����¢u� ¢·�$�t����¡� �¥2�������¤«6�u¢¦�K��� ± �ª�t���U©K�¦¢u�¤£�©2�v�t¢u�L¡¤�

���
� ± � ¨ �����t�����u�u�R�c�:¢¦�l���c¡L�R�V�t�G���R�R�a� ± � ¨ ����©¤¥L��¢¦�K£����[«�t��¥¤� ¨ �'���v´�¥¤¢u�t�v�U�v�����v�¹ ± � ¨ �8�8���t�8�@¢¦�¤©K¥L���a�����a� ± �R��� ± �©I�R��¢¦�L¡¤�V���r� ± � ¨ �������t�8�@�����t¶L�RÁ¹ ± �(�������t¥¤�t��¡���¥L��©¤¥L�V¢·�� ± �����  ¥L��¢¦�u¢u���X��¢¦�8�j¸.�v���t¢u�ª�X�t��¡ª� ± �t�8¥¤£ ± � ± �$�[½L� ¨ ¥L�t¢u����t¢u����¸L¢u���U�t¢¦��¢u�u��� Ä �}�G���w¢¦��Ö �}Ù³4¹ ± ¥K�v¸.�»���B�v� ¨ ± ©I�R��¢¦�L¡���4� ± ��� ¨ ± �v¡L¥K�¦�v� ��� ¸¤� ± �U���  Ì¥L�t¢u�¦¢·���X�t¢u����¢·�É������¢¦�ª�X���v¡
�»�����  ��8°��[½L� ¨ ¥L�t¢u���¤«=��¢¦���(���v�8��¥K�t�v�U�v�����Á���4� ± � ¨ �8���t��������8��¶L�v¸¤���vÛ
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Ä ± �v�t�8¸:�»�����v� ¨ ± ©2�v�t¢u�L¡¬���(� ± �q� ¨ ± ��¡L¥¤�u�R��¸ �

	
Â�� � � ÅG¢·�

� ± �(�t���U©K�¦¢u�¤£�©2�v�t¢u�L¡ ¨ ¥¤���t�v�8���¦�¿������¢u£��¤��¡ª���-� ± � ¨ �8���t��������8��¶ � ¸K���K¡ �
	
Â�� ��� ÅÁ¢·� ± �R���'� ± �(���v�������;� ± �(���v�8��¥¤���v¡

�[½L� ¨ ¥L��¢¦�8�L«=��¢¦�����V����� ± � ¨ �8���t�����j�c���t¶ � ¡L¥¤��¢¦�¤£¿�v� ¨ ± ©2�R«��¢¦�L¡����4� ± ��� ¨ ± �v¡L¥K�¦�v�vÉÀL���U©K�¦���:�»���V� ± ���U�����t¥¤���v¡���¥L�t«©¤¥L�VÂE¢= ������  Ã¥L��¢¦�u¢·�t���t¢u���2År�����w����¶8�R� ± �R���:�X�4� ± �Á©I�R��¢¦�L¡
���:� ± ��� ¨ ± ��¡L¥¤�u�R���t�l°I� ¨ �������t�8�¦�u�v¡p¸ Ä ± ¢ ¨ ± ¢·�U¥K��¥2�����»�8�¢·¡L�R���t¢¦Ô ¨ �X�t¢u���q©¤¥¤��©2�����8(Üº��Â�×�Å � ¢u�'���»����£��R���t¢u�¤£¿�E� ¨ �t����¸
¨ ± �����v���8� � � -�� "K¸ Ä ± ¢ ¨ ± �v�K��¥K�t���:���E�8���É������¢¦�ª���t¢u���j

% �EÊ � & * Î Í �v�XÎ ,�Ï,).�vÑ 02Í � Í Ï?Ñ/.�� ,;) .+) Í ���L�vÑ=Î Í �
áa¥¤����¢u� ¢·� ± �R���(�t��©¤���X².¢u¡¤�-�G�K� Ä ¨ �����t�����4� ¨ ± �R���(�»�8�� ± �¿�»�v�v¡L°2� ¨ ¶f� ¨ ± �v¡L¥¤�u�R��(�r¢¦�c���U�8�¤��� ± �8¥¤�u¡��¤������� ± �X��¸
¢¦�H� ± �$�R½L� ¨ ¥¤�t¢u���G��¢¦�����:����� ¨ �8�K����������¸8� ± �R�¿� ± �$���R�·�X��¢¦�8�j¸� ��� �
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Â Ä ± �R�����

	 � ×�� � 	 ¢·�$� ± �U�»���v´�¥¤�R� ¨ ������ ± �ª���8��¶¤Å'¢·�����u¢¦�K�v���(�»¥¤� ¨ ��¢¦�8� Â Ä ± ¢¦�u�G¢¦� Ä �8¥¤�·¡��¤����°I����Á�-�»¥¤� ¨ �t¢u�������;� ± �$���8��¶ª©I�R��¢u�.¡K��Å[��¤���B� ± � ¨ ���2��¢·¡L�R���v¡��©K©¤�¦¢ ¨ ���t¢u��� Ä ¢¦� ± � Ä � ¨ �����t�����H�����t¶L�R¸2¢¦�u�u¥K���������t��¡�¢¦�q��� ¨ «�t¢u��� 'K¸ Ä �Á�8°L����¢¦�-� ± �Á�»�8�¦�u� Ä ¢u�¤£����c�X�t¢ ¨ �ª��©j4¹ ± ¢·�
�¦¢u�¤�����
¨ ± ����� ¨ �t�v�t¢·���t¢ ¨ ���r� ± �(���c�X�t¢ ¨ °2� ± �}².¢¦�8¥¤�Á���r� ± �(� ¨ ± ��¡L¥¤�u�R�¢u�U©K�¦¢u�v�U� ± �X� Ä � ¨ ��� ¨ ���2��¢·¡L�R�ª�q�¦¢u�¤���������.¡¤�R�Á�»����� ± �� ¨ ± �v¡L¥K�¦¢u�¤£ ¨ �����t�����u�u�R�"¡L����¢u£��H - � Ä ¸8¥2��¢u�¤£�Â�×�ÅR¸8� ± �$�v���t¢¦«�ª�X���v¡��t��´�¥¤�v���t��¡����  O�u�8�8¡�¢·�vÛ
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Ä ± �v�t���§�������2¡¤�-�»���U� ± ��� ± ¢¦� ���8©2�v�����t�8�v �¤�8�U� ± � ¨ �8�L«�t�����.¡L����¢u£��j¸ Ä � ± �}²�� ¨ ± �8�t�R����� ¨ ���K�t¢·¡L�R�4� 0t�¤�����ª���u¢u�t�v¡ "
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¨ �����t�����L���L¡L�R�;Â»¢6 �É¢u�K¡L�v©2�v�K¡L�v�8�w���U� ± �:�R½L� ¨ ¥¤�t¢u���U�t¢u����Å
�8�rÆ�ÂGF�� �]Å �IH �E�"J5KML=N�O�E�"J5L N�O r®V�4¢u�¦�u¥K���t�c�X��¢¦�8�j¸X¢¦��� ± �w� Ä � ¨ ���L«���t�8�"�c���t¶.�-���L���t�v�¯©K�t�����v�8���v¡f¢u�|� ± �G�»�8�¦�u� Ä ¢u�¤£l�t� ¨ ��¢¦�8�j¸� ± � ¨ �������t�8��� ¨ ± �R���B¢u�r� ± �R���[�»�8�t�B���r¢u��ÔK£8¥¤��� $ Ä ± �R���w� ± �������¢¦�ª�X���v¡��[½L� ¨ ¥L�t¢u���L«6�t¢u���v��������¥2����¡|���¤«6�u¢¦�K�����q��¡K��©L�� ± �V£���¢u�G���@� ± � ¨ �����t�����u�¦�v�
�»���"� ± �a����¢¦£8¢¦�2���@���  �t�.���t�v�
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& Ñ 0 Ð;��) 3 � �w�����t�����j� ¨ ± �v�U�$�»�8�a���  S�t�����8¥¤� ¨ �v�

® ¨R¨ �8��¡¤¢¦�¤£(�t�(� ± ¢·� ¨ �����t�����I� ¨ ± �v����¸8� ± �'¡L�v�t¢u£��G���p� ± �
¨ �����t�����u�¦�v��� ¨ ���G°I�$���8¡L�V¥2��¢u�¤£-���.���8¡L²X��� ¨ �v¡ ¨ �����t��������[� ± �L¡L���u��£8�� �¤�8��� ± � ¨ �8�K�t¢u¡L�v�t��¡ª��©¤©K�¦¢ ¨ ���t¢u���§ÂE�t�R�$��� ¨ «��¢¦�8� '�Å]¸ Ä � ± �}²�� ¨ ± �8�t�R��� ± �(Æ Ç ¨ �8�8���t�8�I� ± �v����� Ä ± ¢ ¨ ±
¨ �����u�v��¡����¿�ª����°K¥K��� ¨ �������t�8�¦�u�R� Ä  �v �a���L¡L�v�¦�u¢¦�K£G�R���t�8���Â=���v��Ö �L×[Ùj�»���:¡L�R����¢u�·�Á����Æ�Ç ¨ �8���t����� Å] Ò �����R�X²8�R�B¢��:©¤����«².¢·¡L�v�V£��.�L¡¿©K�t�8©2�v����¢¦���:¢¦��� ± �(©¤���v�t�R� ¨ �����
�R½����R���K���;¡L¢u��«��¥¤�t°2��� ¨ ��¸.���w¢��B¢u�w�R��© ± �8��¢·�t�v¡ª¢u�ª� ± �a¢u�¦�u¥K���t�c�X��¢¦²8�É�[½¤���U«©¤�u��

% � ) ���ªÎ * ���XÑE�5)��XÑEÎ Í(� �XÎK�4Ðr�R� Í ).��� * � � � � � Ï�) ,=� 4j�
Üº�����8���$��� ¨ �8��©¤¥L�t�v��« ¨ �8���t�����u�¦��¡§���L���t�v���v¸@� ± � ¨ ���U«©¤¥¤�t�R�w��¥K���"¡L��¢u�ª�v� ¨ ± ©I�R��¢u�.¡jÛ;������©¤�u¢¦�¤£����2� ± �É©¤��� ¨ ���t��8¥L�t©¤¥¤�v¸É�R½.� ¨ ¥L��¢¦�K£f���'� ± � ¨ �8�8���t�8�V���u£��8�t¢¦� ± ��¸Á�t�R�K¡L¢u�¤£� ± ���¤� Ä ¨ �������t�8�Á�t¢u£��K���w����� ± ��©¤��� ¨ �v���v?¹ ± ¢·��¢¦��©¤�u¢u�v�� ± �X�$� ± � ¨ �����t�����;���8��¶�¢·�$�t¥¤©¤©I�8�t�v¡§�t� ± �}²��-�GÔ¤½L��¡§©I�[«��¢¦�L¡U���K¡�� ± �X�4� ± �Á¢u�¤©¤¥L�t«6�8¥L�t©K¥L���u���t�v� ¨ ��ÂE¢= �B� ± � ¨ �����t�����¡L�v�u�}�¤ÅÁ¢·�V�t�ª���u�;���K¡ Ä ¢�� ± ��¥¤�� �¢��t�t�v�vÉÜ³�
�¤���v¸2� ± ¢·�V� ± �8¥¤�u¡°I� ¨ ���2��¢·¡L�R���v¡§¢¦�q� ± � ¨ �����t�����4¡L�v�t¢u£��j�Üº�q�E� ¨ �'�t¥ ¨ ± ¡¤�[«�·�}�L�É�ª�}�¿°I�����4� Ä ��«=�»�8�u¡pÛBÔK�c���É� ± � ¨ �8�U�-¥¤�¤¢ ¨ ���t¢u����°I�[«



� Ä �R�R��� ± ���t�R�K�t���É���K¡¿� ± � ¨ �����t�����u�u�R��¸¤���K¡�°I�[� Ä �R�R��� ± �
¨ �8���t�����u�¦�v�'���K¡q� ± �G� ¨ ��¥K�X������¸H��� Ä �R�u�"���$� ± � ¨ ����©¤¥L�c�X«�t¢u���2���¤¡L�v�u�}� ¨ �����t����©I���K¡¤¢¦�¤£V�t�a� ± � ¨ �����t����� ¨ �8��©¤¥L�����t¢u���
¨ ������B¹ ± ���·�X�����R�É¢·�É£8�R�¤�v�����¦�u�G�u�v���:� ± ���§�G������©¤�u¢u�¤£ª©2�R«��¢¦�L¡p��É� Ä �R²8�R� Ä ± �R�¿� ± � ¨ �����t�����2���8��¶ª¢·�B©¤���R�R��©L���v¡¿°.�± ¢u£ ± �v�-©K�t¢u����¢������c���t¶.�v¸4� ± ¢u�U�ª�}���¦����¡�����¡L�v�u�}�L�-�u���t£8�R�
� ± �����ª�t����©¤�¦¢u�¤£ª©I�R��¢¦�L¡p"Üº��� ± ¢·�Á�»�c����� Ä ����¶@¸.� ± �����(¡L�R«�·�}�.�r�ª�}��°I�:�¦¥¤��©I�v¡U¢u�U�'�t¢¦�¤£8�¦�Á¢u�¤©¤¥L�"¡¤�R�·�}��1�V�R� ¨ ��¸ Ä �
Ä ¢u�¦� ¨ ���2��¢·¡L�R�"¢¦��� ± �V�t�v´�¥¤�R�2¡L¢u� ¨ ���[���Á�t¢u���[«º¡L�R�·�}�-�t�L�����R�ª����vÛ ��� Û�� Â��  ×�Å � ��� Â��¤Å ��	�4Â�� ��
�Å Â5"8Å
Ä ± �v�t� � Â��¤Å��� � ¢·��� ± �����c�X���¿²8� ¨ ������������¥K�U��¡f����°I����v�8��¥¤���v¡j¸��4Â��¤Å������¿¢·�É� ± � ¨ �����t�����H¢¦�¤©K¥L�$²8� ¨ �t����¸�
�¢·�� ± �G©2����¢¦�t¢u²�� ��
��
�����
�¡¤�R�·�}�l²X���u¥¤��¸ � ���2¡�� �����ª�t�����
�ª�X���t¢ ¨ ���4���p��©¤©¤����©K�t¢·�X���B¡L¢u���R�K�t¢u���K�v��H�[��¥K���t� ¨ ���u�.� ± �X�¢u�¿� ± ¢·�Á�»������¥¤�·�X��¢¦�8�j¸�
ª¢·�Á� ± ��¢u�¤©¤¥¤�É¥¤�¤¶.�¤� Ä ��¡L�R�·�}��
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�¤�8�����L���t�v���:Â5"8Å[¸�� ± �Á�»���u�¦� Ä ¢u�¤£$�E����¢u�¦�(���@�������t�Á�»�v�v¡L°K� ¨ ¶
¨ �8���t�����@�u� Ä �Á¢·� ¨ �8�K�t¢u¡L�v�t��¡pÛ�rÂ��¤Å � � � Â��¤Å Â/$�Å
 V�t¢u�¤£l� ± � ¨ �������t�8�"�·� Ä Â $.Å]¸
� ± � ¨ �¦������¡.«³�¦�.��©?���L���t�R� ¢·�
� ± �R�jÛ � Â��  ×�Å �<��� Â��¤Å��� � � Â��	��
.Å
À.¢u� ¨ �§� ± � ¨ �¦������¡.«³�¦�.��©¬�t�L�����R�^¢·�������c�X�t�R«³¡¤�R�·�}���v¡Ã�t�.��«
�t�v��¸V��©I� ¨ ¢�Ô ¨ ���[� ± �L¡¬�t�Ã����¥K¡L�Ã� ± �q������°K¢¦�u¢����Ã�����t¥ ¨ ±�t�.���t�v�ª�w�-¥K���Á°I�'¥K�t�v¡¿¢¦�¿���c¡L�R�B�t��¡L����¢u£��¿� ± �$�»�v�v¡L°K� ¨ ¶£8��¢¦� �|!¹ Ä ��¶.¢¦�2¡¤�����-������°¤¢¦�u¢¦���Ã���v�t¥¤�¦��� ¨ ��� °I���8°L«����¢¦�K�v¡pÛB�R¢¦� ± �v�a¡L�v�u�}��«³¢¦�2¡L�R©I�R�K¡¤�R���v¸2���V¡L�v�u�}��«º¡L�R©I�R�2¡L�R���
���K�v�v �K���É¡L¢·� ¨ ���[�t�R«=��¢¦�����t�.���t�v�ª�Á�¦�R�É¥K� ¨ ¢¦�t�'� ± ��©K��©I�R�c����ÉÖ Ø¤¸;×3��Ù4���Á� ± �R� ¨ �8�K�t¢u¡L�v�V�t�.���t�v�ª� Ä ¢�� ± ¥¤�¤¶.�¤� Ä ��¡L�R«�·�}��¸ Ä ¢¦� ± ¥¤� ¨ �R�t����¢¦����¢¦���R¸I���K¡��R²8�R���t¥2���u�¦���ª¡L¢u���t¥K�t°K��� ¨ �8Üº�ª� ± � ¨ ���K�t¢·¡L�R���v¡U�»�c����� Ä ����¶U���j���v���¦«6�t¢u�U� ¨ �������t�8� Ä ¢¦� ±¡L�v�u�}�L�v¸V�[½L©I�R��¢¦���v�8�c�����}� ���¦�u� Ä ¡L�v�u�}�¬���v�8��¥K�t�v�U�v�����
ÂE�t�R�¿�»����¢u�K������� ¨ �fÖ�× $XÙ»Å]/#"²��v��¢¦�V� ± ���R½¤� ¨ �ª¡L�v�u�}��²X���¦«¥¤���������q¥¤�K¶��K� Ä �j¸'¢�� ¨ ��� °I�f©I�8����¢u°¤�u�q�����v���t¢u�����t�f�°I��¥¤�K¡��8�G� ± � ¨ �������t�8�@¡¤�R�·�}��¸.¢= ����U�ª�X½L¢u�ª���j¡L�v�u�}�8rÕ��� ± �R�q�»� ¨ ¥K� ± �R���U���q¡¤�R�·�}�8«º¡L�v©2�v�K¡L�R���$�U�R� ± �L¡¤�$�»�8�$¡¤¢u��«
¨ ���[������¢¦���R«³¡L�v�u�}�f�t�L�����R�ª�R¸�� ± ���U�v�K��¥K�t�����c��°¤¢u�¦¢¦�����»������ª�X½L¢u��¥¤� ���u�¦� Ä ��°K�¦�ª¡L�v�u�}�8¿Üº� Ö¦×-=�ÙB�����H¢¦�¤����� Ò �X���t¢¦½
Üº�¤��´8¥2���u¢�������©K©¤�t��� ¨ ±�± �8�V°I�R�v�§¥K�t�v¡����¿¡L����¢u£��l�����R�U«�����.�¦���t�:¡¤�R�·�}�8«º¡L�v©2�v�K¡L�R���É�����X�����»�R��¡L°K� ¨ ¶ ¨ �8�8���t�8�p�u� Ä ���

� ± ���»�����ÚÂ/$�ÅB� ± �X�É�v�K�t¥¤�t���É���t�.��©L�t���t¢ ¨ ���u�u�����c��°¤¢u�u¢����¿�»���� ± � ¨ �u�8�t�v¡.«³�¦�.�8©G���L���t�R�ÈÂ5"X« $�Å��»���Á���.���t¢u���[«º¡L�R�·�}�>
ª�t����«
¢·���»�.¢u�¤£ -@?A
B?DC
�

EßË ,/,=Ð;�v�R�X�L��ÑGF7) )2Hj��.��@, )
Üº�q� ± ¢·�'©K������¸ Ä ��¡L��� ¨ �t¢u°2���8¥¤�'�U�R� ± �L¡L�8�¦�8£����»�8�'� ± ��»�v�v¡L°K� ¨ ¶�«³� ¨ ± �v¡¤¥¤�¦¢u�¤£'��� ¨ �8���t�����.���8��¶L�4¢u��� ± � ¨ ���t�:���I� Ä ��u¢¦�K�v����¢·����¡�©I�R�K¡¤¥¤�¦¥K�m�t�L�����R�ª�Á©¤���v�t�R���t��¡�¢u��Ö 'XÙ³¸¤¢6 �8IKJ� ÂGL�Å � ��� ÂGL�Å M�N�rÂOL�ÅP ÂOL�Å � � � ÂOL�Å Â:��Å

Ä ± �v�t� � � Q - ×R �S � �UT R SWV ¸X� � Q -R S �-Y V ���K¡
� �[Z × -M\ ¸ Ä ¢¦� ± T � - �9�L¸]Y � Ø � #¤×8¸ R S � " �^=5=
�»�8�É� ± ��ÔK�c���V©I�R�2¡L¥¤�u¥¤��¸ R S � $�� - #U�»���:� ± �-�t� ¨ ���K¡����K��P ¢u�
� ± � ¨ �����t�����u�u�v¡U��¥L��©¤¥L�w���K¡ � ¢·� ± �v�t�É�8�t�t¥¤���v¡-�t��°2�
���v�8��¥K�t��¡p�¹ ± � ¨ �8�t���v�t©I���K¡L¢u�¤£����L���t�R� ¢·�U� ± ��©I�R�2¡L¥L«
�u¥¤��¢¦�ª� ± �É¥¤©K�t¢u£ ± ��©I�8�t¢���¢¦�8�§Â»¢6 �V���ª¥¤�K������°¤�¦�V��©I�R�L«³�¦�.�8©
�t�L�����R�GÅ]
® ¨R¨ �8��¡¤¢¦�¤£|�t�|� ± � ¨ ± ��¢ ¨ �q������������©¤�u¢u�¤£�©I�R��¢¦�L¡ � ¸

���K¡ª¢u� ¨ �u¥K¡L¢u�¤£-� ¨ �8�8���t�8�2¡L�v�u�}�@
2¸8� ± �a�»���u�¦� Ä ¢u�¤£�¡L¢·� ¨ ���[�t����L¡L�R�H¢u�Á�8°L����¢¦�¤��¡pÛ� Â��  ×�Å � ��_5� Â��¤Å �� _ �4Â�� ��
.Å Â5'8Å
Ä ± �v�t� �0_ ���K¡�� _ ���t�-� ± � ¨ �����t����©I���2¡L¢¦�K£¿�t�.���t�v�È�ª�X«
���t¢ ¨ ���R
Üº��� ± ¢u� ¨ �8���8¸�� ± �É�¤����¢u�K���I�t����©¤�¦¢u�¤£�©I�R��¢¦�L¡�¢·� - �u×.`.a � ¸���K¡ª¢·�w�8�t�t¥¤���v¡�����°I� ¨ ± ���¤£���¡�°2�R� Ä �v�R�A-�� -D�5`a���K¡A- �9�5`°.�����t�v©K����� - � -A�5`8 - ������� ± ���ª� ± ¢·��¢u���·����£��v�U� ± ���?���[«

´�¥¤¢u�t��¡�°.�$� ± �w¥K��¥2��� ¨ ��¢����R��¢¦�8�'�»���;� ± � ¨ ± ��¢ ¨ �w���K������©¤�u¢¦�¤£©I�R��¢¦�L¡?Ö ��Ù³Û -��¦×>? R � ? -�� 'K$¹ ± � ¨ �����t����©I���K¡¤¢¦�¤£¿�t���t¥L«�c�X��¢¦�8�¿°¤�u� ¨ ¶�¢u��ÔK£�¥¤��� $ª¢u�:� ± �v���t¥ ¨ ± � ± �X�k�Ub 	 � � - � -A�
���K¡ �Ubdcfe � - �9�LH¹;�É� ± ¢u�;���L¡L�R�6¸}� ± � ¨ �8�8���t�8�8¡L�v�u�}�$��¥2���°I�a�8¡¤¡L�v¡-���(�¦����¡U����� ± � ¨ ���2��¢·¡L�R���v¡��t�L�����R���t�v©¤�t�����v�����X«
��¢¦�8�K�(Â/"�Å]

E �EÊ�� �XÎj�9)�������Î Í �R�XÎ-,BÏ,).�vÑ 02Í
¹ ± �V�U�R� ± �L¡L�8�¦�8£��U¡L�v� ¨ ��¢¦°I�v¡�¢u���t� ¨ �t¢u�����L9� ± �8��°I�R�R�¥K�t�v¡U����¡L����¢u£��ª¡L�v�u�}��¡L�R©I�R�2¡L�R���w�������t�:�»�v�v¡L°K� ¨ ¶ ¨ �����t������·� Ä ���»�8�-�t�.���t�v� Â5'8Å[q¹ ± ¢·�(���[� ± �L¡L���u��£8�q¢·� ¨ ����©K���t��¡���-� ¨ �u�8�t�t¢ ¨ ���2©2�8�¦�a©¤�u� ¨ �v�U�v��� ¨ �8�8���t�8�K�·� Ä ¸�¡¤�v�t¢¦£8�¤�v¡ª�8��«�t¥¤��¢¦�K£�� ± �v�t�'¢·�Á�¤� ¨ �8�8���t�8�p¡L�R�·�}��
®a��©¤��� ¨ ¢u�t�v¡U¢u�§Ö �XÙ6¸����L«³�u¢¦�¤�:��� ¨ ��� ¨ ¥¤�·�X��¢¦�8�K�
���2� ± � ¨ ���L«���t�8�r�·� Ä ���t�U��� ���R�q�t�.� ¨ �8���t�u��¸p©2���t�t¢ ¨ ¥¤�·�����¦� ± �v�t� Ä ± �v�t�

¨ ���.²��R½|��©L��¢¦��¢·�t���t¢u���OÂg� Ò Ü�ÅU¢·�U¥K�t�v¡p�¹ ± � ¨ �8�K��¢·¡L�v�t��¡�t���u¥L�t¢u����¢·�ª� ± �R����� ¨ ��� ¨ ¥¤�u���t����Ý2«³�¦¢u�¤��� ± �§©K���������[�t�v������;� ± � ¨ �8���t�����u�¦�v�Á�»���É���c���¤£8�$���4������©¤�u¢u�¤£ª©2�v�t¢u�L¡¤�v¸K���K¡���t�8�t�V� ± �v� ¢¦�����c��°¤�u��¸L��� Ä � ± �}²8�a¡L�8�¤�É�»�8�B� ± � ¨ �8�K��¢·¡.«�v�t��¡��c���¤£8�a���r������©¤�u¢¦�K£U©I�R��¢u�.¡j¸L¢= ��ÉÖ - � -A� � -�� �XÙ Ä ¢�� ± ����t�v©����,-�� -D�5`8
E � ) & ) ).Ï;�r�K�"(����.8,).Ï;Ð@,EÑ Í10 Ï,).�vÑ 02Í
¹ ± ���»�R��¡L°K� ¨ ¶�� ¨ ± �v¡L¥K�¦�v�V¢·� ± �v�t�-¢¦��©¤�u�R���R�����v¡§�8�V�����©¤©¤�u¢ ¨ �X�t¢u���G�����t¶U� ± ���B��¥¤�K�w¢u��©K�������¦�u�R� Ä ¢�� ± � ± � ¨ �����t�����



���8��¶@¸ Ä ¢¦� ± � ± ¢¦£ ± �R�¿©¤��¢¦�8�t¢¦�����Ü³���R½.� ¨ ¥L���v�����G�|©2�v�t¢¦«�L¡L¢ ¨ �c���t¶@¸ Ä ¢¦� ± �-©2�v�t¢u�L¡ ��� ¸L�u���t£8�R�w� ± ����� ± �(�t����©¤�¦¢u�¤£©I�R��¢¦�L¡G���H� ± � ¨ �������t�8�K�c���t¶I¸.¢u�¿�8��¡¤�R�B�¤���B�t� ¨ ± ���K£��a� Ä ���� ���R�U� ± �É�t���U©K�¦¢u�¤£'©2�v�t¢u�L¡U���I� ± � ¨ �����t���������8��¶L�v¸�¢6 �8;� ± �
¨ �8���t�����@©K���c�����R�t�R�c�v;Õ�� ± �}²�� ¨ ± �����v� ± �v�t� � � � �5`8
®V�a©¤��� ¨ ¢u�t�v¡�°I�[�»�8�t�-¢¦����� ¨ �t¢u��� �¤¦×8¸I¹ ± �UÆªÇ ¨ �8���t������ ± �R�����§¢·� ± �v�t�ª��©K©¤�¦¢u�v¡Ã�À.¥ ¨ ± � ¨ �����t�����4���[� ± �L¡�¥K������t����� Ä �R¢u£ ± �t¢u�¤£l�»¥¤� ¨ ��¢¦�8�K�U� ± �X� ± �}²����t��°2� ¨ ± �8�t�R�|�t����X�t¢·���»��� ± �$©2�v���»�8�t�ª��� ¨ �$��©I� ¨ ¢�Ô ¨ �X��¢¦�8�K�R¸.¢6 �8 ± �R���V�ª��¢u�¤�u�� ¨ �u�8�t�v¡.«³�u���8©��t�.���t�v� Ä ¢¦� ± �$�t¢·���w�t¢u���:���-$ `Á���2¡-�$���L¡.«¥¤�u���ª����£�¢u� ± ¢u£ ± �v�É� ± ��� -�� �U�»�8�V����°¤¥2�����¤�v���R  a��¢u�¤£G� ± �

¨ �·�����t¢ ¨ �������[� ± �L¡¤�r�}²}��¢¦�·��°K�¦�
¢u� ¨ �8���t�����8¡¤�v�t¢¦£8�(����� � Ä ���t���R¸� ± �a�t���u¥L�t¢u�������@� ± �aÆ Ç ¨ �8���t�����L©¤����°¤�u�R��£�¢u²����4� ± � ¨ �8�L«�t�����u�u�R� � � Ö � � � � Ù Ä ¢¦� ± � � ÂGF.Å � � � ÂGF.ÅÁ���K¡pÛ
� � ÂGF.Å � � -��¦×�Ø "�#A'A�A� +-�� $ �L×�ØA�2=�-?F +-�� ' $ = � -¤×8×=F �

-�� # $K×3�A� �A��� - �u×3�2= " 'A'�Ø?F  F �
E � & @ Ñ/.�Ð1,=�L�vÑ=Î Í �
À.¢u��¥¤�·�X��¢¦�8�K� ± �}²8�U°I�R�v�f©2�v���»�8�t����¡l¥K�t¢u�¤£§¹H��¥¤�R�t¢u�U�8¸

� Ò �X�t�·��°@Ó�À.¢u��¥¤�u¢u�¤¶��t�.���u°2�}½��»�8�����v���¦«6�t¢u�U� ¨ �8�8���t�8�aÖ #XÙ³
�É�v�t��� ± �ªÔK�c����©2�v�K¡L¥¤�u¥¤� ± ������� ± ¢u£ ± �v�(©¤��¢¦�8�t¢¦����� ± ���
� ± �|��� ¨ ���2¡ ���K��µáa� Ô2£�¥¤��� '?� ± �f©¤���v�t�R���t��¡ ���v�t¥¤���c�
�����'� ± �R�§�8�¤�¦��£�¢u²��v���»���:� ± ¢·�V�u� Ä �v�É©¤��¢¦�8�t¢¦����©I�R�2¡L¥¤�u¥¤��Ò �8�t�v�X²��R� Ä ��������¥¤��� ± �R���§� ± �X�¿� ± � ¨ �8�8���t�8�a¡L�v�u�}��¢·�± �����
�U�¤����¢u�K���j������©¤�u¢¦�K£-©I�R��¢¦�L¡p¸K¢= �� -�� -D�5`8uÖ �X���UÙj¹ ± �
� ¨ �R�2����¢¦��¥K�t�v¡ ± �v�t��¢·�Á� ± �'�»���u�¦� Ä ¢u�¤£Kw®B��L � -U� ± � ¨ �8�L«�t�����4�c���t¶L�'°2�v£�¢u�jG®B�	L � �¤¸j� ± �G� ¨ ± �v¡L¥¤�u¢u�¤£ ¨ �������t�8�¦�u�R�¢·�$� Ä ¢¦� ¨ ± ��¡l�8�j¸j���K¡§� ± �U�»�v�v¡L°K� ¨ ¶ ¨ �������t�8�;���"� ± � ¨ ���U«©¤¥L��¢¦�K£G�t�����8¥¤� ¨ �v�Á¢·�:���v���¦¢·����¡�������¥¤�K¡ ' - � ���4¥¤�t¢u�¦¢·�t���t¢u���
Â Ä ± ¢ ¨ ± ¢u�V� ± �U�¤�8�U¢u�K���
���  Ì�u�8��¡2Å]'®B�0L � �A�5`8¸I���t�R� «
�R���R� ¨ �-���t�v©§¢u�¤©¤¥L�'¢u�$�t�R���v¸@���R©¤���v�t�R���t¢u�¤£G���l¡L� ¨ �t�����t�(���
" - � �������v�����8¥¤� ¨ �(�}²X��¢u�u��°¤¢¦�u¢¦����¸I�¦����¡L¢u�¤£G���¿��¢¦� ¨ �t�����t�(���� ± � ¨ �������t�8�j�t���U©K�¦¢u�¤£�©2�v�t¢u�L¡¤�v�Üº��°2��� ± ¨ �8������Â ¨ �·�����t¢ ¨ ������2¡�¡¤�R�·�}�q¡L�v©2�v�K¡L�R��� ¨ �����t�����
�·� Ä �cÅa� ± �ª©I�R�t�»�����ª��� ¨ �v������¿�»� Ä ��ÝI� ¨ ���v¡|°.�f� ± ¢·� ¨ ± ���¤£8��¸"¡¤¥¤���t�q� ± ����¡K��©L�c�X«�t¢u�������"� ± � ¨ �8���t�����r©K���c�����[���R�c�-Â=���������v¡�¢u�q����°K�¦����Å[-®B�L � ��-K¸"� ± �§���R��«³©2�8¢¦���G���a���v�t��¥¤� ¨ ���U�}²X��¢¦�·��°¤¢u�u¢����f¢·�G�t�[�°K� ¨ ¶��t� ' - � 
®B��L � =�-2`8¸¤�-¡¤¢u���t¥¤��°K��� ¨ �$���8��¶@¸ Ä ¢¦� ± ���± ¢u£ ± �v��©¤��¢¦�8�t¢¦����� ± ���l� ± � ¨ �8���t�����r���8��¶L�v¸p°¤¥L���»��� Ä ± ¢ ¨ ±
Ä � ¨ ���¤�¤���U�������t¥¤�t�¿¢��c�U�[½L� ¨ ¥L�t¢u�����t¢u�U�8¸w��©¤©2�����c�R|®a��t�R�R���8�¿Ô2£�¥¤��� �L¸L� ± ¢u�:�����t¶G¢u��©¤�¦¢u�v�V¢¦��©I���t�����8�:©¤���R�v��©L«
�t¢u���2�j¢u��� ± �"�¦� Ä �R�j©I�R�2¡L¥¤�u¥¤� ¨ �������t�8�X���8��¶@¸}�¦����¡L¢u�¤£Á���V���¢u� ¨ ���v�8���:���p� ± � ¨ �������t�8�K¡L�R�·�}��4®V�B� ± � Ä �ª¢¦�GÔK£�¥¤��� '�� ± �
¨ �·�����t¢ ¨ ���B©2�8�¦��©¤�·� ¨ �v���R��� ¨ �����t�����w�u� Ä ¸w¡L�v�t¢¦£8� Ä ¢¦� ± �8¥L�� ¨v¨ �8¥¤���;�»�8��¡L�R�·�}��¸�°I� ¨ �����v�4¥K�K���c��°¤�u���áa�-� ± � ¨ �����t�c������¸� ± �G���R�������.�¦���t�(¡¤�R�·�}�8«º¡L�v©2�v�K¡L�R��� ¨ �����t�������·� Ä �R�K�t¥¤���v�
����°¤¥K���¿������°¤¢¦�u¢¦�������'� ± �q�t�L�����R��¸É¡L�v�t©¤¢¦�t��� ± �l©K�t�����v� ¨ ����'¥¤�¤¶.�¤� Ä �����2¡?²X���t�.¢u�¤£ ¨ �������t�8�Á¡¤�R�·�}�� ¹ ± ¢·�ª£��v�¤�R�t«�X���v�'�t�����U�t�R��©I���c���4¥¤� ¨ �R�t����¢¦���t¢u�v�$¢u�l� ± ���[½L� ¨ ¥L�t¢u�������� ± � ¨ �8�8���t�8�
���8��¶�¹ ± �v�t�ª���v�t¥¤���c��©I��¢u�8�-��¥L�(� ± �G¢u���t�R���v������r�»�R��¡L°K� ¨ ¶�� ¨ ± �v¡L¥¤�u¢u�¤£K¸¤���¦�u� Ä ¢¦�K£������8¡¤��©¤���X��¢¦�8�¿���;� ± �
¨ �8���t�����@�u� Ä ©K���c�����R�t�R�c�w¥¤�K¡L�v�É�t�����8¥¤� ¨ �a�}²X��¢¦�·��°¤¢u�u¢����8¸¤���
Ä �R�u�K���4� ± �É¢u��©2�8���c��� ¨ �B���@����¶.¢u�¤£'¢¦�����(� ¨R¨ ��¥¤���
� ± � ¨ �8�L«�t�����;¡L�R�·�}��¢u��� ± �-¡L�v�t¢¦£8�����4� ± ��©¤�t� ¨ �v��� ¨ �������t�8�p�u� Ä ¸I���¡L�8�¤��¢u�|©K����� ��¢¦�f� ± ��©K�t� ¨ ���t�����.¡¤�R�u�¦¢u�¤£q���K¡ ¨ �8���t��������t�R©2�RÁÜ³�
�¤���V� ± �-©¤�t� ¨ �v��� ¨ ����°I� ¨ �����(¥¤�2���c��°¤�u��¡L¥¤�(�t��t¥ ¨ ± ���R��©I���c���p¥¤� ¨ �R�t����¢¦���t¢u�v�v
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� * Î Í �A,EÐr�vÑ=Î Í
Üº��� ± ¢u��©K��©I�R��¸4���¤� Ä ���[� ± �L¡L���u��£8�§�»�8��� ¨ ± �v¡L¥¤�u¢u�¤£�«

¨ �����t����� ¨ ��«º¡L�v�t¢u£��$¢u�p©K�t�8©2������¡pjÕ�� ± �}²��
©K�t�X².¢·¡L�v¡'�Á�¤� Ä��� ¨ ± ¢¦�t� ¨ ��¥¤�t�'���2¡�¡L����¢u£������[� ± �.¡��»���B�»�v�v¡L°K� ¨ ¶�� ¨ ± �v¡L¥K��«¢u�¤£K Üº�K¡L�R��¡�� ± � ¨ �������t�8�U�t�.�8� ± �v�t¢·�q���G� ± �?�»�v�v¡L°2� ¨ ¶� ¨ ± �v¡¤¥¤�¦�v� ± ����°I�R�v��©¤�t�X².¢·¡L�v¡ ¥K�t¢¦�¤£Ã� ± �|Æ Ç ¨ �����t������ ± �R�8�t�8¸H���K¡l� ± �ª£8��¢u�����"� ± � ¨ �8���t�����u�¦�v�a¢·�(��¡K��©L���v¡q���L«�u¢¦�K�¿¥K�t¢u�¤£§� ± �¿�������t¥¤�t��¡��[½L� ¨ ¥L�t¢u���|�t¢u�U���U���:� ± � ¨ ���L«���t�8�¤���8��¶L�vr®V��¢u���t�R£8�����t��¡ ¨ �����t�����¦«º� ¨ ± ��¡L¥¤�u¢¦�K£(��©¤©¤���8� ¨ ±¢·�Á©¤����©I�8�t�v¡p¸ Ä ± �v�t�$� ± �(���c�X�t�$�»�v�v¡L°K� ¨ ¶ ¨ �8�8���t�8�@�u� Ä ± ���°I�R�v�l¡L�v�t¢u£��¤��¡�� ¨R¨ ���c¡L¢u�¤£U�t�¿���c���K£������"������©¤�u¢u�¤£ª©2�v�t¢¦«�L¡¤�ÁÂ �»�8�
��¡¤��©L�����t¢u���(¥¤�2¡L�R� ¨ �8��©¤¥L�t�v�4�t�����8¥¤� ¨ �v�H�t��´8¥K¢¦���[«���R���c��Å[¸w���2¡|�c��¶.¢¦�K£q¢u���t��� ¨R¨ ��¥¤���ª���8��� ¨ �����t�����Á¡L�R�·�}�ÂE����¢¦�K�¦��¡L¥¤� ± �R���
�t�É� ± �w©¤�t�v�R��©L��¢¦�8��¢¦�'� ± � ¨ �����t�����u�¦�v���cÅ]À.�8������¢u��¥K�u���t¢u�����t����¥K���c� ± �}²���°I�R�v�f£�¢u²��R�H¸ Ä ± ¢ ¨ ± �R�U«© ± ���t¢u�t�v�B� ± ��¢¦�����R���v���Á���H� ± ¢u�V��©¤©¤���8� ¨ ± 
áa°.².¢¦�8¥K�t�¦���t¢¦�-¥¤�u���t¢u���K�����t�U�¤����� ¨R¨ ¥¤�����t�U�R�¤�8¥¤£ ± �t����L¡L�R�É�����v���Á�t�L�����R��¸w���K¡?���¤£8��¢u�¤£q�R½L©2�v�t¢u���R��������¥¤�L«

�¤¢u�¤£§�8���t�8©f���É���f� ¨ �t¥K���wà4¹Vá'À���¥2����°I�ª�»¥¤�t� ± �R�-¡¤�[«²8�R�u��©I�v¡��t�f°I�[�����R���8�t�t�v���-� ± ¢·�ª�¤� Ä ��©¤©¤���8� ¨ ± ¼Á¢¦��©K����«��¢ ¨ ¥¤�u����� ± � ¨ ����©¤¥L��¢¦�¤£��X²8�R���¦����¡f¡L¥¤�������t¥ ¨ ± ���[� ± �.¡�-¥K����°I� ¨ �����[�»¥¤�u�¦�f�v²X���u¥K�X���v¡|���K¡|�-¥K����°I�¿¢u���t�R£8�����t��¡¢u��� ± ���X²��R�c���u�;¾a��À ¨ ����©¤¥L�c�X�t¢u���H �V� Ä �v²��R�Á�v²��R�§�t¢u��¥L«�·�X��¢¦�8�K��� ± � Ä � ± �X�Á���R����¢¦�¤£'� ± �a� ¨ ± ��¡L¥¤�u¢¦�¤£ ¨ �����t�����u�u�R�
©I�[«��¢¦�L¡p¸L������¢¦�ª���t¢u�¤£�� ± �����  O�¦����¡¿���K¡ ¨ ± �.�8�t¢¦�K£(� ± �(¾a�L�
¨ �t¢¦�t�v�t¢u�������t�V�¤���B�t��¢¦².¢·���2���8��¶L�v �r¢u�K���u�u��¸.°2����¢·¡L��� ¨ �����t��������R�·�X���v¡��8��©I� ¨ ���v¸�� ± �'�����u�a���2¡����t��¥ ¨ ��¥¤�t�$���H� ± ��� ¨ ± �v¡L¥K��«¢u�¤£��ª���K��£��R�$��¥2���'°2�ª¡L�R����¢¦�u�v¡l�t����� ¨ ¢¦�v�8���¦��¢u���t�v£��c�X�t��R½ ¨ �R©L��¢¦�8� ± ���K¡L�u¢¦�¤£q���K¡ ¨ �����t�����"�U�L¡L����¢u���q�t���»�����K¡
%K�R½L¢¦°¤�u� ¨ �8���t�����p���L���t�v��

<A)�: )8��) Í � ).�
Ö¦×[Ù � « #É�®V� !���R�H¸B®�B�w�R��².¢¦�j¸��2 #�¶8�R��¸w���K¡ ��wÀ ± �¤
®V�l¢u�8���t�L¡L¥ ¨ �t¢u���l�t� ¨ �������t�8�r���K¡§� ¨ ± �v¡L¥K�¦¢u�¤£ ¨ ��«º¡L�v�t¢u£��jÜº����������������� � ��
.� � � � 
�� � ��
�� � � � � �;��
$��
�� � ��
 ����� � ¸
À.�L¡L�K�R��¸2®É¥K���t�c���u¢u�K¸¤¡L� ¨ �R�-°2�v� ��- -9-¤
Ö �}Ù � �2"®a�����t�8� ���K¡ � wÕ¬¢��t�t�v�¤�ª����¶I � ��� ����� � � �� ��
7� � ����� ���N/ ��� � � � �]¤Üº�L�»�����ª�X��¢¦�8�U���K¡����L���t�R�ª�
� ¨ ¢u�R� ¨ �v��t�R��¢¦���R �"�t�v���t¢ ¨ � �V���u�6¸ - � Ä �8�R�c���v��¸ "��c¡¿�v¡L¢¦�t¢u���j¸H×vØ�Ø =.
Ö "XÙ ®("�w�R��².¢¦�Hq¹;� Ä ����¡¤��� ± ��¢¦�����R£��c�X��¢¦�8�f��� ¨ �����t��������K¡��t�����¦«=��¢¦���É� ¨ ± �v¡¤¥¤�¦¢u�¤£�¡¤�v�t¢¦£8�jp¹H� ¨ ± �¤¢ ¨ ���2à:�R©I���t�]�j¢¦«
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Classical pole placement control law 

Memoryless delay dependant control law 

CPU utilization 

Sampling period of control task  
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¨ �v���t¢·�X�t�G� ± ����¢·��Ü�À¤à - �� V¹ � Þ ��ÓX¹ �4à4¹�
 "D� � '�
LÀ�#V¸ Þ �R«
©K�������U�v���q����®É¥L�����ª�X��¢ ¨ �w�����t�����6¸+�H¥¤�K¡ Üº�K����¢���¥L�t�Ã���
¹;� ¨ ± �¤�8�¦�8£��8¸LÀ Ä ��¡L�R�j¸ Ò �}����-9- -¤
Ö $�Ù ®(j�w�R��²�¢u�l���K¡ �27#�¶8�R�� �¤�v�v¡L°2� ¨ ¶�� ¨ ± ��¡L¥¤�u¢¦�K£����
¨ �8���t���"���8��¶L�v�Üº� � ���)� ��������

��� � � ��� � ������� � ����� � ��
 �� � ��� 
���� ��
��?�� � � �;��
 ��
�� � ��
 ������� ¸BÀ.�L¡L�¤�R�8¸�®É¥K���t�c���u¢·�¤¸
Þ � ¨ �v��°I�R� � - -9-¤
Ö �}Ù ®(w�w�R��².¢¦�H¸��K #"¶��v�v¸ �  � �R��� ± ����¡¤���t���j¸����K¡ � «
#É�®É� !���R�j��K�R��¡L°K� ¨ ¶�«6�»�R��¡.�»��� Ä ����¡�� ¨ ± �v¡¤¥¤�¦¢u�¤£-��� ¨ �8���t��������8��¶L�v�� �����'3 ��� � / ��� � � � �]¸ � "KÂ�×�Å]Û9� ��
 � $K¸D� - -D�L
Ö 'XÙ �K #"¶��v�v¸ �4-�V��£����K¡¤�R��¸¤���K¡ $« #É�®V� !���R�jw®��»�R��¡.«
°K� ¨ ¶¿� ¨ ± �v¡L¥K�¦�v�É�»���V�t�����¦«=��¢¦��� ¨ �8���t�����u�¦�v�:���8��¶L�v � ��
7� � ���
� 

����
�� � � ��
�� � ��� � ��� ���[¸ #KÂ�×3��Å[Û ©K©q×3" '�Ø�
I×3" =�#K¸D� - - -K
Ö4=�Ù ®( �2�X�t�t��¥ ± ¸pá-@À.�R�2������¸I���K¡ �2 « Ò  Þ ¢u���j �"¥¤�·���
¨ �8���t�����u�¦�v�§¡L�v�t¢¦£8� �»�8�§�u¢¦�¤��������¢¦���R«³¡L�v�u�}�S���L���t�v���vÈÜº�
����� � / ��� � ��� ����� ��
 / ����� � � /7��� � � ������� ��
�� � ��
 ��������¸
���c��£8¥¤��¸ � - -¤×8
Ö #XÙ Þ  �V�R�¤��¢u¶.���t���j¸ª®(��w�R��²�¢u�j¸G���K¡ � « #É�®É� !���v�j
¹;�t¥¤�R�t¢u����Û�À.¢¦�-¥¤�·�X�t¢u���Ã��� ¨ �8�8���t�8�w�u�.��©K�U¥¤�2¡L�R�G� ± �����v¡
¨ �8��©¤¥L�t�v�É���v�t��¥¤� ¨ ���R�Üº� �=���"����������

��� �,� ��� ��������� ����� �
� ��� � � � ��
�� ��� �� ��
�� ��� ��� ����� � � ��
 ����� � ¸ � ��� ¨ �v�¦�8�K�¤¸À.©K��¢¦�H¸ ��¥K�¦� � - -D�L
Ö ØXÙ �-
À@ �j�R�����K¡|Õ�@��  Ä ���H Þ �v�u�}��«º¡L�R©I�R�2¡L�R�������°¤¥K���U������°¤¢u�¦¢ !v���t¢u���|���V¥¤� ¨ �R�t����¢u��¡L¢·� ¨ ���[�t�R«=��¢¦�������c�X�t�R«¡L�v�u�}�8�v¡!�t�L�����R�ª�R Üº� �	��� � ������� � ��� � � � ��

�����	��]¸� ��� ¨ �v�¦�8�¤��¸¤À.©K��¢¦�H¸ ��-9-A�L

Ö¦×5-�Ù¯�a �" �j¢u¥¬���K¡��K Õ� �H�}�.�·���K¡j�À ¨ ± �v¡L¥¤�u¢u�¤£f���u£���«��¢�� ± �ª�a�»���'��¥¤�¦�t¢u©¤����£8�����U��¢u�¤£G¢u� ± ����¡l�t�����¦«=��¢¦���-�R�.².¢�«
�����¤���v�8��� ������ 
�� ��� ����� �!� �#" ¸ ��-2Â�×�Å[Û $ -�
 '¤×�¸2×vØ =�"¤
Ö¦×�×RÙ¯�aX�H¥j¸ �K «³®��À��c���¤¶8�X².¢ ¨ ¸ �U�¹;���K¸����K¡ÈÀ@ «8�(
À.�8�j �K�R�v¡¤°K� ¨ ¶ ¨ �8�8���t�8�����v���¦«6�t¢u�U�¿� ¨ ± ��¡L¥¤�u¢¦�K£KÛ �¤�c�����[«
Ä ����¶@¸L�U�L¡L�v�¦¢u�¤£2¸K���K¡����¦£8����¢�� ± �ª�R$� � � �'3 ���	�N/ ����� � � �]¸
� "KÂ�×}Å]Û #A��
I×3� '¤¸ ��- -D�L
Ö¦×3�XÙ Ò ¤À@ Ò � ± ���8¥K¡p;àÉ��°¤¥K��� �IÇ ¨ �����t�����2���;¡L¢·� ¨ ���[�t��t�L�����R�ª� Ä ¢¦� ± ¥¤� ¨ �R�t����¢¦��©2���c�����[���R�c�:���K¡�¥¤�K¶��K� Ä ��¡¤�[«�·�}�L�R$� ��� ��� ����� � ��¸ " 'KÛ 'D�2=%
 ' "D�L¸D� - -9-¤
Ö¦× "�Ù �4 Ò ������¢=¸ �KA�¤¥¤�v�����v�v¸
�UD�¤� ± �¦�v�v¸����K¡ ��àÉ���ª���U«
��¢�� ± ���� �8¢��t�t�v� ¨ ����©2�v�K���X�t¢u�����»�8�"���v����«6�t¢u��� ¨ �8�8���t�8�2�t�L��«���R�ª�RÁÜº��$2$ 
�� � �����&� ����� �:3 ��� �N/ ��� � � � � / ��� � ���������U¸�H���K¡L�8�j¸  �¸-��- -K×�
Ö¦× $�Ù �K - ¢¦�·�����8�j'� � � � �:3 ���	� � ��
7� � ���1/ ��� � � � � ������� � ���
� � ���] � ± Þ � ± �v�t¢u�v¸ Þ �v©K���t�t���v�8�$����®É¥¤�t���ª���t¢ ¨ �w�������t�8�=¸�H¥¤�K¡�Üº�K���t¢¦�t¥L�������r¹;� ¨ ± �¤���u��£8��¸¤À Ä �v¡L�v�j¸ �8���.¥K������×vØ8Ø�#¤
Ö¦×3�XÙ �4��"¥K� ¨ ± �¤�R�����K¡O®( � ¥¤���K�R �$¥¤�������v¡L¢¦�t�8�t¢·���UÛ
®����R².¢¦� Ä ��� Ä ���c����« ¨ ���t���[½L� ¨ ¥L��¢¦�8�L«=��¢¦�������K���¦�L�t¢u�v(� �����3 ��� �	/ ��� � � � �]¸p×)#KÂ5�X« "�Å]Û ©¤©l×8×3��
I×3��#¤¸ ��-9- -¤
Ö¦× '�Ù Ò Xà:�.¥j¸8À@��V���¤£2¸����K¡ Ò �ÀL��¶L�t�R�K�KLÀ.�t���v�����u¢¦�K¢¦�¤£
���v����«6�t¢u��� ¨ �8�8���t�8�¦�u�R�U¡L�v�t¢u£��jÛU�»����� ©2�v���»�8�t�ª��� ¨ ���t©I� ¨ ¢¦«Ô ¨ �X��¢¦�8�K�(���q�v�K¡.«6�t��«6�v�K¡��t¢u��¢¦�K£ ¨ ���K���t�c��¢u�����vlÜº��� �����
� � � �'3 ���	�	/ ��� � � � � / ��� � ��� �����-¸j×�Ø�Ø =.
Ö¦×-=}Ù¯á-wÀ.�v�K������¸ Þ BÀ.¢u�����j¸:���K¡ Þ Bà:��°I�R�t�v �¤�R��¡.«
°K� ¨ ¶�� ¨ ± ��¡L¥¤�u¢¦�¤£G�»���É���v����«6�t¢u��� ¨ �8�8���t�8�j���"�t�L�����R�ª� Ä ¢¦� ±
¨ ������¥¤�K¢ ¨ �X�t¢u���¬¡L�v�u�}�L�v$� � � � ��� � ��� � � ������� � 
7� � � 
�� �
���;��
���� � ��
:� � ��� 
 ��� ��
 � �	� ��� ��
�� 37� ���
���� � � �;� ����
����������
� ��� �)� ��� ��� �����;��
 ��! � ������
1� � ��� �����9� � ¸K�t�R©L���R�-°2�v� ��- -A"¤
Ö¦×"#�Ù Þ @À.¢u�U�8�l���2¡%�w � �R�K���������v Þ �v�t¢¦£8�����
���v���¦«6�t¢u�U�
©I�R��¢¦�L¡L¢ ¨V¨ �����t�����I���L���t�v����� ± ����¥K£ ± �t��� ¨ ± �t�8�¤¢·�t���t¢u���ª���K¡Ô¤½L��¡¬©¤��¢¦�8�t¢¦�t¢u�v�v ¹;� ¨ ± �¤¢ ¨ ���$àÉ�R©I���t��àÉà $D' =2=.¸ÁÜ - à:Ü�®�¸¡L� ¨ �v��°I�R� ��-9-A�¤
Ö¦×vØ�Ù Þ .À.¢u�U�8�j¸9#V.�B�8����¢¦�u�¦�2¸����2¡ �4 �¤���R��¡L�ª���j Þ ����¢u£��
���K¡|���2���u�.�t¢·�(���V�t�.� ¨ ± �����¤¢ !v���t¢u�����»���U���v���¦«6�t¢u�U� ¨ �u�8�t�v¡.«�u�.��© ¨ �8�8���t�8�L¢¦������°I����¢ ¨ �R	� ������3�� ��
 � � ��
 � ��
7� � ���1/ ��� �
� � � � 3 ����
�� � � � �X¸ 'KÂ/$�Å]Û $ $ �*
 $A'¤×8¸� �¥¤�u�l×�Ø�Ø #¤
Ö ��-�Ù �( à�µÀ.¢u��©K���8�j Ò ¥¤�¦�t¢u���v��¡¤�R� ���K¡ ��¥¤�¦�t¢¦«
Ä ��¢����R� ���t��� ¨ ± �t�8�¤��¥2� ¨ ������¥K�¤¢ ¨ �X��¢¦�8� �U� ¨ ± ���K¢u�t�ª�R
� ��� � ���)��� ������
�� �� � ��� ����� � � ��
�� � ��� ��� ��� 37� ���
7�O( � �	�]¸
× $ $2Â/$�Å[Û � $K×�
 ��$A$K¸¤×�Ø�Ø =L
Ö �L×RÙÚÀ@ À.¶8��£8�v������¡ ���K¡ Ü] �4�������¦�R� ± Ä ��¢¦�t��
" � � ����� ��� �;����� � �������������� � ��
 ����� �,+ ��
�� � ��� � �
��
�� �9� � ��� 
K ��� ± � Õ¬¢u�¦�v� ���K¡ À.���2�R¸ ×vØ8Ø '¤
± ����©jÛ Ó�Ó Ä:Ä:Ä  ¨ ± �v��°¤¢u�K ���t�.¥j �¤�.Ó���¶8��£8�}Ó.
Ö � �XÙ �K�À������¤¶��X².¢ ¨ ¸8�a5�H¥j¸.Àp �(8ÀL���j¸����K¡ �U�¹r���22¹ ± �
¨ ���t�w�»�8�
�»�R��¡L°K� ¨ ¶ ¨ �8�8���t�8�L�t�����¦«=��¢¦���:� ¨ ± �v¡L¥K�¦¢u�¤£K2Üº�-�������
� ��� ��� � � ��� � ��
.� � � � 
�� � ��
.� ����� �:3 ��� �X/ ��� � � � �]¸/���8�t¶@¸
#"�¤£��·���K¡j¸p×vØ�Ø8Ø¤
Ö � "�Ù �K ®(�À.�����K¶��X².¢ ¨ ¸ Ò  ÀL©¤¥¤��¢=¸ Ò  Þ ¢ - �X�����¦�8¸G���K¡
�U � ¥L�t����!�!R�2ªÜº��©¤�¦¢ ¨ ���t¢u���K�'��� ¨ �u�8�t�t¢ ¨ ����� ¨ ± ��¡L¥¤�u¢¦�¤£����[«�t¥¤�¦���p�»�8�j���v���¦«6�t¢u�U���t�L�����R�ª�v ������� � ��� ����� � �]¸ ��#KÂ/'�Å]Ûu× '�

�A�L¸p×vØ8ØA�¤
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Abstract: In real-time control systems, the objective of control activities, i.e., to control
processes, and the objective of scheduling techniques, i.e., to meet deadlines, are
accomplished separately. This may derive in sub-optimal designs in terms of both control
performance and resource utilization. Control activities optimise control performance
regardless the computational demands of other tasks and scheduling techniques optimise
the use of resources regardless the dynamics of the control application. To overcome this
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time, are able to define self-execution patterns that dynamically balance optimal levels of
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1. INTRODUCTION

In real-time control systems, the objective of control
activities, i.e., to control processes, and the objective
of scheduling techniques, i.e., to meet deadlines, are
accomplished separately. This may derive in sub-
optimal designs in terms of both control performance
and resource utilization.

On one hand, control activities optimise control
performance regardless the computational demands of
other tasks. This fact comes from the control design
process: a discrete time controller is designed
assuming a constant sampling period. In terms of task
execution, that means that at run time the controller
will execute demanding a constant processing
capacity. Therefore, in the design process of the
controller, it is not usually taken into account the
possibility of taking advantage of processing capacity
that may be released by other tasks. That is, the
controller design does not allow increasing the
execution rate (decrease the task period) to exploit
available resources.

On the other hand, scheduling techniques optimise the
use of resources regardless the dynamics of the
control application. For instance, a periodic control
tasks may not require the designed execution rate (the
assigned processing capacity) if the controlled plant is
in equilibrium. When a plant is in equilibrium, after
an execution of the controller, no major change in the
state of the plant can be appreciated. That is, the
contribution of the controller execution can be
considered as useless. Therefore, the processing
capacity has been used when not necessary. In such
situations, this processing capacity could have been
used by other tasks with higher processing capacity
demands.

To overcome these problems, we present a control-
based model for control tasks in which computing
resources and control performance are jointly
considered. Concretely, the model allows each control
task to trigger itself: at each control task instance
execution, the executing instance informs the
scheduler when the next instance should be executed.
The next instance execution point in time is
dynamically obtained as a function of the utilization
factor (global parameter) and control performance
(local parameter)1. Therefore, task-timing constraints
(e.g., task period) are dynamically adjusted.

Consequently, we could say that each control task
acts as a co-scheduler, helping the scheduler at the
scheduling decisions. Note that scheduling decisions
will depend not only on task deadlines (as standard
scheduling policies do) but also on the utilization

                                                
1 The utilization factor of the system is obtained taken into
account all tasks in the system. Therefore, it is a global
parameter and affects all tasks. The control performance is
obtained by each task from the corresponding controlled
plant. Therefore, it is a local parameter and affects itself.

factor and the dynamics of the control applications.
Figure 1 illustrates the operation of the whole system.

Figure 1. System operation model

Preliminary results show that control activities, at run
time, are able to define self-execution patterns that
dynamically balance optimal levels of control
performance and resource utilization.

The rest of the paper is organized as follows. In
section 2 we discuss the state of the art. In section 3
we provide basic background to define the problem
formulated in section 4. In section 5 the self-triggered
tasks model is developed. Preliminary simulations
results are presented in section 6. Finally, in section 7
we conclude and point to future research work.

2. STATE OF THE ART

In this section we present a brief but relevant
discussion on the state of the art. The model we
present resembles the model presented in [CER02].
They propose to use feedback information from the
controlled plants to take scheduling decisions.
Specifically, all control tasks periods are
proportionally enlarged or shorted at a given time
instant as a function of the utilization factor.
Therefore, they do not allow the exchange of
processing capacity if the control application requires
higher execution rates of specific tasks.

The later can be achieved using the elastic model of
[BUT02]. In such model, the elastic coefficient of
each task allows the scheduler change the task
execution rate within specified ranges. The elastic
coefficients are regarded as fixed parameters to be
specified before run-time. The model we propose
matches the elastic model if each elastic coefficient of
control task would be treated as a dynamic parameter,
being a function of the resource utilization and
control performance.

It should be stressed that the work we present derives
from [MAR02]. The authors point out that novel
methods for control task scheduling in which
scheduling decisions should depend on control
performance and resource utilization are needed.  

Some similarities may be identified between our
model and event-based systems. In event-based
systems the sampling period takes random values.
The sampling period for our model is also variable,
but there exist a slightly difference: in event-based
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Feedback: Utilization factor

Sc
he

du
le

r

Task schedule
execution

CPU

Plant1

Plant2

PlantN

Ta
sk

s t
im

in
g

co
ns

tra
in

ts



systems the next execution point in time is unknown;
the suggested model in this paper deals with known
future periods because they are a result of the model
execution.

3. BACKGROUND

Traditionally, real-time tasks are characterised by the
period (Ti) and the worst-case execution time (Ci)
[BUT97]. For control tasks, the task period is given
by the sampling period (hi) that, among other
parameters, determines the performance of the
controlled system.

The sampling period hi can be selected form a range
of values. It has a lower limit (the shortest sampling
period), which is given by the underlying technology
(processing power). The shortest sampling period
should include the worst-case execution time of the
controller. This is represented in Figure 2 a) where all
instances of a control task have as a task period equal
to the worst-case execution time. However, other
patterns of execution could be represented in Figure 2
by sequences like b) and c), where the task period is
greater than the worst-case execution time (in Figure
2, boxes represent consecutive execution of instances
of a task assuming worst-case execution times, Ci,
and consecutive vertical doted lines represent the task
period).

Fig.2. Possible periods for a control task. a) lower limit (shortest
period), b) intermediate period and c) long period

The range of values for the sampling period has also
an upper limit (the longest sampling period): beyond
this limit, the control task looses the control of the
controlled system. That is, the control tasks execution
rate is too slow compared to the system dynamic, thus
losing relevant information as illustrated in figure 3,
where the effects of a low sampling rate are reflected.
The dotted line shows the estimated sampled signal
while the continuous line is the real signal. If the
control task works with the dotted line, the
information that the control task has is not accurate
enough.

Fig.3. Real signal (continuous) and the estimation of the sampled
signal (dotted). The little squares indicate the sample points.

More specifically, this upper limit depends on the
natural frequency of the system to be controlled. This
frequency can be easily found in different ways. For
instance, the natural frequency of oscillation for a
spring is determined by the constant of the spring (K)
and the existent mass at his end (M). It also may be
determined in an empiric way, stretching the spring
lightly and observing the oscillation frequency of the
system. The Shannon’s theorem (see for example
[PHI84]) tells us that the longest sampling period (the
upper limit) should be at least given by (1), where f0
denotes natural frequency.

0

1
2ih

f
=  (1)

To avoid problems derived from working on limit
situations, the recommended sampling period is
usually taken following well-known rules-of-thumb
(see for example [ÅST88][ PHI84]). For example, a
rule-of-thumb suggests taking a sampling period from
4 up to 20 times of theoretician one, as shown in
expression (2)

0 0

1 1
8 40ih to

f f
= (2)

Each possible choice for the sampling period has
advantages and disadvantages. In short, a short period
allows a quick reaction in front of perturbations
(which is positive from a control point of view), but
increases the processor’s load (which in negative
from a resource utilization point of view). Using long
periods decreases the processor’s load but may give
poor response in front of perturbations.
COMFORMATO
Note that the choice of the sampling period has to
balance the desired control performance and the
feasible computational demand. INCRUSTAR

4. PROBLEM FORMULATION

The selection of the execution period for a control
task has been discussed in the previous section. The
control engineer prefers small task periods in order to
obtain good responses of the controlled system. The
real-time engineer prefers long task periods to relax
specifications and to facilitate task set schedulability.
Both preferences are in conflict, and traditionally, a
single value for the task period has to be choice
before run-time [MAR01].

If we look at control tasks operation, we can
distinguish two clearly differentiated situations that
affect the execution rate of a control task. Firstly, we
have the situation in which the controlled system is
clearly outside of the desired working point. That is,
the controlled system behaves differently as it should
do. In this situation, a small period for the control task
would imply a fast correction of the non-desired
behaviour of the controlled system, bringing the
system to the desired working point. Once the desired
point is reached, no more correction is needed.
Looking at control signals, this means that control
actions tend quickly to zero. If control actions are

a)

b)

c)



almost zero, a small period is no longer needed
because the contribution of each control action has no
effect on the controlled system (they are zero).

The opposed situation appears when the system is in
the desired working point (in equilibrium). In such
situation, as be stated previously, the period of the
control tasks can be long because the contribution of
control actions have no effect on the controlled
system (they are zero). However, a perturbation may
suddenly affects the controlled system, bringing the
system away from the desired working point. Then, if
the task period is large, the controlled system will
respond slowly, taking long time before reaching
again the equilibrium point, which may not be good
for the given performance specifications.  

In fact these two situations, which dynamically
appear due to perturbations that affect the controlled
system, can be considered as “transitory”. Generally,
the transition from one to the other can be considered
as a soft evolution.

Note that from a control point of view, depending on
the status of the system (depending on the situation
that the controlled system presents), if the control
tasks has a constant value for the task period, the real
profit of the control task CPU cycles (given by the
task period) can be very high or very low. When the
controlled system is in equilibrium, from a control
point of view, the CPU cycles of the control task are
not fully exploited, thus wasting resources. In the
opposite situation, the CPU cycles are appropriately
exploited.

Concluding, long periods for control tasks are
preferable when the controlled system is stable in the
desired working point and small ones when the
controlled system is far away from the desired
working point. This demands models that can
dynamically accommodate different values for the
task (controller) period. However, traditional control
and scheduling techniques do not provide this feature.

The model we present allow control tasks to have
varying values for the period. The exact value for the
period (at each control task instance execution) is
dynamically adjusted depending on the controlled
system status and the CPU load. Figure 4 shows the
relation between the task period and the controlled
system status. The curve at the bottom of the figure
represents the status of the controlled system and the
curve on the top of the figure represents the value for
the task period for each instance execution. When a
perturbation appears (when the bottom line presents a
“mountain” shape) and the controlled system is
brought away from the desired working point, the
task periods are decreased. When the controlled
system response reaches the desired working point (it
has a horizontal shape) the task period is adjusted to
the nominal value (longest period).

Fig.4. System evolution while period adjusting. Upper line
corresponds to periods, lower line corresponds to system.

5. SELF-TRIGGERED TASK MODEL

The main idea of the model we present is to use the
common models that are used in the analysis and
design of control systems. Concretely, we propose to
use an extended state-space representation. State-
space models allow us to describe the future response
of a system, given the present state (characterized by
the state variables), the excitation inputs and the
equations describing its dynamics (see [ÅST88] o
[PHI84] for further reading on discrete-time state
space models). The extension we suggest is to
incorporate as new state variables the task period and
the utilization factor. Therefore, we will be mixing
the control behaviour (already represented in the state
space model) with the execution rate of the task and
the processing demand. In the following subsections,
step-by-step, we develop the model.

5.1. Basic model  

Let us think on a closed loop system formed by a ball
and beam (see figure 5), which is the plant to be
controlled, and a control task that has to be executed
on a processor and has to control the ball and beam.
The ball and beam system has a motor that balances
(by rotating movements) a beam in order to keep the
ball (that can rotate freely along the beam) in the
desired beam position [AST88], as illustrated in
figure 5..

Fig.5 Ball and beam system.

The objective of the controller is to actuate on the
motor to locate the ball in the desired position. To do
so, at each sampling time, the controller takes the
value of the position of the ball and the angle of the
beam and generates the new angle for the beam that
derives in the corresponding actuation on the motor.



The ball and beam system is habitually represented by
the linear discrete-time invariant state-space model
[AST88] given in (3)
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In equation (3), xk and yk (which are the state
variables) represent the position of the ball and the
beam angle respectively at the k sampling instant.
The first matrix (2x2 dimension), called system
matrix or state transition matrix, describes the
dynamics of the ball and beam. The second matrix
(2x1 dimension), called input coefficient matrix, links
the input with the system dynamics. In both matrices,
h  is the sampling period. U is the available vector of
inputs; in our case it is the tension (1x1 dimension)
that we provide to the motor. The input can adopt
positive and negative values, allowing the motor of
the beam to rotate to both sides.

To control the system it is necessary to use a rule (a
control law) that allows us to find values for U at
each sampling instant that guaranties the desired
behaviour for the system. By means of classical
control techniques it is possible to design a control
law that generates appropriate inputs U to the system
in order to locate the ball at the desired position.

Note that in the state space representation of the ball
and beam, the variables that describe the system are
xk, the angular position of the beam (angle), and yk,
the position of the ball on the beam. At each sampling
instant, xk and yk vary according to the system
dynamics (state transition matrix) and the input
(applied through the input matrix). However, h, the
sampling period, which appears on the matrices as a
result of the discretization process, has a constant
value that has been chosen at the controller design
stage. Recall that (3) is a discrete-time model
obtained via discretization of the continuous-time
model. Therefore, h has nothing to do with the state
of the system, although it influences its dynamics.

5.2. First model modification.

Up to now, we have described the classical ball and
beam state-space representation. As we stressed in
section 3, we want a model able to accommodate
different values for the sampling period (i.e., the task
period) according to the desired control performance
and taking also into account the processor load.

The first extension for the previous model allows us
to have varying sampling periods according the
controlled system dynamics. To achieve this objective
we extend the state representation of the ball and
beam system model with a new system variable, the
task period, hk. Therefore, at each task instance
execution, the task period will be changed according
to the state of the system given by xk, yk and the new
state variable hk. This is intuitively expressed in (4)

                          1 ( , , )k k k kh h x y h+ =           (4)

Recall that the state of the system can be directly
related to control performance. For instance, a simple
rule could be the smaller the norm of the state vector,
the better the controlled system performance. In terms
of the ball and beam: the smaller the deviation of the
beam with respect to the horizontal position and the
smaller the distance of the ball with respect to the
desired location, the better the performance.
Therefore, at each task instance execution, the added
state variable determines the next task instance
execution point in time as a function of control
performance.

It has to be pointed out that if the system state is
increased by the new variable, a new control law
giving the appropriate sequence of values for the
input U is needed. The extended model is represented
in (5)2.
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(5)

Note that in the system given by (5), hk is the new
state variable. The dependency of this variable with
the others system variables is given by parameters α,
β and ω. Let’s discuss some properties of the
extended model, depending on values of α, β and ω:

• If α and β are set to zero and ω is set equal to 1,
then, for each k, hk+1=hk, and the system may be
considered as the original one (given in (3)). The
control law that will give the sequence of inputs
U can be obtained by classical controller design
methods. This model will result on the classical
real-time implementation with the task period
equal to the sampling period (T=h).

• If α and β are set to zero and 0<ω<1, the
sampling period will be decreased at each
instance execution, tending to 0, thus leading to a
non real system. From a schedulability point of
view, at some point in time, the task period will
be shorter than the task worst-case execution
time, leading to an unfeasible system.

                                                
2 Note that hk+1 (and not hk) appears inside of the system
and input matrices.  This is due to the solution of the system
equations. In the non-extended model, the sampling period
of the system and input matrices has no index (k+1 or k)
because it is constant (h at the k instant and h at the k+1
instant have the same value). In the present model, since hk
is a system variable that varies form instance execution to
instance execution, it is necessary to distinguish in the
matrices which is the appropriate k index.



• If α and β are set to zero and ω≥1, the sampling
period will be increased at each instance
execution, tending to ∞, thus violating the
Shannon’s sampling theorem. Note that from a
real-time point of view, this tendency could be
desirable because implies less pressure on the use
of resources.

• If α and β are set different from zero and 0<ω<1,
we have a system with a variable period, each
one depending on the previous system state. The
computed value for each h is given by (6).

      1k k k kh x y hα β ω+ = ⋅ + ⋅ + ⋅  (6)

The formula for hk+1 shows that the new value
for the next task period depends on the previous
one (ωhk). This implies smooth transitions in
period variations. This model will require real-
time implementations able to accommodate
varying task periods (which depend on the state
variables including the previous period), similar,
for example, to the models used in [BUT02].
The main problem of this combination of values
for α, β and ω is that the state space model
becomes nonlinear (that is, a small change in the
inputs may result in chaotic outputs), as we
outline later in this section. Therefore, finding
the adequate control law giving the appropriate
sequence of inputs U will be a  more difficult
task (see for example [ISI89]), if feasible.

• If α and β are set different from zero and ω is set
to zero, we get a variable period system
depending only on the original state variables.
Consequently, the more quickly these variables
move (angle and position), the faster the period
changes, thus loosing the smooth transitions
found in the previous case. This may result in
values for the sampling periods out of the
permissible ranges (that we explained in section
2), which from a control point of view may
violate the limit given by Shannon and from a
real-time point of view, it may result in an
unfeasible schedule (if the period is shorter than
the worst-case execution time).

• If α and β are set different from zero and ω≥1, the
evolution of the system will depend on the
chosen values, which require a deeper analysis,
out of the scope of this paper.

From the extended model given by (5), two elements
should be highlighted:

• The system is nonlinear, since h is a state variable
and it also appears multiplying to other state
variables.

• It would be possible to obtain negative values for
the task period from the actual extended state
space model. Considering only a theoretical

view, this possibility means that the system
should return to the past in order to modify
already taken decisions. But this is clearly non-
programmable in a real system. We could solve
this problem by using the absolute value for the h
at each task instance execution. This will
guarantee that h will be always positive.

Taking into account the previous points, the model
should be modified to the expression given by (7).
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(7)

In (7), |hk+1| means absolute value of hk+1. Note that in
this expression, h always is positive, due to the
absolute value operator. Note also that h in the k
instant does not have the absolute value operator
because it comes from the previous task instance
execution.

Finally, is also have to be stressed that the system
matrix has hk+1 at the k instant, which is an
inconsistency. However, this can be easily solved by
substituting the hk+1 value for the expression given in
(6), which is already known at the k instant.

5.3. Second model modification

Looking at the final model given by (7), two
difficulties, beyond having a nonlinear model, can be
identified:

• the absolute value operator makes the
mathematical tractability implies using two
symmetric models, one for positive values of h
and the other for negative values. From a
programmable point of view, this involves no
major problems (a if-then-else structure is
required). However, from a control tractability
viewpoint, this model duplicity is not desirable
because it requires using specific control
methods like switching mode controllers (see
[LEI03] for a benchmark study of switching
techniques).

• The possible values that h may take are not
bounded, due to the linear relation between h and
the original state variables. Note that if the state
variables take huge values, h will rapidly
increase (and viceversa). As we outlined in the
previous section, this introduces control and real-
time problems.

To solve the previous problems, we suggest to bound
the possible h values by introducing an appropriate
function of the state variables instead of having a
simple linear relation. We call this function h-
function.



Taking advantage of the use of the h-function, we
incorporate the utilization factor in the model, as a
measure of the processing capacity. Recall that up to
now, the model only related the varying period of the
task with the original state variables (as a measure of
control performance). In this new extension of the
model (adding the h-function), we will relate the
period variation to the control performance as well as
to the processing capacity.

The second extension we present is given by (8)
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(8)

In (8), ζ represents the utilization factor of the
processor at the k instant and the h-function is given
by ƒ(.). This new model is obtained as a natural
extension of the previous one. In the previous section
hk+1 was obtained as lineal combination of the other
state variables. In the new extension hk+1 is obtained
by an appropriate function of the state of the
controlled system and the CPU load. Note that the
goal of the h-function is to allow the task period to
take values from a bounded range.

This allows a grater variety of possibilities in the
selection of how h changes at each moment. For
instance, the same system with two different h-
functions will result in very different behaviours in
terms of CPU load and control performance. Note
that choosing a specific h-function could facilitate
system schedulability (this could be done either
offline or even online) as well as improve control
performance.

It is important to point out that for the state space
model given by (8), the analysis and design of a
control law can be a complex task. However, it is
possible to design control laws that guarantee the
complete stability of the system around a desired
working point. These techniques range from the
system linealization [ISI89] to the complex
techniques of feedback linealization for discrete
systems [NIJ90].

5.4. The selection of the h-function

As we outlined before, the selection of the h-function
determines controlled system performance and CPU
load. Therefore, it is a crucial design choice. The
most natural way for selecting the h-function is to
mathematically translate in a function the following
desired rule:  as the system gets closer to the desired
working point (equilibrium), the period should be  as
larger as possible, keeping Shannon limit (recall
discussion of section 3). If a perturbation appears on
the system, bringing it away from the equilibrium

point, the period should be decreased (to improve
control performance) taking into account the available
processing capacity. Mathematically, this can be
accomplished by the h-function given by (9)

    
2 2( )

1 ( , , , ) ( )k kx y
k k k k k kh f x y h geζ ζ− +

+ = =   (9)

Note that (9) has a negative exponential shape, with
two main parts. The fist part is the exponential
function, which contributes to the h values taking
only into account, measures of control performance.
It allows each value to smoothly vary form an upper
limit to a lower limit, if the exponent of the
exponential function is kept positive. That’s why we
suggest putting the square exponents over xk and yk to
convert the possible negative values (of the state
variables) into positive ones. Note that as we
explained in section 5.2., in this case, the state
variables already are measure of control performance.
Otherwise, the exponent should include the operation
needed to measure the controlled system
performance.  The second part, the function g(ζk),
allows to correct the next value of h taking into
account the processor’s utilization factor.

The fig.6 shows possible ranges of h values obtained
using  the h-function given by (9). The figure has two
degrees of freedom: the control performance
(horizontal axis) and the utilization factor (which
would correspond to a perpendicular axis). The
results are given according to the vertical axis, which
are the possible values for the task period. When the
control performance (understood as the system
deviation with respect to the equilibrium point)
decreases (the deviation increases), the values for the
task period tend to short values, with the aim of
quickly correct the deviation. In addition these values
are increased as the load increases.

Fig.6. Possible values for the task period

5.5. Concluding remarks

The use of tasks that are driven by the model given by
(8) have a remarkable advantage:

The task observes the state of the system which is
composed by the processor and the controlled system.

In this way, at each control task instance execution,
the period selection is in consonance with all the
elements that are involved in the control of the system



and in the scheduling to the task set, thus facilitating
the optimisation of the whole system, in terms of both
control performance and resource utilization.

The main goal of the presented model is that if
several tasks are driven according to this model, the
processing capacity can be dynamically balanced
among them according to the controlled performance
measured (see simulation results section). Moreover,
note that although the processing capacity is
dynamically exchanged, the feasibility of the task set
is kept. If more tasks are added to the system, the
probability of keeping a feasible schedule is high due
to the fact that decisions  (on the period selection) are
based on the utilization factor.

6. SIMULATION RESULTS

In figure 6 we show the results of two ball and beam
control tasks executing a single processor. The
control laws implemented in the two tasks have been
calculated by means of linealization techniques (not
detailed in this paper), according to model we have
presented.

In Figure 6 we can observer 4 lines. The upper ones
correspond to the sequences of values for each task
period, and the lower ones correspond to the
dynamics of each controlled system. The task period
values take into account the utilization factor, which
is injected as a simulation variable. At the beginning
(left side of the figure), both systems are stable at the
desired working point, so both have the same value
for the execution period.

Later on a perturbation affects system 1, deviating the
system away form the desired working point. This
perturbation causes an immediate decrease of the task
period controlling system 1 and an increase of the
task period controlling 2. Therefore, the exchange of
the processing capacity among the two control tasks
has started. From

The delay observed between the perturbation arrival
time and the first decrease in the task period is due to
two factors:

• There is always an offset among the moment in
which the perturbation takes place and the
moment in which the task samples the system. In
the worst case, this offset could be as big as the
period. However, this situation doesn't
necessarily lead to worse system dynamics

• After the perturbation arrival time the error is
small and the decrease in the sampling period is
not very significant. One period later, the error
has increased and the decrease on the sampling
period becomes more remarkable.

Note that the communication between both tasks only
takes place through the processor’s utilization factor,
which is a global parameter (see section 1 for further
details).   

Perturbation
Over system 2
Perturbation
Over system 1
fig 7. Analisys of responeses and periods enlargements.

Later on another perturbation affects system 2. The
system reacts in a similar way to the previous one.
That is, the processing capacity exchange takes place
as before, but in inverse direction.

7. CONCLUSIONS

In this paper we have presented the self-triggered task
model that drives control task executions according to
controlled system performance and available
processing capacity. Specifically, the model allows
control task to adjust their execution rate, acting as a
co-scheduler.

As we outlined, the main research issues behind this
work is the analysis and design of the controller,
which must give the appropriate inputs to drive the
whole system to the desired behaviour.  
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Abstract

Linking scheduling attributes to control performance spec-
ifications is a difficult problem. This paper discusses how
the MATLAB toolbox Jitterbug can be used to derive tim-
ing requirements for control loops from various control per-
formance specifications. The resulting timing requirements
include specifications on sampling periods, latencies, and
jitter. An overview of the Jitterbug approach is given, and
limitations of the tool are pointed out. A control design ex-
ample is given, and, finally, topics where more research is
needed are outlined.

1. Introduction

The design of a real-time control system is essentially
a codesign problem, where limited resources should be
allocated to control tasks and other tasks such that optimum
overall performance is achieved. In this paper, we will focus
on the control and scheduling codesign problem. More
specifically, we will deal with the problem of scheduling-
induced jitter in periodic control loops.

A digital controller is normally designed assuming a fixed
sampling periodT , and, possibly, assuming a fixed com-
putational delayτ. These simplistic design assumptions are
seldom met in the target system. When executing as a task
in a real-time system, the controller will suffer from time-
varying latencies, induced by preemption from interrupts
and higher-priority tasks. The result is degraded control per-
formance. Some performance degradation is normally ac-
ceptable, as long as the controller meets its design specifi-
cations.

In the scheduling design, a controller is traditionally de-
scribed as a periodic task with a periodT , a deadlineD, and
a computation timeC. It is normally assumed thatD = T ,
although a shorter deadline can be used to limit the end-
to-end latency in the controller. It can be argued that the
traditional timing model is too simplistic, since it does not
reflect the fact that a controller is composed of (at least)
three distinct operations: the input operation (orsampling),
the control computation, and the output operations (orac-
tuation). To get better control of the latency and jitter in
the controller, it is possible to schedule the different part of
the controller as separate tasks. Subtask scheduling of con-
trol tasks has been treated in, e.g., [Crespoet al., 1999] and
[Cervin, 1999]. These papers references assume a particu-

lar scheduling policy and that the sampling periods of the
controllers are fixed at the scheduling design stage. In re-
ality, the sampling period of the controllers are also design
parameters. The sampling periods are typically chosen ac-
cording to rules of thumb. One such rule [Åström and Wit-
tenmark, 1997] states that the sampling periodT should be
chosen such that

ωbT ≈ 0.2–0.6, (1)

whereωb is the bandwidth of the closed-loop system. It
should be noted that faster sampling may be required if there
is latency and jitter in the control loop.

In order to make correct trade-offs in the scheduling design,
the designer needs to what ranges of sampling periods, la-
tencies, and jitter that are acceptable to each control loop. In
[Bate et al., 2003], time-domain analysis involving exten-
sive simulations are used to derive timing requirements for
digital controllers. In contrast to that work, this paper relies
entirely on analytical computations of cost functions and
frequency responses to derive the timing requirements. the
Jitterbug toolbox [Lincoln and Cervin, 2002] linear model,

The rest of this paper is outlined as follows. In the next sec-
tion, an overview of control loop timing and its relation to
control performance is given. In Section 3, it is described
how Jitterbug can be used to model the timing variations in
a control loop. Also, an overview of the control design cri-
teria that can be evaluated using Jitterbug are given. In Sec-
tion 4, the approach is exemplified on a control application,
deriving bounds on the sampling period, latency, and jitter
given a performance specification. In Section 5, the problem
of linking timing requirements to scheduling analysis is dis-
cussed. Finally, in Section 6, some concluding remarks are
given, and areas where further research are needed are out-
lined.

2. Control Loop Timing

A control task generally consists of three distinct opera-
tions: input data collection, control algorithm computation,
and output signal transmission, see Figure 1. The timing of
the operations are crucial to the performance of the con-
troller. Ideally, the control algorithm should be executed
with perfect periodicity, and there should be zero delay be-
tween the reading of the inputs and the writing of the out-
puts. This will not be the case in a real implementation,
where the execution and scheduling of tasks introduce la-



Process

A-DControl
AlgorithmD-A

Figure 1 A computer-controlled system. The control task con-
sists of three distinct parts: input data collection (A-D),control
algorithm computation, and output signal transmission (D-A).

tencies.

The basic timing parameters of a control task are shown
in Figure 2. It is assumed that the control task is released
periodically at times given byrk = kT , where T is the
sampling interval of the controller. Due to preemption from
other tasks in the system, the actual start of the task may
be delayed for some timeLs. This is called thesampling
latency of the controller. A dynamic scheduling policy will
introduce variations in this interval. Thesampling jitter
is quantified by the difference between the maximum and
minimum sampling latencies in all task instances,

Js
def
= Lmax

s −Lmin
s . (2)

Normally, it can be assumed that the minimum sampling
latency of a task is zero, in which case we haveJs = Lmax

s .

After some computation time and possibly further preemp-
tion from other tasks, the controller will actuate the con-
trol signal. The delay from the sampling to the actuation is
called theinput-output latency, denotedLio. Varying exe-
cution times or task scheduling will introduce variations in
this interval. Theinput-output jitter is quantified by

Jio
def
= Lmax

io −Lmin
io . (3)

In general terms, the performance of a digital controller de-
pends on the sampling period and the particular sequences
of sampling and input-output latencies,{Lk

s} and {Lk
io}.

From the controller’s point of view, the time-varying la-
tencies can be viewed as random variables (that are inde-
pendent between periods). Under the simplifying assump-
tion that the distributions of the latencies can be sufficiently
accurately described by their minimum and maximum val-
ues, the performanceJ of the controller can be expressed
as a function of the sampling periodT , the minimum input-
output latencyLmin

io , the sampling jitterJs, and the input-
output jitterJio:

J = J(T, Lmin
io , Js, Jio). (4)

rk rk+1

Lk
s Lk

io

t

II O

Figure 2 Digital controller timing. Each period, the controller
experiences sampling latency,Ls, and input-output latency,Lio.

The goal of the analysis in the next section is to derive
bounds onT , Lmin

io , Js, andJio from various control perfor-
mance specifications.

3. Analysis Using Jitterbug

Jitterbug [Lincoln and Cervin, 2002] is a MATLAB-based
toolbox that is used to analyze linear control systems with
time-varying delays. The control system is described by
a number of connected continuous-time and discrete-time
linear systems, representing the plant and the controller.
In the simplest case, a periodic timing model with random
delays is used to describe the execution of the discrete-time
systems, i.e., the control task.

A Jitterbug model corresponding to the computed-
controlled system in Figure 1 is shown in Figure 3. The
signal model consists of three connected linear systems.
The process is described the continuous-time systemG(s).
The digital controller is described by two discrete-time
blocks,Samp andC(z). The first block models the sampling
operation, while the second block represents the control
algorithm and the actuator. (Implicit in each discrete-time
block is a sampler at the input and a zero-order-hold circuit
at the output.) The associated timing model consists of three
nodes. The first node is periodic (with a given periodT ) and
represents the release of the control task. There is a random
delay Ls until the second node whereH1 is updated, and
another random delayLio until the third node whereH2 is
updated.

In general, Jitterbug can accept arbitrary probability density
distributions in the timing model. Here, to limit the design
space, we let the controller timing be described by the
variablesT , Lmin

io , Js, andJio only. Furthermore, we assume
that the latencies are uniformly distributed between their
minimum and maximum values. Hence, we let

Ls ∈U(0, Js), (5)

and
Lio ∈U(Lmin

io , Lmin
io + Jio), (6)

whereU(a, b) denotes a uniform probability distribution
betweena and b. It should be noted that these uniform
latency distributions are quite “nice” to the control loop.
A more malign choice of distributions would be to let the

Samp

Samp

C(z)

C(z)

G(s)
y(t)u(t)

1

2

3

Ls

Lio

(a) (b)

Figure 3 Jitterbug model of a digital control loop: (a) signal
model, and (b) timing model.



latencies vary between the extreme points only. This could
result in quite conservative timing requirements, however.

3.1 Performance Criteria and Jitterbug

Below, an overview of the control performance criteria
that can be evaluated analytically using Jitterbug are given.
Control design always involves trade-offs between various
design specifications. A good overview of common per-
formance specifications in computed-controlled systems is
given in [Wittenmarket al., 2002]. More material on trade-
offs in linear control design can be found in [Boyd and Bar-
ratt, 1991].

Stability. A first requirement for any control loop
is that it is stable. This property is always checked by
Jitterbug. However, since the system is stochastic (due
to the time-varying delays), Jitterbug only guarantees so
called mean square stability of the closed-loop system.
This means that there might exist particular sequences of
delays and noises that make the system go stable, although
the probability of this is zero. (For further discussion on
different stability concepts, see [Jiet al., 1991].)

Quadratic Cost Functions. The main purpose of Jit-
terbug is to facilitate control performance analysis via the
computation ofquadratic cost functions. Such functions are
commonly used evaluate the performance of linear con-
trollers. External inputs (reference signals and disturbances)
are modeled as white noise processes that enter the control
loop at various points. Given a model, Jitterbug can com-
pute a stationary cost function on the form

J = lim
t→∞

1
t

∫ T

0
xT (s)Qx(s)ds, (7)

wherex is the state vector for the total system (including
the plant states and the controller states) andQ is a chosen
semi-definite weighting matrix.

In the LQG design method, a linear controller is explicitly
designed to minimize a quadratic cost function. It is then
natural to use the same cost function when evaluating the
performance of the controller. Given a nominal design, a
typical performance specification could be to allow the
value of the cost function to increase by, e.g., 10 percent due
to scheduling-induced latencies. The same approach can be
used also for other linear controllers.

Frequency-Domain Specifications. A classical ap-
proach to control design is to use frequency-domain speci-
fications. With Jitterbug, it is possible to compute themag-
nitude of various closed-loop transfer functions, also in the
presence of jitter.

Let the sampled-data representation of the process beP(z),
while the control algorithm is given byC(z). The response
of the closed-loop system is then completely characterized
by the four transfer functions

H1(z) =
1

1+C(z)P(z)
, H2(z) =

C(z)
1+C(z)P(z)

,

H3(z) =
P(z)

1+C(z)P(z)
, H4(z) =

C(z)P(z)
1+C(z)P(z)

.

(8)

Performance requirements are commonly expressed as re-
quirements on the magnitudes of these functions. For in-
stance, for reference signal tracking, it can be required that
H4 has a certain bandwidth (i.e., that the magnitude stays
above−3 dB up to a certain frequency). The response to
input load disturbances is given byH3, and is typically re-
quired to be low at low frequencies, and so on.

Formally, transfer functions are only defined for linear,
time-invariant systems. However, using the concept ofspec-
tral densities, Jitterbug can also compute the frequency re-
sponse of systems with jitter. Given a time-invariant closed-
loop systemH(z) which is excited by discrete-time white
noise with unit intensity, the spectral densityφy of the out-
put is given by

φy(ω) = |H(eiω )|2. (9)

We hence can find the magnitude of the frequency response
by

|H(eiω)| =
√

φy(ω). (10)

For systems with jitter,φy(ω) is still defined, and, fur-
thermore, it can be computed with Jitterbug. The quantity
√

φy(ω) should then be interpreted as the average gain of
the closed-loop system at a given frequency.

Robustness Measures. Two common robustness
measures for control systems are the maximum sensitivity
and the maximum complementary sensitivity. The sensitiv-
ity function is defined as

S(z) =
1

1+C(z)P(z)
, (11)

and the maximum sensitivity is given by

Ms = max
ω

|S(eiω)|. (12)

For linear, time-invariant systems, 1/Ms can be interpreted
as the distance from the loop gainC(z)P(z) to the instability
point −1 in the Nyquist diagram. Similar to above, using
spectral density calculations, an interpretation for systems
with jitter is also possible.

Likewise, the complementary sensitivity function is given
by

T (z) =
C(z)P(z)

1+C(z)P(z)
, (13)

and the maximum complementary sensitivity by

Mt = max
ω

|T (eiω )|. (14)

Common design specifications forMs and Mt are in the
range of 1.2 to 2.0.

3.2 Limitations of Jitterbug Approach

A number of limitations with the proposed approach exist:

• The timing model in Jitterbug is quite simplistic, in
that the delays are assumed to be independent from
period to period. Hence, the model can not fully de-
scribe the timing variations introduced by a dynamic



scheduling algorithm. Also, the tool cannot be used
to analyze systems where the scheduling parameters
change over time (as in feedback scheduling applica-
tions).

• The toolbox only computes amean performance in-
dex, averaged over an infinite time horizon. Stability
is only guaranteed in themean square sense, i.e., the
system might become unstable for a particular (but
highly unlikely) sequence of delays.

• There is no time-domain analysis in Jitterbug. It is
for instance not possible to give specifications on
rise-time or maximum overshoot. However, time-
domain control specifications can often be translated
into frequency-domain specifications, see [Boyd and
Barratt, 1991].

• In Jitterbug, it is necessary to specify the distribu-
tion of the sampling and input-output latencies. Since
these are generally unknown, certain probability dis-
tributions must be assumed. Uniform distributions
(which are used here) might be too benign, whereas
end-point distributions might be to pessimistic.

4. Example

In this section, a design example is given, where we con-
sider LQG (linear-quadratic-Gaussian) control of a servo
process, described by the continuous-time transfer function

P(s) =
1000

s(s+1)
.

The process is assumed to be disturbed by continuous-
time white input noise and with unit variance and discrete-
time measurement noise with a variance of 0.1. An LQG
controller, denotedC(z), is designed using a sampling
interval ofT and an assumed a constant input-output latency
of L. The controller is designed to minimize the continuous-
time cost function

J = lim
t→∞

1
t

∫ T

0

(

y2(s)+ u2(s)
)

ds. (15)

using the Jitterbug commandlqgdesign. The Jitterbug
model of the control system was shown in Figure 3.

4.1 Cost Function Specification

First, we consider a cost function specification, where the
value of the cost (15) is evaluated for different values of
T , Lmin

io , Js, andJio. From initial design attempts and time-
domain simulation, it has been decided that a cost of at most
J = 100 gives acceptable performance for the control loop.
(Remember that a lower cost means better performance.)

By fixing two of the timing parameters, the cost as a
function of the remaining parameters can be illustrated in
a diagram. In Figure 4, the cost has been computed as
a function of T and Lmin

io , assuming zero sampling jitter
and zero input-output jitter. It is seen that the control loop
is quite sensitive to input-output latency, even though the
controller has been designed to compensate optimally for
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Figure 4 Cost as a function ofT andLmin
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Figure 5 Examples of time-domain control performance corre-
sponding to different values of the cost function.

the delay. If a delay is present, faster sampling is requiredto
obtain a cost below 100.

To illustrate what the cost function means, control designs
corresponding to three points in the design space in Fig-
ure 4 have been evaluated in time-domain simulations. In
Figure 5, the responses to an impulse disturbance at time
zero have been plotted:

• The full response has the costJ1 = 50, corresponding
to the parametersT = 0.5 ms andLio = 0.

• The dashed response has the costJ2 = 100, corre-
sponding to the parametersT = 25 ms andLio = 0.

• The dot-dashed response has the costJ3 = 100, cor-
responding to the parametersT = 10 ms andLio =
10 ms.

Next, the impact of sampling jitter and input-output jitter
on control performance is studied. The sampling period has
been fixed toT = 20 ms and the minimum latency is set to
zero (corresponding to the lower-right corner of Figure 4).
The controller is designed assuming a constant latency
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Figure 6 Cost as a function of sampling jitter and input-output
jitter, assumingT = 20 ms andLmin

io = 0. The controller is
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equal toJio/2. The resulting cost is shown in Figure 6. It is
seen that, in this example, the control loop is more sensitive
to input-output jitter that to sampling jitter. To keep the cost
below 100, the both jitters must be less than a fraction of the
sampling interval.

4.2 Robustness Specification

It can sometimes be difficult to select a reasonable upper
bound on a cost function, especially in cases where the
controller was not directly designed using a cost function (as
it is in LQG-control). An interesting alternative is to instead
place a bound on the sensitivity function (and possibly
also the complimentary sensitivity function). This is often a
more simple task, since a value of the maximum sensitivity,
Ms, can be chosen independently of the size of the plant and
controller parameters.

To continue the example, we assume that a reasonable value
of Ms is 2.0. Similar to above, the value ofMs is evaluated
as a function ofT , Lmin

io , Js, andJio. In Figure 7,Ms has been
computed as a function ofT andLmin

io , assuming zero sam-
pling jitter and zero input-output jitter. Compared to Fig-
ure 4, we obtain similar bounds on the timing parameters.

Next, the maximum sensitivity is computed as a function
of the amount of sampling jitter and input-output jitter. As
before, the sampling period is set toT = 20 ms and the
minimum latency is set to zero. The result is shown in
Figure 8. According to this measure, the system is quite
sensitive towards both sampling jitter and input-output jitter
(compare with Figure 6).

5. Linking Scheduling Analysis to Controller
Timing

The above analysis has assumed that values ofT , Lmin
io ,

Js, and Jio are given. Assuming a controller task set and
standard fixed-priority scheduling, the values ofLmax

s , Lmin
io ,

and Lmax
io can be found using worst-case and best-case

response-time analysis [Joseph and Pandya, 1986; Redell
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and Sanfridson, 2002]:

Lmax
si

= ∑
j∈hp(i)

⌈

Lmax
si

Tj

⌉

C j. (16)

Lmax
ioi

= Ci + ∑
j∈hp(i)

⌈

Lmax
ioi

Tj

⌉

C j. (17)

Lmin
ioi

= Cb
i + ∑

j∈hp(i)

⌈

Lmin
ioi

−Tj

Tj

⌉

Cb
j , (18)

Here,Ci
b denotes thebest-case execution time of taski. As

pointed out before, for more accurate analysis, it would be
necessary to have the distributions of the latencies as well.
This is an area where statistical approaches to scheduling
analysis could be used. Also, results regarding minimum
response times are lacking under EDF scheduling.

A difficult part of the codesign process is to modify the
scheduling parameters such that all performance specifica-



tions are met. For this purpose some kind of search proce-
dure must be used. One problem is that the timing attributes
(T , Lmin

io , Js, andJio) depend on the scheduling parameters
(T , D, C) in a very nonlinear manner. Other scheduling poli-
cies than fixed-priority scheduling could give simpler de-
sign problems. One example is the Control Server model
[Cervin and Eker, 2003], whereT andLio are determined
directly by the task utilization factorU .

6. Conclusion

We have described how Jitterbug can be used to derive tim-
ing requirements from control performance specifications.
The derived requirements are expressed in terms of the sam-
pling interval, the minimum input-output latency, the sam-
pling jitter, and the input-output jitter. The performance
specifications can be given in terms of a quadratic cost func-
tion, or as constraints on the magnitude of certain closed-
loop transfer functions (e.g., the sensitivity function).The
analysis is only approximate, since it assumes that the de-
lays introduced by the scheduling can be described by in-
dependent random variables with uniform distributions. Jit-
terbug allows for arbitrary distributions to be used, but the
current state of the art in scheduling analysis does not allow
the delay distributions to be derived.

References

Åström, K. J. and B. Wittenmark (1997):Computer-
Controlled Systems. Prentice Hall.

Bate, I., P. Nightingale, and A. Cervin (2003): “Establishing
timing requirements and control attributes for control
loops in real-time systems.” InProceedings of the 15th
Euromicro Conference on Real-Time Systems. Porto,
Portugal.

Boyd, S. P. and C. H. Barratt (1991):Linear Controller
Design—Limits of Performance. Prentice Hall.

Cervin, A. (1999): “Improved scheduling of control tasks.”
In Proceedings of the 11th Euromicro Conference on
Real-Time Systems, pp. 4–10. York, UK.

Cervin, A. and J. Eker (2003): “The Control Server: A
computational model for real-time control tasks.” In
Proceedings of the 15th Euromicro Conference on Real-
Time Systems. Porto, Portugal. To appear.

Crespo, A., I. Ripoll, and P. Albertos (1999): “Reducing
delays in RT control: The control action interval.” In
Proc. 14th IFAC World Congress, pp. 257–262.

Ji, Y., H. Chizeck, X. Feng, and K. Loparo (1991): “Sta-
bility and control of discrete-time jump linear sys-
tems.”Control-Theory and Advanced Applications, 7:2,
pp. 247–270.

Joseph, M. and P. Pandya (1986): “Finding response times
in a real-time system.”The Computer Journal, 29:5,
pp. 390–395.

Lincoln, B. and A. Cervin (2002): “Jitterbug: A tool for
analysis of real-time control performance.” InProceed-
ings of the 41st IEEE Conference on Decision and Con-
trol. Las Vegas, NV.

Redell, O. and M. Sanfridson (2002): “Exact best-case re-
sponse time analysis of fixed priority scheduled tasks.”
In Proc. 14th Euromicro Conference on Real-Time Sys-
tems. Vienna, Austria.

Wittenmark, B., K. J. Åström, and K.-E. Årzén (2002):
“Computer control: An overview.” Technical Report.
IFAC professional brief.


	overall.pdf
	overall.pdf
	overall.pdf
	ben_chehida.pdf
	ABSTRACT
	General Terms
	INTRODUCTION
	PROBLEM FORMULATION
	HW/SW PARTITIONING USING A GENETIC ALGORITHM
	
	
	Contexts definition (Clustering):
	Mutation operators:
	Crossover operators:



	EXPERIMENTAL RESULTS
	
	
	We must notice here that the behaviour of the clustering/scheduling algorithm in the GA consists in exploiting the available LCs and DCs in the FPGA to parallelize and to speed up executions of tasks. However, the allocation of a new task to a HW context
	As communications play an increasing role in toda
	These timing charts are presented in figure 6 where we can distinguish three FPGA contexts (notice that we have considered partial reconfiguration in this example: the reconfiguration time blocs are of different sizes), the scheduling on the processor 
	
	CONCLUSION
	REFERENCES






	elisabeth_strunk.pdf
	1. Introduction
	2. Why Survivability?
	3. Survivability In Embedded Systems
	3.1 Survivability in Critical Information Systems
	3.2 Requirements of a Survivability Specification
	3.3 Defining Survivability

	4. An Avionics Example
	5. Research Challenges in Functionality/ Dependability Co-design
	6. Research Challenges in Hardware/ Software Co-design of Survivable Systems
	7. Conclusion







