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Abstract 

The benefits of using contracts when developing software for safety-critical systems are wide-
ranging. Using contracts the cost of maintaining, reusing and changing/upgrading software 
components is lessened as developers may rework software components with knowledge of 
the constraints placed upon them. Our previous work has looked at how design and safety 
contracts may be generated for components. In this paper we extend this work to examine 
how design and safety contracts can be supported by a complementary safety case 
architecture and an appropriate means of gathering evidence. 
 
Current approaches for producing safety cases are monolithic. Constructing safety cases in 
this way means that the benefits of having a modular architecture design with contracts is lost. 
In order to reflect the move towards contracts, a new way of constructing safety case 
arguments has been proposed. The approach is modular and features the use of safety case 
contracts. In this paper we show how this approach to developing safety cases can be 
integrated with the use of design and safety contracts to maximise the benefits of a modular 
approach. The paper illustrates how this can be achieved through a small example. 
 

Introduction 

Modularity has been proposed as the key element of the ‘way forward’ in developing systems. 
The primary reasons behind this include ease of change, obsolescence management and 
maintenance. This has however produced challenges in the way that we perform safety 
analysis and construct safety cases. This is because, classically, safety analysis and safety 
cases were based on global analysis of the system, whereas with modular systems the 
requirement is for local analysis as well as global analysis. This ‘local’ analysis is required so 
that to an existing system can have predictable and traceable consequences. To adopt this 
requires modularity in safety cases. The Goal Structuring Notation or GSN is used to argue 
that a system is safe to operate. Recently, the GSN has been extended to support modularity 
and this paper is intended to show how the principles of modular systems can be used to 
develop modular safety cases. 
 
This paper is composed of four further sections. In the first section the modular principles will 
be derived and the requirements relating to the design of modular systems analysed. In the 
second section these modular system requirements will be applied to modular safety cases and 
safety case specific requirements derived. In the third section the modular requirements will 
be applied to a small example. Finally, in the fourth section this work will be concluded and 
future work identified. 



Modular Principles and Design 

The principles of modular systems lead to ideas such as reuse, modifications and upgrades, 
which, when applied to cars, planes etc. are tangible. Applying these ideas to software is more 
difficult and in instances such as Ariane 5 has disastrous consequences. After Ariane 5 
exploded on 4 June 1996, a fault was found in the software of the Inertial Reference System 
or SRI. This software had been reused from Ariane 4. The fault occurred due to functionality 
required by Ariane 4, but not by Ariane 5 being reused (ref 1). This is an example of an 
incident where the principles of modular systems were inadequately applied and as such we 
need to understand what modular systems are before we can discuss how to argue that they 
will be safe to operate. 
 
A module is defined as being ‘any more or less self-contained unit, which goes to make up a 
complete set, a finished article, etc.’ (ref 2). This definition gives us a sense that a module is 
independent from other modules and that it forms part of a collective.  
 
Modular is defined as ‘involving or consisting of modules or discrete units as the basis of 
design, construction, or operation; (also) intended to form part of such a system.’ (ref 2). 
From this definition we get a sense that a modular software system is one that is designed, 
constructed and operated using modules as the basis for the system. This however, implies 
that modular systems need more than just modules to work, but gives us an insight into the 
types of things that we are concerned with when discussing modular systems. These are: 
 

• Modular systems are constructed from modules. 
• Modules are as independent as possible. 
• Modules simplify the design by breaking it into manageable chunks. 
• Modular systems are operated through the combination of modules. 

 
Even from this understanding we can see that modular software systems are developed by 
dividing system requirements between independent modules. Extending this further we arrive 
at the need for modules to be highly cohesive i.e. a module contains only things relevant to 
itself. Modular systems work by integrating it’s modules to ‘make up a complete set’. In 
software this is done via interfaces; the mechanism through which modules access each 
other’s functions. In order to maintain module independence these are required to exhibit low 
coupling i.e. modular dependencies are kept to a minimum (ref 3). 
 
By ensuring that modules are highly cohesive and have low coupling we have started to 
realise how modular systems have the potential to tolerate change. To fulfil this potential we 
need to consider things such as: 
 

• What modules are clients of other modules? (ref 3)  
• What assumptions may clients make of other modules? (ref 3)  
• What modules are likely to change? 
• What is the impact of change? 

 
The answers to questions like these allow the system developer to locate how changes to a 
module are likely to affect the system. Changes likely to occur in a system are usually due to 
maintenance, modifications or extensions to a module’s functions. These are likely to occur 
throughout the life of a system, as such it is beneficial for the changes to have predictable and 
traceable consequences. For the purposes of this document a predictable change is thought of 
as covering peer level changes i.e. how a change in one module results in a change in another 
module in the same decomposition level and traceable changes relate to hierarchical changes 
i.e. how a change in one module can propagate to changes within higher level modules. 
 



By reviewing these ‘changes’ it can be seen that in order to predict changes effectively and 
efficiently there is an implicit requirement to use a top-down decomposition approach to 
systems design, but more than this there is a need to use interfaces and track dependencies so 
that system changes have predictable and traceable consequences. If these interfaces and 
dependencies are used effectively and efficiently, then it should be possible to contain the 
change within a module and exhibit only a local or contained change to the modular system. 
This is an example of where it may be useful to use contracts. These are a mechanism through 
which the interfaces and dependencies between modules can be captured and documented. 
Ways of doing this are presented in references 4, 5, 6 and 7, and are discussed later in this 
section. 
 
Top-down decomposition approaches to modular software systems design are used to 
iteratively distribute requirements between modules. This step-wise approach to system 
design requires the designer to identify high-level system requirements and functions. These 
are then iteratively broken down until function specific modules can be designed or there is 
no cost-benefit in further decomposition. This approach and its use with software 
architectures will be discussed in the next section. 
 
Modularity, Software Architectures and Contracts:  Work conducted by Bass et al (refs 8 and 
9), Hofmeister et al (ref 10), and Bate (ref 11) etc. has contributed to the way we use software 
architectures. For clarity the following extracts have been included to define what software 
architectures are and give an idea of what they contain: 
 
‘Two main aspects of software architecture are that it provides a design plan – a blueprint – 
of a system and that it is an abstraction to help manage the complexity of a system.’  (ref 10) 
 
‘The structure or structures of the system, which comprise software components, the 
externally visible properties of those components, and the relationships between them.’ (ref 8) 
 
These definitions convey two important things about software architectures:  

• software architectures are designed through successive layers of abstraction and that  
• software architectures are a representation of the software design.  

 
The design of software through successive layers of abstraction is ideal for our needs when 
designing modular systems for reasons stated earlier. However, the notion that software 
architectures capture the design rationale is very important when considering change 
management (ref 10). By extending this further we can see that software architectures 
‘comprise software components’ which, using the ideas we have already discussed are 
synonymous with software modules. These components have ‘externally visible’ properties or 
module interfaces and the components have ‘relationships between them’ or dependencies.  
 
These interfaces and dependencies (as mentioned earlier) need to be well defined and 
captured so that change and potentially reuse of software modules can occur. The defining 
and capturing of interfaces and dependencies can be done through contracts (ref 4). A contract 
is ‘a mutual agreement between two or more parties that something shall be done or forborne 
by both’ (ref 2). Applying this to computer based systems there are two generic types of 
contract. These are: 
 

• Hierarchical 
• Peer 

 
The Hierarchical contracts are formed as the successive layers of abstraction are built up. 
They can be thought of as being generated from a top-down decomposition approach to 
system design i.e. the contracts are put in place to enforce a parental elements requirements 



on the child elements properties. With this in mind a hierarchical contract could be thought of 
as: 
 
A mutual agreement between a parent element and any child element specifying what will be 
done or forborne by both. 
 
The Peer contracts cover such things as an application interacting with another application, or 
an object communicating with other objects. This type of contract is also applicable to a 
layered type approach to system design such as an IMA Three Layer stack (ref 5). Essentially 
they are defined to control the interactions that can occur between the peers. This type of 
contract can be defined as: 
 
A mutual agreement between two or more peer level components specifying what will be done 
or forborne by both. 
 
In reference 7 it was shown how both of these contract types could be derived for a safety-
critical software architecture. Importantly in reference 7 the idea of a safety contract was 
introduced. These contracts constrain the interactions, which occur between objects and hence 
can ensure system behaviour is safe. These safety contracts are made up of pre and post 
conditions. Pre-conditions must be true before the operation call is made and post-conditions 
must be true by the execution of the call. The properties of an interaction that we are 
interested in from a safety perspective are function, timing and value. Analysis of each of 
these aspects results in requirements that are included in the safety contract.  
 
Summary:  Both software architectures and contracts are independently useful to correctly 
designing functioning systems. Software architectures amongst other things allow the 
developer to trace requirements throughout the design. Contracts are useful on a peer level as 
they explore the external properties of a module and what they require from other modules i.e. 
pre-conditions and what they guarantee in return i.e. post conditions. In a hierarchical sense 
they are used to ensure that regardless of implementation the combined child modules will 
meet at least the minimum requirements of its parent/containment module. By combining 
software architectures and contracts we have a method through which safe systems can be 
designed and built. 
 
This section has introduced various requirements to consider when designing modular 
systems and software architectures. These are: 

• Modules are required to be as independent as possible. 
• Modular systems and software architectures need to be constructed top-down to 

improve the traceability and predictability of change. 
• Modules need to be highly cohesive and exhibit low coupling. 
• Modules need well-defined interfaces and all module dependencies need to be 

captured. It has been shown that this could be done with contracts (ref 7). 
 
In the next section these requirements will be used as a guide to derive modular safety cases 
and safety case architectures that are tolerant and robust to change.  

Safety Case Construction 

Safety cases are a means through which an argument is presented to a certifying body that a 
developed system is safe to operate. The Goal Structuring Notation or GSN (ref 12) has been 
devised to allow these arguments to be constructed through a graphical argumentation 
notation. This notation explicitly represents the individual elements of any safety argument 
(requirements, claims, evidence and context) and (perhaps more significantly) the 
relationships that exist between these elements (i.e. how individual requirements are 



supported by specific claims, how claims are supported by evidence and the assumed context 
that is defined for the argument). The principal symbols of the notation are shown in figure 1 
(with example instances of each concept).  
 
The principal purpose of a goal structure is to show how goals (claims about the system) are 
successively broken down into (“solved by”) sub-goals until a point is reached where claims 
can be supported by direct reference to available evidence. As part of this decomposition, 
using the GSN it is also possible to make clear the argument strategies adopted (e.g. adopting 
a quantitative or qualitative approach), the rationale for the approach (assumptions, 
justifications) and the context in which goals are stated (e.g. the system scope or the assumed 
operational role). For further details on GSN see reference 12. 
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Figure 1 – Principal Elements of the Goal Structuring Notation 
 

GSN has been widely adopted by safety-critical industries for the presentation of safety 
arguments within safety cases. However, to date GSN has largely been used for arguments 
that can be defined in one place as a single artefact rather than as a series of modularised 
interconnected arguments. Recently, there has been a push to move towards a modular 
approach to arguing safety. For this reason GSN has been extended with the introductions of 
Away Goals and Argument Modules and these are the focus of the next section. 
 
Modular Principles and the Safety Case:  The analysis of modular systems and software 
architectures previously, could potentially provide the stimulus for the creation of modular 
safety cases and safety case architectures. The following definition has been adapted from the 
software architecture definition found in reference 8: 
 
‘The high level organisation of the safety case into components of arguments and evidence, 
the externally visible properties of these components, and the interdependencies that exist 
between them.’ (ref 13) 
 
From this definition it can be seen that when thinking about modular safety cases and safety 
case architectures we should approach them with the same mindset as modular systems and 
software architectures. To proceed, further definitions are required. The symbols shown in 
figure 1 are the core GSN symbols. The symbol ‘reference to argument module’ allows ‘the 
high level organisation of the safety case into component of argument and evidence’. By 
allowing modules to exist in a safety case we need to ensure two things, these modules must 



independently stand up to scrutiny and their dependence on other modules captured. This is 
done by first using a modular interface shown in figure 2 to capture ‘the externally visible 
properties of that module’ i.e. the goals requiring or offering support for other modules. Once 
defined a claim matching process can occur. When ‘the interdependencies that exist between’ 
modules are identified these are captured using a safety case contract as shown in figure 3 

For a modular safety case to be constructed it must follow the same requirements as for 
modular system construction. By applying these requirements we arrive at the following 
understanding: 

• Modules must be as independent as possible – This is important as it means that a 
safety case module can de developed without the needing to consult other modules 
and therefore, can potentially support work divisions and contractual boundaries. As 
long as these modules are wisely chosen it should be possible to identify and 
document what is required for a module to fulfil its work and contractual boundaries. 
This places a demand on the safety case architecture to support, where possible, these 
sorts of boundaries in the safety case. 

 
• Modules must exhibit high cohesion and low coupling – The requirements for high 

cohesion and low coupling places an implicit demand on the modular safety case that 
a module’s objectives should be naturally consistent and that cross referencing across 
modular boundaries should be minimised as much as possible. 

 
• Modular safety cases and safety case architectures must be constructed top-

down – Due to the GSN implicitly being hierarchical this requirement is easily met. 
However, it should be noted that just because the GSN is implicitly hierarchical does 
not infer that any goal structure is modular.  

 
• Modules must have well defined interfaces – This is necessary for two reasons. 

Firstly, it gives a safety case module the ability to specify what goals it requires 
support for and what goals it is offering support to. This allows the safety case 
developer to proceed with the modular argument and revisit those goals when the 
modules are combined to form the safety case. Secondly, it allows the safety case 
architecture to support future expansion. By having explicit modular boundaries 
another module added, for example, as part of a life cycle upgrade, knows what it 
must guarantee to an existing module if it going to offer/provide support for that 
module and hence form part of the overall safety case.  

 
• All modular dependencies must be captured – This is important when managing 

change. If a change is made to an existing safety case module then the capturing of 
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Figure 2 – Safety Case Module Interface (ref 14) Figure 3 – Safety Case Module Contract (ref 14) 



dependencies can be use to trace and predict what effects it will have with regards to 
the rest of the modules in the safety case. 

 
 
From these requirements it is clear that modular safety cases have to be carefully considered 
before composition. It is therefore necessary to consider what you require from your safety 
case before diving head first into the construction of a modular safety case. In the next section 
these requirements will be used with a small example. 
 
Summary:  This section has shown how the requirements for a modularly designed system 
can be applied to a modular safety case. These will be explored further in the next section 
through a small example. 

Application to a Stores Management System Example 

In this section we will show how the requirements: ‘modules must be as independent as 
possible’, ‘modules must exhibit high cohesion and low coupling’ etc. can be used to drive the 
safety case architecture for a Stores Management System (SMS). The SMS, illustrated in 
figure 4, is a system that is used on an aircraft to control the release, jettison and selection of 
stores such as missiles or fuel. This particular example was developed in reference 7. In 
reference 7, a trade-off analysis was used to obtain the software architecture shown in figure 
4. A trade-off analysis process is used when differing system objectives need to be supported 
by the design. In reference 7, it was shown how safety objectives could be used as part of this 
trade-off analysis. The outcome of this trade-off analysis was a number of hierarchical and 
peer design and safety contracts. The exact derivation details are out of the scope of this 
document, for further details refer to reference 7. 
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Figure 4 – A Peer Level Decomposition for the Stores Management System 

There are a number of possible ways to argue that the SMS shown in figure 4 is safe to 
operate. In this paper the safety case architecture are based on the software architecture. By 
doing this we still have choices to make about how we are going to construct the modular 
safety case. The safety case architectures shown in figures 5 and 6 are examples of these 
choices. Both architectures show how the SMS is composed of the modules Stores Manager, 
Station and Store. Figure 5 shows an example that corresponds directly the software 



architecture. Whereas figure 6 shows an example where the arguments about the interactions 
between the software architecture modules are collected together to form the InteractionsArg 
safety case module. Both the safety case architectures could potentially be used to argue the 
safety of the system. Therefore, we need to decide which one best supports the way we want 
to argue the safety of the SMS. 
 

In this paper modular system requirements such as ‘modules must be as independent as 
possible’ have been derived and how these can be applied to safety case architectures 
examined. We will now show how the requirement ‘modules must exhibit high cohesion and 
low coupling’ can be used to select an appropriate safety case architecture to argue the safety 
of the SMS shown in fig 4. Both the safety case architectures in figures 5 and 6 can be seen to 
be highly cohesive. The safety case architecture shown in figure 5 is highly cohesive as the 
argument relating to all aspects including the inter-modular interactions of the individual 
system modules are contained within individual safety case modules. However, the safety 
case architecture shown in figure 6 introduces an ‘InteractionsArg’ module. By introducing 
this module the arguments about the inter-modular interactions that would be distributed 
between the safety case modules of figure 5 are contained in one module. Therefore, when the 
safety case architectures are reviewed for their support of the ‘low coupling’ requirement the 
main distinctions between the safety case architectures are identified. The modules in figure 5 
will exhibit more dependencies between each other than the modules in figure 6. This is 
because each of the safety case modules shown in figure 5 would have to independently argue 
about all the interactions that occur between the modules. Each safety case module would also 
have to make claims about how the individual interactions are safe and make reference to 
similar claims in the other safety case modules, which could lead to numerous dependencies 
and safety case contracts (figure 3) being formed. However, the arguments underlying the 
safety case modules in figure 6 can be developed independently of interactions by making 
claims such as ‘All Hazardous interactions between modules are safe’ once, and assuming 
that support for this claim will be provided by the ‘InteractionsArg’ module. As such the 
dependencies that will exist in the safety case architecture in figure 5 are minimised by the 
safety case architecture in figure 6 and is the best choice to argue the safety of the SMS. 
 
As stated previously when designing modular systems there are two types of contracts, 
hierarchical and peer. The hierarchical contracts are formed to ensure that a child element will 
meet the minimum requirement of its parent element. The GSN’s hierarchical nature allows 
the way the child element meets the requirements to be easily captured. This is done in two 
stages. Firstly, the safety case module interface (figure 2) between the parent and child 
elements will be made from the requirements of the hierarchical modular system contract. In 
the parent safety case module these requirements will become goals/claims that require 
support. In the child safety case module these will become top-level goals that it will be 
required to satisfy. Secondly, a safety case contract (figure 3) is made when the child safety 
case module can provide the required support for the parent safety case module’s 
requirements or goals. The peer contracts are captured in a modular system to control and 
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constrain its modules interactions. In reference 7 it was shown how safety contracts could be 
formed to mitigate against hazardous interactions between system modules. The 
InteractionsArg safety case module shown in figure 6 could be used to support this style of 
contract. An in depth discussion of how this argument is formed is out of the scope of this 
paper, so a simplistic overview will be presented here. In the InteractionsArg safety case 
module the top-level claim will be ‘There are no hazardous interactions between modules’. 
Presenting an argument about the correctness, completeness and validity of the safety contract 
would then be used to support this. 
 
Summary:  In this section we have reasoned about how we could argue the safety of a 
modular system using a modular safety case. We have also discussed how the contracts made 
throughout the modular system design can be supported by a modular safety case. 

Conclusions 

This paper has analysed work relevant to the modular construction of systems and has used 
this to develop ways of reviewing modular safety cases. It has been shown that managing 
change is perhaps the most important requirement in the construction of a modular safety 
case. This can be done providing the safety case’s modular composition is sensibly chosen. 
The work has been performed in conjunction with complementary work on the design 
architecture. The future work on modular safety cases will look at developing guidelines to 
aid their development and decomposition. These will focus on how the safety case can be 
constructed to have predictable and traceable consequences. 
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