
Safety case architectures to complement a contract-based approach to designing safe systems

S.A. Bates; The University of York; York, UK

I.J. Bate; The University of York; York, UK

R.D. Hawkins; The University of York; York, UK

T.P. Kelly; The University of York; York, UK

J.A. McDermid; The University of York; York, UK

Keywords: Modular Systems, Safety Cases, Contracts

Abstract

The benefits of using contracts when developing software for safety-critical systems are wide-
ranging. Using contracts the cost of maintaining, reusing and changing/upgrading software
components is lessened as developers may rework software components with knowledge of
the constraints placed upon them. Our previous work has looked at how design and safety
contracts may be generated for components. In this paper we extend this work to examine
how design and safety contracts can be supported by a complementary safety case
architecture and an appropriate means of gathering evidence.

Current approaches for producing safety cases are monolithic. Constructing safety cases in
this way means that the benefits of having a modular architecture design with contracts is lost.
In order to reflect the move towards contracts, a new way of constructing safety case
arguments has been proposed. The approach is modular and features the use of safety case
contracts. In this paper we show how this approach to developing safety cases can be
integrated with the use of design and safety contracts to maximise the benefits of a modular
approach. The paper illustrates how this can be achieved through a small example.

Introduction

Modularity has been proposed as the key element of the ‘way forward’ in developing systems.
The primary reasons behind this include ease of change, obsolescence management and
maintenance. This has however produced challenges in the way that we perform safety
analysis and construct safety cases. This is because, classically, safety analysis and safety
cases were based on global analysis of the system, whereas with modular systems the
requirement is for local analysis as well as global analysis. This ‘local’ analysis is required so
that to an existing system can have predictable and traceable consequences. To adopt this
requires modularity in safety cases. The Goal Structuring Notation or GSN is used to argue
that a system is safe to operate. Recently, the GSN has been extended to support modularity
and this paper is intended to show how the principles of modular systems can be used to
develop modular safety cases.

This paper is composed of four further sections. In the first section the modular principles will
be derived and the requirements relating to the design of modular systems analysed. In the
second section these modular system requirements will be applied to modular safety cases and
safety case specific requirements derived. In the third section the modular requirements will
be applied to a small example. Finally, in the fourth section this work will be concluded and
future work identified.

Modular Principles and Design

The principles of modular systems lead to ideas such as reuse, modifications and upgrades,
which, when applied to cars, planes etc. are tangible. Applying these ideas to software is more
difficult and in instances such as Ariane 5 has disastrous consequences. After Ariane 5
exploded on 4 June 1996, a fault was found in the software of the Inertial Reference System
or SRI. This software had been reused from Ariane 4. The fault occurred due to functionality
required by Ariane 4, but not by Ariane 5 being reused (ref 1). This is an example of an
incident where the principles of modular systems were inadequately applied and as such we
need to understand what modular systems are before we can discuss how to argue that they
will be safe to operate.

A module is defined as being ‘any more or less self-contained unit, which goes to make up a
complete set, a finished article, etc.’ (ref 2). This definition gives us a sense that a module is
independent from other modules and that it forms part of a collective.

Modular is defined as ‘involving or consisting of modules or discrete units as the basis of
design, construction, or operation; (also) intended to form part of such a system.’ (ref 2).
From this definition we get a sense that a modular software system is one that is designed,
constructed and operated using modules as the basis for the system. This however, implies
that modular systems need more than just modules to work, but gives us an insight into the
types of things that we are concerned with when discussing modular systems. These are:

• Modular systems are constructed from modules.
• Modules are as independent as possible.
• Modules simplify the design by breaking it into manageable chunks.
• Modular systems are operated through the combination of modules.

Even from this understanding we can see that modular software systems are developed by
dividing system requirements between independent modules. Extending this further we arrive
at the need for modules to be highly cohesive i.e. a module contains only things relevant to
itself. Modular systems work by integrating it’s modules to ‘make up a complete set’. In
software this is done via interfaces; the mechanism through which modules access each
other’s functions. In order to maintain module independence these are required to exhibit low
coupling i.e. modular dependencies are kept to a minimum (ref 3).

By ensuring that modules are highly cohesive and have low coupling we have started to
realise how modular systems have the potential to tolerate change. To fulfil this potential we
need to consider things such as:

• What modules are clients of other modules? (ref 3)
• What assumptions may clients make of other modules? (ref 3)
• What modules are likely to change?
• What is the impact of change?

The answers to questions like these allow the system developer to locate how changes to a
module are likely to affect the system. Changes likely to occur in a system are usually due to
maintenance, modifications or extensions to a module’s functions. These are likely to occur
throughout the life of a system, as such it is beneficial for the changes to have predictable and
traceable consequences. For the purposes of this document a predictable change is thought of
as covering peer level changes i.e. how a change in one module results in a change in another
module in the same decomposition level and traceable changes relate to hierarchical changes
i.e. how a change in one module can propagate to changes within higher level modules.

By reviewing these ‘changes’ it can be seen that in order to predict changes effectively and
efficiently there is an implicit requirement to use a top-down decomposition approach to
systems design, but more than this there is a need to use interfaces and track dependencies so
that system changes have predictable and traceable consequences. If these interfaces and
dependencies are used effectively and efficiently, then it should be possible to contain the
change within a module and exhibit only a local or contained change to the modular system.
This is an example of where it may be useful to use contracts. These are a mechanism through
which the interfaces and dependencies between modules can be captured and documented.
Ways of doing this are presented in references 4, 5, 6 and 7, and are discussed later in this
section.

Top-down decomposition approaches to modular software systems design are used to
iteratively distribute requirements between modules. This step-wise approach to system
design requires the designer to identify high-level system requirements and functions. These
are then iteratively broken down until function specific modules can be designed or there is
no cost-benefit in further decomposition. This approach and its use with software
architectures will be discussed in the next section.

Modularity, Software Architectures and Contracts: Work conducted by Bass et al (refs 8 and
9), Hofmeister et al (ref 10), and Bate (ref 11) etc. has contributed to the way we use software
architectures. For clarity the following extracts have been included to define what software
architectures are and give an idea of what they contain:

‘Two main aspects of software architecture are that it provides a design plan – a blueprint –
of a system and that it is an abstraction to help manage the complexity of a system.’ (ref 10)

‘The structure or structures of the system, which comprise software components, the
externally visible properties of those components, and the relationships between them.’ (ref 8)

These definitions convey two important things about software architectures:

• software architectures are designed through successive layers of abstraction and that
• software architectures are a representation of the software design.

The design of software through successive layers of abstraction is ideal for our needs when
designing modular systems for reasons stated earlier. However, the notion that software
architectures capture the design rationale is very important when considering change
management (ref 10). By extending this further we can see that software architectures
‘comprise software components’ which, using the ideas we have already discussed are
synonymous with software modules. These components have ‘externally visible’ properties or
module interfaces and the components have ‘relationships between them’ or dependencies.

These interfaces and dependencies (as mentioned earlier) need to be well defined and
captured so that change and potentially reuse of software modules can occur. The defining
and capturing of interfaces and dependencies can be done through contracts (ref 4). A contract
is ‘a mutual agreement between two or more parties that something shall be done or forborne
by both’ (ref 2). Applying this to computer based systems there are two generic types of
contract. These are:

• Hierarchical
• Peer

The Hierarchical contracts are formed as the successive layers of abstraction are built up.
They can be thought of as being generated from a top-down decomposition approach to
system design i.e. the contracts are put in place to enforce a parental elements requirements

on the child elements properties. With this in mind a hierarchical contract could be thought of
as:

A mutual agreement between a parent element and any child element specifying what will be
done or forborne by both.

The Peer contracts cover such things as an application interacting with another application, or
an object communicating with other objects. This type of contract is also applicable to a
layered type approach to system design such as an IMA Three Layer stack (ref 5). Essentially
they are defined to control the interactions that can occur between the peers. This type of
contract can be defined as:

A mutual agreement between two or more peer level components specifying what will be done
or forborne by both.

In reference 7 it was shown how both of these contract types could be derived for a safety-
critical software architecture. Importantly in reference 7 the idea of a safety contract was
introduced. These contracts constrain the interactions, which occur between objects and hence
can ensure system behaviour is safe. These safety contracts are made up of pre and post
conditions. Pre-conditions must be true before the operation call is made and post-conditions
must be true by the execution of the call. The properties of an interaction that we are
interested in from a safety perspective are function, timing and value. Analysis of each of
these aspects results in requirements that are included in the safety contract.

Summary: Both software architectures and contracts are independently useful to correctly
designing functioning systems. Software architectures amongst other things allow the
developer to trace requirements throughout the design. Contracts are useful on a peer level as
they explore the external properties of a module and what they require from other modules i.e.
pre-conditions and what they guarantee in return i.e. post conditions. In a hierarchical sense
they are used to ensure that regardless of implementation the combined child modules will
meet at least the minimum requirements of its parent/containment module. By combining
software architectures and contracts we have a method through which safe systems can be
designed and built.

This section has introduced various requirements to consider when designing modular
systems and software architectures. These are:

• Modules are required to be as independent as possible.
• Modular systems and software architectures need to be constructed top-down to

improve the traceability and predictability of change.
• Modules need to be highly cohesive and exhibit low coupling.
• Modules need well-defined interfaces and all module dependencies need to be

captured. It has been shown that this could be done with contracts (ref 7).

In the next section these requirements will be used as a guide to derive modular safety cases
and safety case architectures that are tolerant and robust to change.

Safety Case Construction

Safety cases are a means through which an argument is presented to a certifying body that a
developed system is safe to operate. The Goal Structuring Notation or GSN (ref 12) has been
devised to allow these arguments to be constructed through a graphical argumentation
notation. This notation explicitly represents the individual elements of any safety argument
(requirements, claims, evidence and context) and (perhaps more significantly) the
relationships that exist between these elements (i.e. how individual requirements are

supported by specific claims, how claims are supported by evidence and the assumed context
that is defined for the argument). The principal symbols of the notation are shown in figure 1
(with example instances of each concept).

The principal purpose of a goal structure is to show how goals (claims about the system) are
successively broken down into (“solved by”) sub-goals until a point is reached where claims
can be supported by direct reference to available evidence. As part of this decomposition,
using the GSN it is also possible to make clear the argument strategies adopted (e.g. adopting
a quantitative or qualitative approach), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated (e.g. the system scope or the assumed
operational role). For further details on GSN see reference 12.

G1

System can tolerate
single component failures

Str1

Argument over all
identified hazards

A

A1

Sub-systems are
independent

J

J1

This approach
addresses all failure
mechanisms

C1

Operational Role

G4

Goal Strategy Assumption Justification Context

Undeveloped
Goal (requires

support)
Choice

G2

Software condition X cannot
occur

Module Reference

‘Away’ Goal

Spinal

Module Reference

Reference to
Argument Module

SolvedBy InContextOf

Figure 1 – Principal Elements of the Goal Structuring Notation

GSN has been widely adopted by safety-critical industries for the presentation of safety
arguments within safety cases. However, to date GSN has largely been used for arguments
that can be defined in one place as a single artefact rather than as a series of modularised
interconnected arguments. Recently, there has been a push to move towards a modular
approach to arguing safety. For this reason GSN has been extended with the introductions of
Away Goals and Argument Modules and these are the focus of the next section.

Modular Principles and the Safety Case: The analysis of modular systems and software
architectures previously, could potentially provide the stimulus for the creation of modular
safety cases and safety case architectures. The following definition has been adapted from the
software architecture definition found in reference 8:

‘The high level organisation of the safety case into components of arguments and evidence,
the externally visible properties of these components, and the interdependencies that exist
between them.’ (ref 13)

From this definition it can be seen that when thinking about modular safety cases and safety
case architectures we should approach them with the same mindset as modular systems and
software architectures. To proceed, further definitions are required. The symbols shown in
figure 1 are the core GSN symbols. The symbol ‘reference to argument module’ allows ‘the
high level organisation of the safety case into component of argument and evidence’. By
allowing modules to exist in a safety case we need to ensure two things, these modules must

independently stand up to scrutiny and their dependence on other modules captured. This is
done by first using a modular interface shown in figure 2 to capture ‘the externally visible
properties of that module’ i.e. the goals requiring or offering support for other modules. Once
defined a claim matching process can occur. When ‘the interdependencies that exist between’
modules are identified these are captured using a safety case contract as shown in figure 3

For a modular safety case to be constructed it must follow the same requirements as for
modular system construction. By applying these requirements we arrive at the following
understanding:

• Modules must be as independent as possible – This is important as it means that a
safety case module can de developed without the needing to consult other modules
and therefore, can potentially support work divisions and contractual boundaries. As
long as these modules are wisely chosen it should be possible to identify and
document what is required for a module to fulfil its work and contractual boundaries.
This places a demand on the safety case architecture to support, where possible, these
sorts of boundaries in the safety case.

• Modules must exhibit high cohesion and low coupling – The requirements for high

cohesion and low coupling places an implicit demand on the modular safety case that
a module’s objectives should be naturally consistent and that cross referencing across
modular boundaries should be minimised as much as possible.

• Modular safety cases and safety case architectures must be constructed top-

down – Due to the GSN implicitly being hierarchical this requirement is easily met.
However, it should be noted that just because the GSN is implicitly hierarchical does
not infer that any goal structure is modular.

• Modules must have well defined interfaces – This is necessary for two reasons.

Firstly, it gives a safety case module the ability to specify what goals it requires
support for and what goals it is offering support to. This allows the safety case
developer to proceed with the modular argument and revisit those goals when the
modules are combined to form the safety case. Secondly, it allows the safety case
architecture to support future expansion. By having explicit modular boundaries
another module added, for example, as part of a life cycle upgrade, knows what it
must guarantee to an existing module if it going to offer/provide support for that
module and hence form part of the overall safety case.

• All modular dependencies must be captured – This is important when managing

change. If a change is made to an existing safety case module then the capturing of

Safety Case Module Interface
Argument Module:

 Identifier Summary

Goals Addressed

Solutions
Presented

Context Defined

Goals Requiring
Support

Inter-Module Dependencies
 Identifier Summary Module
Goals

Solutions

Context

Safety Case Module Contract

Participant Modules:

Goals Matched Between Participant Modules
Goal Required by Addressed by Goal

Collective Context and Evidence (Solutions) of
Participant Modules Held to be Consistent

Context Evidence

Figure 2 – Safety Case Module Interface (ref 14) Figure 3 – Safety Case Module Contract (ref 14)

dependencies can be use to trace and predict what effects it will have with regards to
the rest of the modules in the safety case.

From these requirements it is clear that modular safety cases have to be carefully considered
before composition. It is therefore necessary to consider what you require from your safety
case before diving head first into the construction of a modular safety case. In the next section
these requirements will be used with a small example.

Summary: This section has shown how the requirements for a modularly designed system
can be applied to a modular safety case. These will be explored further in the next section
through a small example.

Application to a Stores Management System Example

In this section we will show how the requirements: ‘modules must be as independent as
possible’, ‘modules must exhibit high cohesion and low coupling’ etc. can be used to drive the
safety case architecture for a Stores Management System (SMS). The SMS, illustrated in
figure 4, is a system that is used on an aircraft to control the release, jettison and selection of
stores such as missiles or fuel. This particular example was developed in reference 7. In
reference 7, a trade-off analysis was used to obtain the software architecture shown in figure
4. A trade-off analysis process is used when differing system objectives need to be supported
by the design. In reference 7, it was shown how safety objectives could be used as part of this
trade-off analysis. The outcome of this trade-off analysis was a number of hierarchical and
peer design and safety contracts. The exact derivation details are out of the scope of this
document, for further details refer to reference 7.

+getCurrentInventory()
+checkConfig()
+initialise()
+checkWOW()
+checkIntervals()
+runRecorder()

-WOW : bool
-late_arm : bool
-MASS-live : bool

Stores_Manager

+addStore()
+removeStore()

-ID
-configError : bool

Station

+jettison()
+release()
+select()

-type
-status
-mnemonic
-ID

Store

1

*

1

*

1 0..*

+locate()

-stationID
-storeID

Location

Weapon Fuel Tank

Dumb Weapon Smart Weapon

Figure 4 – A Peer Level Decomposition for the Stores Management System

There are a number of possible ways to argue that the SMS shown in figure 4 is safe to
operate. In this paper the safety case architecture are based on the software architecture. By
doing this we still have choices to make about how we are going to construct the modular
safety case. The safety case architectures shown in figures 5 and 6 are examples of these
choices. Both architectures show how the SMS is composed of the modules Stores Manager,
Station and Store. Figure 5 shows an example that corresponds directly the software

architecture. Whereas figure 6 shows an example where the arguments about the interactions
between the software architecture modules are collected together to form the InteractionsArg
safety case module. Both the safety case architectures could potentially be used to argue the
safety of the system. Therefore, we need to decide which one best supports the way we want
to argue the safety of the SMS.

In this paper modular system requirements such as ‘modules must be as independent as
possible’ have been derived and how these can be applied to safety case architectures
examined. We will now show how the requirement ‘modules must exhibit high cohesion and
low coupling’ can be used to select an appropriate safety case architecture to argue the safety
of the SMS shown in fig 4. Both the safety case architectures in figures 5 and 6 can be seen to
be highly cohesive. The safety case architecture shown in figure 5 is highly cohesive as the
argument relating to all aspects including the inter-modular interactions of the individual
system modules are contained within individual safety case modules. However, the safety
case architecture shown in figure 6 introduces an ‘InteractionsArg’ module. By introducing
this module the arguments about the inter-modular interactions that would be distributed
between the safety case modules of figure 5 are contained in one module. Therefore, when the
safety case architectures are reviewed for their support of the ‘low coupling’ requirement the
main distinctions between the safety case architectures are identified. The modules in figure 5
will exhibit more dependencies between each other than the modules in figure 6. This is
because each of the safety case modules shown in figure 5 would have to independently argue
about all the interactions that occur between the modules. Each safety case module would also
have to make claims about how the individual interactions are safe and make reference to
similar claims in the other safety case modules, which could lead to numerous dependencies
and safety case contracts (figure 3) being formed. However, the arguments underlying the
safety case modules in figure 6 can be developed independently of interactions by making
claims such as ‘All Hazardous interactions between modules are safe’ once, and assuming
that support for this claim will be provided by the ‘InteractionsArg’ module. As such the
dependencies that will exist in the safety case architecture in figure 5 are minimised by the
safety case architecture in figure 6 and is the best choice to argue the safety of the SMS.

As stated previously when designing modular systems there are two types of contracts,
hierarchical and peer. The hierarchical contracts are formed to ensure that a child element will
meet the minimum requirement of its parent element. The GSN’s hierarchical nature allows
the way the child element meets the requirements to be easily captured. This is done in two
stages. Firstly, the safety case module interface (figure 2) between the parent and child
elements will be made from the requirements of the hierarchical modular system contract. In
the parent safety case module these requirements will become goals/claims that require
support. In the child safety case module these will become top-level goals that it will be
required to satisfy. Secondly, a safety case contract (figure 3) is made when the child safety
case module can provide the required support for the parent safety case module’s
requirements or goals. The peer contracts are captured in a modular system to control and

Figure 5 – A Possible Safety Case
Architecture Relating to the Stores

Management System

Figure 6 - Another Possible Safety Case
Architecture Relating to the Stores

Management System

constrain its modules interactions. In reference 7 it was shown how safety contracts could be
formed to mitigate against hazardous interactions between system modules. The
InteractionsArg safety case module shown in figure 6 could be used to support this style of
contract. An in depth discussion of how this argument is formed is out of the scope of this
paper, so a simplistic overview will be presented here. In the InteractionsArg safety case
module the top-level claim will be ‘There are no hazardous interactions between modules’.
Presenting an argument about the correctness, completeness and validity of the safety contract
would then be used to support this.

Summary: In this section we have reasoned about how we could argue the safety of a
modular system using a modular safety case. We have also discussed how the contracts made
throughout the modular system design can be supported by a modular safety case.

Conclusions

This paper has analysed work relevant to the modular construction of systems and has used
this to develop ways of reviewing modular safety cases. It has been shown that managing
change is perhaps the most important requirement in the construction of a modular safety
case. This can be done providing the safety case’s modular composition is sensibly chosen.
The work has been performed in conjunction with complementary work on the design
architecture. The future work on modular safety cases will look at developing guidelines to
aid their development and decomposition. These will focus on how the safety case can be
constructed to have predictable and traceable consequences.

References

[1] Jacques-Louis Lions, “Ariane 5 Flight 501 Failure Report by the Inquiry Board” (Paris:
ESA, 1996).

[2] OXFORD ENGLISH DICTIONARY (Internet: http://www.oed.com).
[3] Rob Pooley and Perdita Stevens, Using UML (Reading, MA: Addison Wesley, 1999).
[4] Bertrand Meyer., Eiffel The Language (New York: Prentice Hall, 1992).
[5] Richard D. Hawkins and John McDermid, “Performing Hazard and Safety Analysis of

Object Oriented Systems” in Proceedings of 20th ISSC (August 2002): 802-811.
[6] Philippa Conmy and John McDermid, “High Level Failure Analysis for Integrated

Modular Avionics” In Proceedings of 6th Australian Workshop on Industrial
Experience with Safety Critical Systems and Software (Brisbane, Australia: June 2001).

[7] I.J. Bate, S.A. Bates, and R.D. Hawkins “A Contract Based Approach to Designing
Safe Systems” Submitted to SAFECOMP 2003.

[8] L. Bass, P. Clements, and R. Kazman, Software Architectures in Practice (Reading,
MA: Addison Wesley, 1998).

[9] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J.
Stafford, Documenting Software Architectures – Views and Beyond (Reading, MA:
Addison Wesley, 2003

[10] C. Hofmeister, R. Nord, and D. Soni, Applied Software Architectures (Reading, MA:
Addison Wesley, October 1999).

[11] Iain J. Bate and Tim P. Kelly, “Architectural Considerations in the Certification of
Modular Systems” In Proceedings of 21st International Conference, SAFECOMP 2002
(September 2002): 321-333.

[12] Tim P. Kelly, “Arguing Safety – A Systematic Approach to Managing Safety Cases”
(Ph.D. diss., The University of York, UK, 1998).

[13] Tim P. Kelly, “Managing Complex Safety Case” in Proceedings of the 11th Safety-
Critical Systems Symposium, Bristol, UK (February 2003): 99-115.

[14] Tim P. Kelly, “Concepts and Principles of Compositional Safety Case Construction”
COMSA/2001/1/1 (2001).

Biographies

S.A. Bates, MEng, Research Associate, Department of Computer Science, University of
York, Heslington, York, YO10 5DD, UK, Tel: 0044 (0) 1904 433385, Fax: 0044 (0) 1904
432708, Email: simon.bates@cs.york.ac.uk

Simon Bates has been a Research Associate in the BAE SYSTEMS funded Dependable
Computing Systems Centre (DCSC) at the University of York since October 2002. This is his
first role since leaving the University of Manchester in 2002 where he attained a MEng
(Hons) in Electronic Systems Engineering.

Dr. I.J. Bate, Ph.D, Senior Research Associate, Department of Computer Science, University
of York, Heslington, York, YO10 5DD, UK, Tel: 0044 (0) 1904 432786, Fax: 0044 (0) 1904
432708, Email: iain.bate@cs.york.ac.uk

Iain Bate has been working as a Research Associate since 1994 and is now a Senior Research
Fellow. His research interests include scheduling and timing analysis, design for safety
including architecture trade-off techniques, and the use of optimisation to derive appropriate
design solutions.

R.D. Hawkins, MSc, Research Associate, Department of Computer Science, University of
York, Heslington, York, YO10 5DD, UK, Tel: 0044 (0) 1904 433385, Fax: 0044 (0) 1904
432708, Email: richard.hawkins@cs.york.ac.uk

Richard Hawkins has been a Research Associate in the BAE SYSTEMS funded Dependable
Computing Systems Centre at the University of York since November 2001. He is researching
the use of object oriented techniques for safety critical systems. Before taking up his current
role, he attained an MSc in Information Systems from the University of Liverpool and worked
as a safety adviser for British Nuclear Fuels since 1997.

Dr Tim Kelly, Lecturer of Software and Safety Engineering, Department of Computer
Science, University of York, Heslington, York, YO10 5DD, UK, Tel: 0044 (0) 1904 43 2764,
Fax: 0044 (0) 1904 432708, Email: tim.Kelly@cs.york.ac..uk

Dr Tim Kelly (MA DPhil) is a lecturer in software and safety engineering within the
Department of Computer Science at the University of York. He is also Deputy Director of the
Rolls-Royce Systems and Software Engineering University Technology Centre funded at
York. His expertise lies predominantly in the areas of safety case development and
management. Tim has provided extensive consultative and facilitative support in the
production of acceptable safety cases for companies from the medical, aerospace, railways
and power generation sectors. He has published a number of papers on safety case
development in international journals and conferences and has been an invited panel speaker
on software safety issues.

Prof J.A. McDermid, Professor of Software Engineering, Department of Computer Science,
University of York, Heslington, York, YO10 5DD, UK, Tel: 0044 (0) 1904 432786, Fax:
0044 (0) 1904 432708, Email: john.mcdermid@cs.york.ac.uk

John McDermid has been Professor of Software Engineering at the University of York since
1987 where he runs the high integrity systems engineering (HISE) research group. HISE
studies a broad range of issues in systems, software and safety engineering, and works closely
with the UK aerospace industry. Professor McDermid is the Director of the Rolls-Royce
funded University Technology Centre (UTC) in Systems and Software Engineering and the
BAE SYSTEMS-funded Dependable Computing System Centre (DCSC). He is author or
editor of 6 books, and has published about 250 papers.

