
A Contract-based Approach to Designing Safe Systems

Iain Bate, Richard Hawkins and John McDermid

The Department of Computer Science, The University of York,
Heslington, York, YO10 5DD, United Kingdom

{iain.bate, richard.hawkins, john.mcdermid}@cs.york.ac.uk

Abstract. Architectural based approaches to designing
software are motivating changes in the way software is
developed for safety-critical systems. These new
approaches allow developers to divide system
requirements between components and their sub-
components. To allow systems to be designed in this way
a component’s obligations to other components and
interfaces with the rest of the system must be captured.
This can be done using contracts. Other work has shown
how contracts can be used to develop systems. In this
paper we explore how to generate design and safety
contracts, and then how to use them to support change
and reuse.

1 Introduction
Safety-critical systems are those that have a direct
influence on the safety of their users and the public. For
such systems it is imperative that design and safety
processes are conducted concurrently s o that each
activity can account for each other without false
assumptions being made. Perhaps more important is the
integration of design and safety processes.

Extensibility, adaptability, and resilience to change are
increasingly desirable characteristics for many safety
critical systems. Modular system architectures, such as
Integrated Modular Avionics (IMA) in the aerospace
sector, are being seen by many as offering the potential
benefits of improved flexibility in function allocation,
reduced development costs and a means of managing the
ever present issues of technology obsolescence and
update.

The characteristics desirable in these systems (such as
change resilience and timeliness) cannot be easily
retrofitted into a system design. Ability to exhibit these
characteristics depends to a large extent on the
architecture of the system in question (e.g. concerning the
partitioning, communication mechanisms and scheduling
policies). Therefore consideration must be given during
architecture definition as to how these objectives will be
satisfied. In this paper we highlight how dependability
and maintainability criteria can be elaborated and
considered during the architecture definition process. In
particular, we describe how the exploration of alternative

 Copyright © 2003, Australian Computer Society, Inc. This
paper appeared at the 8th Australian Workshop on Safety
Critical Systems and Software (SCS'03), Canberra. Conferences
in Research and Practice in Information Technology, Vol. 33. P.
Lindsay & T. Cant, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

satisfaction arguments for these criteria can enable
assessment of architectural tradeoffs.

One of the most significant problems posed by the
adoption of modular systems in safety critical
applications lies in their certification. The traditional
approach to certification relies heavily upon a system
being statically defined as a complete entity and the
corresponding (bespoke) system safety case being
constructed. However, a principal motivation behind IMA
is that there is through-life (and potentially run-time)
flexibility in the system configuration. An IMA system
can support many possible mappings of the functionality
required to the underlying computing platform. To have a
safety case for each configuration would be infeasibly
expensive and would reduce the benefits of the modular
design.

Previous work has addressed the need for modular safety
arguments and how this links to design trade-off analysis
(Bate and Kelly 2003). However for the approach to be
successful, it is also necessary to control the interfaces
between different parts of the system’s design and safety
analysis in an integrated manner. Moreover, it is also
essential that the safety requirements derived from top-
level hazards are allocated to individual parts of the
design to prevent the system safety analysis being whole
system and hence the benefit of modularity being lost. A
promising method of achieving this is to have contracts
between the parts. For this to be successful these
contracts have to be established and broken down into
individual requirements placed on the parts of the system.

The contribution of this paper is to combine a trade-off
analysis approach to reach an optimal design solution
with a safety analysis approach to ensure the safety of a
system. From these analyses, design contracts and safety
contracts are established. The contracts capture
dependencies between elements of the system design, i.e.
what service the element provides and what each element
relies upon to provide the intended service. These
contracts enable documentation to be produced allowing
for the effective change and maintenance of software
components. The safety contracts can also be used as the
basis for including safety considerations in the trade-off
analysis.

Section 2 of this paper presents the approach to trade-off
analysis that has been developed. The objective of
managing change is one of the objectives that can be used
as part of the trade-off analysis, and is of particular
relevance to the work presented in this paper. Therefore,
section 3 presents a decomposition of this objective using
the described approach, and establishes some design
options that may support managing change. A small

example system is presented in section 4 and the design
options are assessed, using assessment criteria derived
through the argument in section 3, from which some
design contracts are proposed. The derivation of contracts
through safety analysis to ensure the safety of the system
and help support change is presented in section 5. The
utilisation of safety contracts for safe handling of change
and reuse is demonstrated in section 6. Finally section 7
presents the conclusions.

2 Architectural Design Processes
In (Bate and Audsley 2002) and (Bate and Kelly 2003)
our method for architectural trade-off analysis for use
within a systems engineering process was presented.
Figure 1 provides a diagrammatic overview of the
proposed method, which is explained further in section
2.1. It should be noted that the proposed approach could
be used within the nine-step process of the Architecture
Trade-Off Analysis Method (ATAM) (Kazman, Klein et
al. 2001). The trade-off analysis technique has been
extended from that which has previously been presented
to show how design contracts are extracted and how our
method for deriving safety contracts can be integrated.

Model of the System

Arguments
Containing Quality

Attributes

Stage 2 - Produce Arguments
for Key Objectives/Properties

Stage 1(a) - Produce Initial Architecture Model

Quantitative and
Qualitative

Assessment Criteria

Stage 3(b) - Extract
Assessment Criteria

Design Evaluation
Results

Stage 3(c) - Evaluate
Architectural Design

St
ag

e
1(

b)
 -

Im
pr

ov
e

D
es

ig
n

(w
he

re
 n

ec
es

sa
ry

)

Contracts

Accept Design

Stage 4(b) - P
roduce Refined

Architectural Model

(possibly with Multi-Criteria Optimisation

Technique)

Scenarios

Design Choices

Stage 3(a) -
Extr

act

Desig
n Choice

sStage 4(a) - Derive Contracts

Static Analysis and
Test

Stage 3(e) -

 V&V

Stage 3(d) - Scenario-
Based Assessment

Figure 1: Overview of the Method

A key difference between our strategy and other existing
approaches, e.g. ATAM, is the way in which quality
attributes are derived. (Quality attributes are assessment
criteria used to evaluate solutions, e.g. does the design
support predictability?). The approach taken to deriving
the attributes reuses techniques from the safety domain
that offer strong traceability, the ability to capture design
rationale and allows safety arguments to be reused.

2.1 Overview of the Technique
Stage (1) of the trade-off analysis method is producing a
model of the system to be assessed. This model should be
decomposed to a uniform level of abstraction. Currently
our work uses class diagrams from UML for this purpose,
however it could be applied to any modelling approach
that clearly identifies components and the interfaces
between the components.

In stage (2), arguments are produced that decompose the
key objectives and properties of the system into more
detailed design claims to be satisfied, along with the
appropriate context for the claims, and identifies where
design choices are available. The arguments are produced
using Goal Structuring Notation (Kelly 1998) -refer to
section 2.2 for further details. The properties of interest
include; lifecycle cost, dependability, and maintainability.
Clearly these properties can be broken down further, e.g.
lifecycle cost into development, future upgrades and
maintenance. Objectives of interest include; managed
change, ease of integration and ease of verification.

Stage (3) then uses the information in the argument to
derive design and verification options, and to determine
assessment criteria to judge whether a particular design
solution means the system meets its objectives. Other
approaches for deriving assessment criteria from systems
objectives include Goal Question Metrics (GQM) (Basili
and Rombach 1988), and Quality Function Deployment
(QFD) (Kogure and Akao 1983). Initially when the
design is in its early stage the evaluation may have to be
qualitative in nature but as the design is refined then
quantitative assessment may be used where appropriate.
Part of this activity uses representative scenarios to
evaluate the solutions.

Before stage (4) of the process, based on the findings of
stage (3) the design is modified to fix any problems that
are identified – this may require stages (1)-(3) to be
repeated to show how the revised design is appropriate.
When deciding on design solutions, the results from more
than one assessment criteria have to be traded-off because
a design modification that suits one assessment criterion
may not suit another. For example, introducing an extra
processor may reduce the load across the processors in
the system making task schedulability easier. However it
may increase the load on the communications bus making
message schedulability more difficult and increasing
power consumption.

When the design modification process is complete and all
necessary design choices have been made, stage 4(a) of
the process extracts design contracts from the arguments
and safety contracts using the safety analysis technique
presented in section 5. Then, as part of stage 4(b) of the
process, the process returns to stage (1) where the system
is decomposed to the next level of abstraction using
guidance from the arguments. Components reused from
another context could be incorporated as part of the
decomposition. Only proceeding when design choices are
complete (and any identified problems are fixed) is
preferred to allowing trade-offs across components at
different stages of decomposition because the abstractions
and assumptions are consistent.

Figure 2 illustrates how a component from a higher-level
can be broken down in a number of ways and how the
trade-off analysis should be performed across the options
to determine which is the “best” solution. To minimise
the effort required when applying this method to large
systems, contracts are only defined across the interfaces
of the “best” solution as shown in the figure.

KEY

B C

A

Refin
em

en
t o

f

co
mpo

ne
nt

A

Interface

A Component

Module

AA AC

AB
AD

AA AC

AB
AD

AE

AA AC

AB

R
ef

in
em

en
t o

f
c o

m
po

ne
nt

 A
Refinement of

component A

Contract

Optimal design
solution

Design, Assessment
and Trade-Off of N

Design Options

Figure 2: How the Components are Decomposed

2.2 Background on Goal Structuring Notation
GSN (Kelly 1998) is widely used in the safety-critical
domain for making safety arguments. Any safety case can
be considered as consisting of requirements, argument,
evidence and definition of bounding context. GSN - a
graphical notation - explicitly represents these elements
and (perhaps more significantly) the relationships that
exist between these elements (i.e. how individual
requirements are supported by specific arguments, how
argument claims are supported by evidence and the
assumed context that is defined for the argument).

The principal symbols in the notation are shown in Figure
3 (with example instances of each concept).

System can
tolerate single

component
failures

Sub-systems
are independent

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1
A/J

Goal Solution Strategy Assumption /
Justification

All Identified
System Hazards

Context

Undeveloped Goal
(to be developed) Developed Goal

ChildGoal

Child Goal

ParentGoal

ChoiceUninstantiated Context

Figure 3: Principal Elements of the Goal Structuring
Notation

The principal purpose of a goal structure is to show how
goals (claims about the system) are successively broken
down into sub-goals until a point is reached where claims
can be supported by direct reference to available evidence
(solutions). As part of this decomposition, using the GSN

it is also possible to make clear the argument strategies
adopted (e.g. adopting a quantitative or qualitative
approach), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated
(e.g. the system scope or the assumed operational role).
For further details on GSN see [3].

3 Argument for Reducing the Work Needed to
Support Changes

The role of this section is to present a decomposition of
the management of change objective using the described
approach, this establishes some design options that may
support this objective. The design options are later
supplemented to support safety using the analysis
approach in section 5. In (Bate and Kelly 2003) a series
of arguments were presented for the main top-level
objectives of a system. The main objectives were
considered to be reducing cost, achieving dependability
goals and supporting managed change. The paper showed
how the argument for managed change could be split into
the following parts; increasing the resilience to change,
reducing the work needed when change has to be
performed, and reducing the scope of change. In this
section, we use the argument for reducing the work
needed when changes have occurred as an example.

Figure 12 contains the argument that expands the
previously stated goal, G14, that the work needed to
perform change is reduced. This goal is satisfied by a
strategy that splits it into non-functional properties, G41,
and functional properties, G42.

The non-functional properties are broken down here into
three parts; timing, memory usage and reliability. Timing
is then developed through two parts; assigning budgets so
that all timing requirements are met and then showing the
platform used allows the budgets to be met. Taking this
approach allows each individual task to be reasoned about
independently of one another. The result is the
establishment of contracts between the platform and the
tasks. This approach to scheduling and timing analysis
technique is referred to as Reservation Based Timing
Analysis (Audsley and Grigg 2001). Memory usage and
reliability are left undeveloped but, like timing, the use of
budgets could help ease the problems of change.

The functional aspects of the system can be handled
through a choice of one of the following design strategies.
• having generic functions that are initialised at run-

time using separate initialisation details, or
• specific functions and generic interfaces, or
• separating out the functionality that is likely to

change.

A key reason for using GSN for decomposing the
objectives is the way it supports the capturing of context.
For example in Figure 12, we have an assumption, A11,
that we have an understanding of what types of changes
are likely and a justification, J11, reducing the work
needed to perform changes is essential if cost effective
upgrade is to be supported.

Table 1 presents a summary of the choices extracted from
the argument in Figure 12 and a description of the pros
and cons of each choice. The actual best choice in a
particular situation will depend on the nature of the
component’s functionality and the types of change that
need to be carried out. For instance there are only certain
classes of function that can be made generic or robust to
change without considerable cost and effort. However
generic interfaces and separating out functionality are
more universally applicable.

It should be noted that:
• a combination of the options can be employed where

needed
• some options will be affected by other objectives,

e.g. supporting managed change at the expense of a
more complicated design might affect the ability to
certify the final product.

• currently the options are chosen based on the results
of assessing the design options against the
assessment criteria extracted from the arguments.
Other work has shown how multi-criteria
optimisation may be used to explore the design space
as part of evaluating which is the best solution
(Audsley and Bate 2003).

Goal Choice Pros Cons

G51 –
Initialisation
and generic
function

Only the
initialisation file
needs altering
not the code

1. Component can be
represented by a generic
function

2. Anticipated changes can be
handled by the initialisation
language. This means not
only the types of changes
but also their nature needs
to be known.

3. The design will become
more complicated leading
to other difficulties (e.g.
certification) which may
negate any benefit

G61 – Use a
standard
interface

Only the specific
function needs
altering

1. Interface semantics can be
represented by standard
interface

2. Anticipated changes can be
handled by specific
function. This means not
only the types of changes
but also their nature needs
to be known.

G42

G71 – Separate
out
functionality

Only a single
module needs to
be updated

1. The types of changes must
be known

2. Changes can be contained
behind a standard interface

Table 1: Consideration of the Choice from Figure 12

4 Design Contracts
A proposed design for an aircraft Stores Management
System (SMS) is shown in Figure 4. It is important to
note that for the purpose of this paper this is a highly
simplified and fictitious design with much of the
functionality of an SMS removed. The main functional
requirements of the SMS are to update the stores
inventory. The inventory contains details of what stores
are available, where these stores are located and their
current status. The SMS will also send and receive data
from the rest of the system and choose the next weapon to

be deployed. It will also instigate remote operations e.g.
arming of a weapon, and update health level information
that can be used for maintenance and fault tolerance. It
should be noted that WOW is ‘Weight on Wheels’ which
is used to indicate when the aircraft is on the ground.

In the context of this paper, we are aiming to show how
the approach described in section 2 can be used to assess
whether a design meets its objectives. For the purposes of
this paper, we are mainly interested in establishing
contracts between components to help in the management
of change.

From the arguments presented in section 3, Table 2
presents a number of assessment that can be applied to
potential solutions. For a complete list of assessment
criteria, refer to (Bate and Kelly 2003). This table
indicates that the importance of all assessment criteria
related to managed change is Value Added rather than
Essential. (Essential criteria are those that have to be met,
e.g. ‘Timing requirements are met’, whereas Value
Added are those where it is advantageous if they are met,
e.g. ‘Timing requirements are met even if the software’s
execution times increase by 20%’.) In this case, the
reason is the “Managed Change” objective itself is Value
Added. However it does affect cost and when/if changes
can be carried out during the system’s operational life.

+getCurrentInventory()
+checkConfig()
+initialise()
+checkWOW()
+checkIntervals()
+runRecorder()

-WOW : bool
-late_arm : bool
-MASS-live : bool

Stores_Manager

+addStore()
+removeStore()

-ID
-configError : bool

Station

+jettison()
+release()
+select()

-type
-status
-mnemonic
-ID

Store

1

*

1

*

1 0..*

+locate()

-stationID
-storeID

Location

Weapon Fuel Tank

Dumb Weapon Smart Weapon

Figure 4: Class Diagram for part of the Stores
Management System

Using the proposed design presented in Figure 4, Table 2
indicates the need for appropriate contracts to manage the
interactions between the class Stores_manager and the
rest of the system. Even with only a basic current
knowledge of the design, the approach has allowed the
general location and purpose of the contracts to be
identified as shown below. The contracts will become
more refined through the lifecycle, in part by using the
safety analysis technique in the next section.

1. The rest of the system to provide Stores_manager
with sufficient information so they can maintain an
up to date inventory. This would require Store to
provide type information and station to provide
information concerning the store that it holds.

2. Stores_manager to correctly manage the actions of
the rest of the system (e.g. which bomb to release
next to maintain centre of gravity) where there is
appropriate control.

3. Stores_manager to sufficiently mitigate the risk of
hazards related to the stores. The responsibility of
Stores_manager for avoiding hazards is on top of the
self-contained mechanisms that individual stores may
have.

Arg
Ids Question Impor-

tance Response Design Advice

G51

Can the nature of
the function be
made abstract of
the likely/costly
changes and a
standard
language be
defined for
instantiating the
function?

Value
Added

Information about
the stores is
contained within the
stores and used by
Stores_Manager.
This dependency
should be formalised
in a contract.

This information
could be stored in
a central blueprint
file which would
be accessed using
a stores id.

G61

Can an interface
be produced that
isolates the
likely/costly
changes on
either side of an
interaction?

Value
Added

There is currently no
definition of the
interfaces between
classes.

Use standard
interfaces
between classes
for passing data.
This interface
could be kept
simple especially
if the majority of
store specific
information was
held in a blueprint
file.

A43
Is an accurate
inventory list
maintained?

Essential
Not enough design
details at this level of
refinement.

Establish an
appropriate
contract.

A44

Are the correct
actions
performed in
relation to the
stores?

Essential
Not enough design
details at this level of
refinement.

Establish an
appropriate
contract.

A45
Are key hazards
related to stores
avoided?

Essential
Not enough design
details at this level of
refinement.

Establish an
appropriate
contract.

G46

Does the
platform allow
the budgets to be
met

Essential
Not enough design
details at this level of
refinement..

Establish
appropriate
contracts.

G46

Does the
platform allow
the budgets to be
changed

Value
Added

Not enough design
details at this level of
refinement.

Choose a platform
that allows some
changes in the
budgets to be met.

G47

Do the budgets
allow the timing
requirements to
be met

Essential
Not enough design
details at this level of
refinement.

Establish
appropriate
contracts.

G47

Do the budgets
allow the timing
requirements to
be met

Value
Added

Not enough design
details at this level of
refinement.

Choose budgets
that allow some
changes in the
timing
requirements to be
met.

Table 2: Evaluation Based on Change Argument

The principal modification recommended in Table 2 is to
separate out information concerning the stores in the

system into a blueprint file (blueprints are basically a
look-up table used in avionic systems to hold
configuration information) which would allow changes to
be localised and standard interfaces to be employed. This
would mean that contracts would have to be established
for the dependencies between the classes and the
blueprint. Also as stated in item (1) of Table 2, if the
current arrangement is maintained then contracts would
have to be established between individual stores and
Stores_Manager.

Table 2 also indicates that the timing properties of the
system can be managed by the use of budgets as
described in section 3. These budgets result in contracts
being created between the tasks of the software and the
platform used to execute the software. In section 6, the
establishment of these contracts, based on timing
requirements derived during safety analysis, is presented.

5 Safety Contracts
In this section the design solution proposed in Figure 4 is
used to illustrate how safety contracts may be generated
for a safety related system designed using UML. This
requires that existing proven safety analysis techniques be
adapted such that they can be applicable to an object
oriented system. We then go on to see how these safety
properties and requirements can be represented in a useful
and meaningful way using the object constraint language
(OCL) and how safety contracts can be used to facilitate
the safe management of change of the system.

Contracts have been used in software development for
many years. The principles where developed by Bertrand
Meyer as the concept of ‘design-by-contract’ (Meyer
1988) where correctness requirements are expressed as a
contract between a method and its callers. Safety
contracts constrain the interactions that occur between
objects, and hence can ensure system behaviour is safe.
Contracts are made up of pre and post conditions.
Preconditions must be true before the operation call is
made and postconditions must be ensured by the
execution of the call. The properties of an interaction that
we are interested in from a safety perspective are
function, timing and value. Analysis of each of these
aspects results in requirements that are included in the
safety contract. Safety is a system property and therefore,
the analysis process will begin with the consideration of a
system level hazard.

For the aircraft SMS in Figure 4, the initial hazard
identification process identified a number of system
hazards including :
• Inadvertent release of store
• Release of store whilst on the ground
• Inadequate temporal separation of store releases
• Unbalanced stores configuration
• Release of incorrect store

5.1 Functional Aspects
For all hazards identified it is necessary to perform
analysis to identify how the hazard may be brought about.
For this example we will look solely at the release of a

store whilst on the ground hazard. A UML sequence
diagram is developed to illustrate the dynamic behaviour
of the system for the relevant normal operation scenario.
This can be seen in Figure 5. A fault tree is constructed
using system information collected from the UML
diagrams in Figures 4 and 5, and domain knowledge. This
fault tree shows the failures that can occur to bring about
the top event “Release of store whilst on ground”. A
simplified version of this fault tree can be seen in Figure
6.

It is possible to relate leaf nodes (undeveloped failure
events) in the fault tree to classes in the system. For
example the ‘WOW not checked by store’ event can be
associated with the Store class in the system design. The
information from the fault tree can be used to generate a
definition of the hazardous behaviour of the system. This
information is recorded in a table as shown in table 3.
Hazardous
event
(from FT)

Class Interaction Role Hazardous class behaviour

WOW not
checked by
store

Store checkWOW() Client Stores_Manager.checkWO
W() call not made as
required

Store
releases
anyway

Store release() supplier Store moves to released
state inappropriately

SM fails to
respond to
WOW
signal

Stores
Manager

WOW(true) –
signal

supplier Stores_Manager fails to
move to WOW state

Table 3: Table of Hazardous Class Behaviour

Stores Manager Store Station

Pilot
Select()

Release()

CheckWOW()

RemoveStore()

Select()

Release()

CheckWOW()

RemoveStore()

Figure 5: Sequence Diagram of Dynamic Behaviour

We have now derived hazardous conditions for classes in
the system. In order to derive safety requirements and
construct safety contracts for these classes it is necessary
to understand how the class may behave such that these
conditions can occur. To do this the state charts of these
classes are studied. For the purposes of this example we
will consider just the Store class. A simple state chart has
been developed for this and is shown in Figure 7.

This proposed state chart design is now checked to ensure
that it does not result in the hazardous behaviour
identified from the fault tree, this hazardous behaviour is:
• State = release ^ ¬checkWOW
• State = release ^ WOW = true

Firstly it is assumed that the system behaves as specified
in the design, that is that the class exhibits no faulty
behaviour. In this simple example it can be seen from
examining the state chart that this design does not exhibit
any of the hazardous behaviours defined above. Checking
that a proposed design does not exhibit hazardous
behaviour can also be achieved using a reachability
analysis tool.

This analysis has so far assumed that the class exhibits no
faulty behaviour. The effects on the safety of the system
if an object were to behave in an unexpected manner, that
is to behave in a way other than that specified in the
design, must also be investigated.

Release of store
whilst on ground

Aircraft
on

ground

Store
released

Uncommanded
Release

Commanded
Release

WOW
ignored

WOW not
detected

Stores Man.
Fails to respond
to WOW signal

WOW signal not
received by
Stores Man.

WOW not
checked
by store

Store
releases
anyway

Failure of
communication

Failure of
WOW sensor

Figure 6: Fault Tree for Release of Store on Ground

WOW Checked

Released

Select /
status=select

Deselect /
status=deselect

Release/
check WOW

Selected

[WOW=true]

[WOW=false]

Unselected

Jettison / remove
store

/ remove store

Figure 7: State Chart for Store Class

To do this we mutate the transitions in the state chart
using ideas originally developed by Gorski and Nowiscki
(Gorski and Nowicki 1995). Transitions in a state chart
are of the general form event[condition]/action. The
event triggers the state transition, the condition is a
Boolean expression that must evaluate to true for the

transition to occur and the action is triggered when the
transition fires. Transitions may have any, all, or none of
these elements. In order to identify possible faulty
behaviours for the transitions we can apply guidewords to
each of the elements of the relevant transitions. In order
to be able to simulate these faulty behaviours, extra
transitions must be added to represent these deviations in
the state chart. Applying the guidewords ‘omission’,
‘commission’ and ‘value’ to each of the elements results
in five distinct transitions:
1. e[c] self-transition – event or condition is ignored
2. not e[c] / a – event spuriously generated or action

performed without initiating event
3. e[not c] / a – condition taken as true when false
4. e[c] – action is ignored
5. e[c] / b (where b is an action other than a of the

initiator object) – wrong action performed.
For each of the transitions in the state chart relevant to the
hazardous behaviour, these five extra transitions are
added to the diagram to simulate faulty behaviour. The
results of this can be seen in Figure 8. It is now possible
to identify if any of the faulty behaviours are unsafe.
These are the faulty behaviours that can lead to the
hazardous object behaviour which was defined
previously.

Selected

WOW checked

Released

A. release /
check WOW

A2. not release
/check WOW

A4. release

A5. release /
remove store

A1. release

C. [WOW=true]

C3. [WOW=false]

C1. [WOW=true]B.
[WOW=false]

B3.
[WOW=true]

B1.
[WOW=false]

Figure 8: Mutated State Chart Showing Faulty
Transitions

The faulty transitions that could lead to the hazard
‘Release of store whilst on the ground’ can now be
analysed. The results of this are shown below.

A1. release – Not Hazardous
A2. not release / check WOW - Not Hazardous
A4. release – Hazardous – WOW is not checked but
class may enter release state
A5. release / remove store – Not Hazardous
B1. [WOW=false] – Not Hazardous
B3. [WOW=true] – Hazardous – class enters release state
when WOW is true
C1. [WOW=true] - Not Hazardous
C3. [WOW=false] - Not Hazardous
It should be noted that although many of these transitions
are not hazardous, they are still faulty and would result in
incorrect operation. Only the hazardous behaviour is of
interest however, and so it is only this which is
constrained. The system is permitted to perform
incorrectly if this behaviour is non-hazardous.

There is now sufficient information about the intended
and faulty behaviour of the class to begin to construct a
contract for operations which may contribute to the
release of a store whilst on the ground. In UML, contracts
may be specified using the Object Constraint Language
(OCL) (OMG 2001). OCL can be used to specify
contracts using pre- and postconditions. Preconditions
and postconditions are constraints defined on operations.
Preconditions must be true at the moment the operation is
to be executed. Postconditions must be true at the
moment the operation has just ended its execution. Unlike
with invariants, pre- and postconditions need only be true
at a certain point in time and not all the time. These
constraints will form the basis of the safety contracts. An
OCL expression for an operation can be expressed as
follows:
context
Typename::opName(param1:Type1,…):ReturnType
 pre: param1 > …
 post: result = …
The constraints expressed in this manner are all
requirements on static aspects of the system. As can be
seen with the worked example, it is often necessary from
a safety perspective to express that events have happened
or will happen, that signals have or will be sent, or that
operations are or will be called. An extension to OCL
then known as an action clause was proposed by Kleppe
and Warmer (Kleppe and Warmer 2000) to address this
problem. This has formed part of the Response to the
UML 2.0 OCL Request for Proposals submission where it
has become known as a message expression (Warmer,
Kleppe et al. 2003). To specify that communication has
taken place, the hasSent (^) operator is used. A simple
example is given below:
context Subject::hasChanged()
 post: observer ^ update(12,14)
The post condition here results in true if an update
message with arguments 12 and 14 was sent to observer
during the execution of the hasChanged() operation.
Update() is either an operation that is defined in the class
of observer, or it is a signal specified in the UML model.
The arguments of the message expression must conform
to the parameters of the operation/signal definition.
Messages in OCL are particularly useful for describing
the functional aspects of the safety requirements. From
the results of the analysis carried out in the example, a
safety contract can be defined for the store class which
restricts the hazardous behaviour. This safety contract is
shown below:
context Store ::release()

pre: none
post: WOW=false

 and
Stores_Manager ^ checkWOW()

5.2 Timing and Data Aspects
Although a large part of the safety requirements

generated for any given system will be functional in
nature, it is important to also consider the impact of non-
functional properties on the safety of the system. Firstly
the timing of the interactions is investigated. This

analysis process hinges on identifying deadlines,
separations and priorities for tasks performed by the
system. A task is an encapsulated sequence of operations
that executes independently of other tasks (Douglass
1999). Therefore a task will consist of a number of
interactions between classes in the system. Again the
analysis begins with the identified system level hazards
and at this point we focus on the normal scenario for
releasing a store as shown in the sequence diagram in
Figure 5. This scenario can be broken into the following
tasks:
• Select store – This task begins with the pilot

choosing a store and ends with that store being
selected

• Release store – This task begins with the pilot
requesting a release and ends with the store being
removed from its station. This task also includes a
subtask of checking WOW.

The effects of deviations on the system is investigated to
identify which of these deviations may contribute to a
system hazard. Firstly, tasks occurring too quickly or too
slowly are considered. It should be noted that ‘quickly’
and ‘slowly’ are with respect to some undefined ‘most
desirable’ time. It is not felt that a more concrete
definition than this is necessary as this kind of
assumption about interaction time is included in the
model design anyway. The effect of tasks occurring too
early or too late must also be considered. For this step of
the analysis process it is assumed that the order in which
the tasks occur for the scenario is fixed. Instead we
investigate if there is a hazardous effect if the task occurs
too soon after (early) or too long after (late) the previous
task. Table 4 shows the result of applying these
deviations to the tasks. As more details of the underlying
implementation become available, more hazardous effects
may become evident. This table considers deviations at
the current level of abstraction.
Task Deviation Effect

Quick No safety consequence (positive effect)
– It is desirable that the selection of the
correct store occur as quickly as possible

Slow Potential safety impact – Delays in
selecting the appropriate store for jettison
may delay release

Early

Select Store

Late
This task is triggered by the pilot who’s
decision to select a store will impact
safety only if incorrect store is chosen

Quick No safety consequence (positive effect)
– It is desirable that the store be released
as quickly as possible when requested

Slow Potential safety impact – A delay in
releasing a store could be hazardous to
the aircraft under certain circumstances

Early Hazardous – A weapon released too soon
after a previous weapon could be
catastrophic

Release Store

Late No safety consequence

Table 4: The Effects of Timeliness of Tasks on System
Hazards

Those tasks whose timeliness can have an impact on
safety have now been identified. Constraints must be
specified for these tasks. For quick and slow interactions
it is necessary to constrain the response time of the task.
If necessary a minimum response time and a maximum

response time, or deadline can be specified for a task. A
minimum response time will be specified for those tasks
where too quick is identified as being hazardous and a
deadline is specified for those where too slow could be
hazardous. For tasks where early or late may be
hazardous, minimum and maximum separations
respectively between the completion of one task and the
triggering of the next or between an event and the
triggering of a task must be specified. These constraints
can be used to define a safe scenario of tasks.

Domain knowledge allows us to place the following
requirements on the tasks identified above as being
hazardous or potentially hazardous. It should be noted
that the requirements specified here are fictitious and are
only used as an indication for the purposes of the
example. In addition, the requirements generated makes
no assumption concerning the type of scheduling and
timing analysis approach adopted for the system.
• Select store – From the pilot choosing a store to that

store being selected should be no longer than 200ms
– Deadline = 200ms

• Release store – The minimum permissible time
between store releases will vary depending on the
type of store being released. For this example we will
specify – Min Separation = 100ms

• Temporal release of store – The time from the pilot
requesting a store release to that store’s removal from
the station should not exceed 50ms – Deadline =
50ms

Up to this point only the normal scenario has been
identified. A scenario is a sequence of actions that
illustrates the execution of a use case. Therefore a normal
scenario simply represents the normal or expected
sequence of actions which occurs for a particular use
case, in this example releasing a store. When considering
safety however, it is important to consider alternative
scenarios that may occur as these could potentially be
hazardous, and may also lead to a requirement for extra
timing constraints. To illustrate the scenarios clearly, the
UML notation of activity diagrams can be used to show
the different sequences of tasks that may realise the use
case. Although activity states in an activity diagram are
normally used to model a step in the execution of a
procedure, here each activity state is used to represent a
task or sub-task. Activity diagrams are felt to be
particularly suited to this application as they emphasize
the sequential and concurrent nature of the tasks in a
scenario.

The alternative scenarios can be identified by omitting
tasks from the normal scenario, adding in extra tasks (i.e.
repetition of existing tasks), tasks occurring concurrently
with other tasks or tasks occurring in an alternate order.
Many of these will be of little interest and need not be
considered. It is necessary to identify if any of the
alternative scenarios identified could be hazardous. That
is to say that they could provide an additional
contribution to the hazard, they could also necessitate
additional timing requirements. As part of the trade-off
analysis approach, the use of scenarios to judge how well
assessment criteria are met is demonstrated

As with the functional requirements, the timing
requirements must be included in the safety contracts for
the classes in the system. As was noted earlier, standard
OCL does not provide a way of representing constraints
over the dynamic behaviour of a system. An extension to
OCL for modelling real-time systems has been proposed
by Cengarle and Knapp (Cengarle and Knapp 2002)
which provides a mechanism for representing deadlines
and delays.

Deadlines for operations can be represented in the
following manner:
context
Typename::opName(param1:Type1,…):ReturnType

pre: …
post:Time.now<=Time.now@pre + timeLimit

Where Time is a primitive data type that represents the
global system time and timeLimit is a variable
representing a time interval. In our examples we take the
unit of time to be milliseconds. The above constraint
represents a maximum permissible execution time equal
to timeLimit for the operation opName.

Delays in reactions to signals or events can be
represented in the following manner:
context
Typename::opName(param1:Type1,…):ReturnType

pre:lastEvent.at+timeLimit>= Time.now
post: …

Where lastEvent.at is the arrival time of the last event.
This represents a maximum delay equal to timeLimit for
reaction to the lastEvent. So based on our temporal safety
analysis the following safety contract may be proposed:
context Store ::release()

pre: previous_release.at+100<=Time.now
post: Time.now <= Time.now@pre + 50

The data represented in the system can also contribute to
system hazards if important data attributes are incorrect.
It is important for each system hazard to identify which
data attributes are critical. These critical data items must
be constrained to ensure that they won’t contribute to the
hazard. It is possible to take advantage of the information
hiding principle when trying to place constraints. Because
the attributes of a class are private, it is only possible for
them to be manipulated by operations provided by the
class. It is therefore possible to protect the accuracy of
data items by constraining the interactions that may
manipulate that data. Again this can be done through the
use of contracts.

For the system hazard ‘incorrect store released’ it can be
identified (through a fault tree) that the pilot selecting an
incorrect store, or the wrong store information being
displayed to the pilot could cause incorrect store
selection. This would be caused by the incorrect store
being associated with a particular station. The critical
attributes here are the station ID and store ID, which are
associated through the location class. The only operation
in our system design which can manipulate this data is the
addStore() operation of the station class. When this
operation is called on a station, the store ID passed as a
parameter is associated with the station through the
creation of a location object. By constructing a
precondition for the addStore() operation it can be

constrained to ensure the store ID being passed is correct.
Even more so than for functional and timing aspects of
systems, the data within a system is dependant on domain
knowledge for deriving effective safety requirements.

6 Utilisation of Contracts
From our analysis in section 5, the safety contract for the
release() operation of the Store class can be defined as:
context Store ::release()

pre: previous_release.at+100 <=Time.now
post: WOW=false

and
Time.now <= Time.now@pre + 50
and
Stores_Manager ^ checkWOW()

The safety contract specifies that if a service is required
(in this case operation release), then to ensure this is done
safely the pre-condition must be met by the client class.
In return the store class will ensure the post-condition is
achieved. If either the pre-condition or the post-condition
is violated then the operation may be unsafe. When a
system is designed, classes collaborate using message
passing to achieve functionality. Figure 9 shows three
classes collaborating in such a manner. The filled
rectangles before or after the operation indicate that a pre-
or post-condition respectively of a safety contract exist
for that operation.

Store

Jettison()

Release()

Select()

Store

Jettison()

Release()

Select()

A

B()

C()

D()

W

X()

Y()

Z()

W

X()

Y()

Z()

Figure 9: Interactions including pre- and post-
conditions

pre-conditions of X() X()W

System : SMS_Aircraft X v.1.2

Reqts . to be met InteractionSupplier

Stores_Manager ^
checkWOW ()

Time.now <=
Time.now@pre + 50

WOW=false previous_release.at
+ 100 <= Time.now Release()A

Guarantees to be madeReqts . requiring
satisfactionInteractionClients

Class : Store

pre-conditions of X() X()W

System : SMS_Aircraft X v.1.2

Reqts . to be met InteractionSupplier

Stores_Manager ^
checkWOW ()

Time.now <=
Time.now@pre + 50

WOW=false previous_release.at
+ 100 <= Time.now Release()A

Guarantees to be madeReqts . requiring
satisfactionInteractionClients

Class : Store

Table 5: A Table to Capture Safety Requirements

In this situation class A must meet the pre-condition of
Release() as this operation is being called by A’s
operation B(). It is important to note that even though the
pre-condition of Release() is defined in the class store, it
becomes a derived safety requirement for class A. In turn,
the store class must meet the post-condition of Release(),
it must also however meet the pre-condition of operation
X() defined in class W as the Release() operation makes a
call to X(). The pre-condition of X() may not necessarily
match the post-condition of Release() and therefore an
extra derived safety requirement has been identified for
class Store.

The above example has been used to illustrate that when
interactions occur between classes, the requirements get
‘shared out’ amongst the participating classes. For the
system to be safe it must be shown that all classes meet
any safety requirements placed upon them.

As part of using contracts it is important to be able to
show that when a system is constructed the classes ‘fit
together’ safely. That is to say that all the requirements
are picked up by the relevant classes. It is suggested that a
table could be used as a way of capturing the information.
Table 5 shows such a table.

This basic table specifies the system and the class in that
system for which the table is being constructed. If more
than one version of the system has been designed then it
is important to record which version the requirements in
the table relate to. As is discussed later, changes to the
system design can alter the derived requirements
applicable to a particular class. The table then records a
list of the client classes. These are classes that make calls
to services of the class. Table 5 shows the table for the
store class from Figure 9 and therefore the only client is
class A. The only interaction that class A has with the
store class is through the Release() operation. The pre-
and post-conditions of this operation give the
‘Requirements requiring satisfaction’ and ‘Guarantees to
be made’ respectively. The table also records the supplier
classes for the store class. These are classes whose
services store utilises. Again there is just one supplier
class in this example, class W. The interaction that store
has with class W is recorded and the pre-conditions of
those interactions give the ‘Requirements to be met’.

Using the table constructed in table 5 the derived safety
requirements of class store can be identified as being
those defined in ‘Guarantees to be made’ plus those in
‘Requirements to be met’. The derived safety
requirements of the relevant client class are those defined
in ‘Requirements requiring satisfaction’. It is important
to ensure that ‘Requirements requiring satisfaction’ in
store are reflected as ‘Requirements to be met’ in the
relevant client class (class A). It must also be ensured that
‘Requirements to be met’ in store are those defined in
‘Requirements requiring satisfaction’ in relevant supplier
class (class W). In this way a table such as that in table 5
can be used to check that the classes in the proposed
system design can work together safely. This is done by
checking that all the correct derived safety requirements
have been allocated between the classes in the system.
Another advantage of constructing a table such as this is
that it allows an individual class in a system to be
developed independently of other classes. All the derived
safety requirements for that particular class are explicitly
laid out and further reference to other classes to elicit
requirements is not necessary.

6.1 Applying Trade-Off Analysis Results to the
Derived Safety Requirements

This section shows how the results of the safety analysis
integrates with the trade-off analysis method to manage
the objective of “Ease of Change” as well as ensure safety
requirements are met

In section 2.2, the use of timing budgets to mange the
problems of change was introduced. In the case of the
example requirements given in Table 5, there are two
timing requirements that have been derived as part of the
safety analysis process. These are a separation (i.e. 100
ms) requirement and a deadline (i.e. 50 ms).

Using Reservation Based Analysis, these response
requirements would be decomposed into execution timing
budgets on each individual method. The difference
between response time and execution time is dependent
on the scheduling method employed, and hence how the
method may be interfered with (by higher priority
methods/tasks) or blocked (by lower priority
tasks/methods). For example, the following budget may
be assigned
Release() – Best-Case Execution Time >= 1 ms
Release() – Worst-Case Execution Time <= 5 ms

When choosing/changing a hardware platform, it has to
be shown that the budgets for each method/task are met.
Where this is not possible, either different hardware
would be needed or the budgets re-allocated across tasks.
In addition when “new” requirements are introduced or
existing ones change, checks have to be performed to see
whether the existing budgets are still valid. For the
approach to be successful, the budgets assigned to each
method/task have to be chosen to promote flexibility,
scalability and help manage obsolescence. In (Audsley
and Bate 2003) an allocation approach of this form is
presented.

6.2 Handling Change
A number of changes will normally occur to the design of
a system during the development process. It is preferable
that the majority of these changes, particularly major
architectural level changes, will happen as early as
possible in the process. In this way the amount of rework
required as a result of that change can be minimised. It is
highly likely however that change will occur to a system
after a large amount of the safety analysis effort has been
performed. It is often the case that when a change occurs
to a system, the amount of reanalysis effort required in
order to show that the modified system is still safe is
proportional to the size of the system as a whole rather
than to the size of the change that has been made.

Using a modular approach enables the impact of a change
to a system design to be minimised. The change tends to
affect a particular aspect of a model rather than affecting
the entire structure of the system, therefore the ‘cost’ of
making a change is thus greatly reduced (Liskov and
Wing 1994). If this benefit is to be realised in a safety-
related or safety-critical system, it is imperative that the
effect of change on the safety of the system can be
‘contained’ in a similar manner. This allows the required
re-analysis to become more proportional to size of the
change made. This can be achieved through the use of
safety contracts.

If the design of a class in the system is changed then it is
necessary to show that the requirements that were placed
upon that class can still be met. The class may do better

or worse than it did before as long as the requirements are
still met. This is the simplest form of change to deal with
as the requirements placed on classes have not changed.
Things are more complicated if additional interactions are
introduced to the system as a result of changes. This is
due to the fact that these interactions may introduce new
ways in which a hazard could occur.

Figure 10 shows the system from Figure 9 but with an
additional interaction introduced between the store class
and class W. Also an extra class, X, has been introduced
to the system. This new class interacts with both the store
class and class A. It is necessary to understand the impact
that these new interactions may have on the safety of the
system. The impact of the interactions introduced in
Figure 10 is fairly straightforward to deal with as the
interactions that occur are calling operations that
previously existed in the system design. Therefore no
new analysis is required on these interactions as the
operations would have been covered as part of the
original safety analysis process. It is only required that
any contractual obligations that exist on these operations
are picked up as derived safety requirements on the
relevant class.

For the interactions in Figure 10 that occur between class
store and class W, and class X and class A, no safety
contracts exists for the operations involved in these
interactions, therefore no new safety requirements are
derived for any of the participating classes. For the
interaction between class X and class store, there exists a
safety contract on the Release() operation. Therefore class
X, as the client for that interaction, will acquire a derived
safety requirement of the pre-conditions of Release().
This would be captured in a safety requirements table
constructed for class X.

S to re

J e ttiso n ()

R e le a se ()

S e le c t()

S to re

J e ttiso n ()

R e le a se ()

S e le c t()

A

B ()

C ()

D ()

W

X ()

Y ()

Z ()

W

X ()

Y ()

Z ()

X

M ()

N ()

O ()

Figure 10: Introducing Additional Interactions

Figure 11 again shows the system from Figure 9 with
some different changes. In this case the new interactions
that have been introduced to the system are calling
operations in class X. As this class was not part of the
original system for which the safety analysis was
conducted, there may be ways in which the operations of
class X may contribute to a system hazard which have not
been considered by the analysis. To ensure they don’t
contribute to a system hazard, these operations may
require the specification of a safety contract. This will
require further analysis in order to determine the nature of
any safety contract. Any contract identified would lead to
additional derived safety requirements. The original
analysis performed on the system started from top-level

system hazards and worked downwards. To minimise and
localise the reanalysis required for these additional
interactions, the analysis may instead be performed
bottom-up. This would identify if and how that specific
interaction can contribute to any of the system hazards.

Store

Jettison()

Release()

Select()

Store

Jettison()

Release()

Select()

A

B()

C()

D()

W

X()

Y()

Z()

W

X()

Y()

Z()

X

M()

N()

O()

Figure 11: Introducing calls to new operations

6.3 Reuse
There is a great potential for reusing elements of a system
in another similar system. This saves the expense of
designing that part of the system from scratch. As with
change however, it must be shown that this can be done
safely. It is therefore necessary if the savings are to be
realised that the relevant safety contracts can also be
reused in the new system. It is not enough however just to
be able to show that the existing contract is still met in the
new system. As the new system will be different from the
original, there may be new system level hazards which
need to be considered which will not have formed part of
the original analysis.

A key issue is that the context of the system may also
have changed. Context will include such things
operational role and physical or regulatory environment.
This means that the safety contracts derived for the
original system may not be appropriate in the new
system. The differences in the new system will
necessitate further analysis to ensure that the correct
safety contracts are defined. Therefore the less the new
system differs from the original system, the easier it will
be to reuse it. If too much additional analysis is required
due to differences in the systems, then the savings from
reuse will be greatly reduced. It is important therefore
that if classes or components are going to be reused
successfully that as much contextual and system
information as possible is captured. This information
could be added to the table of requirements.

7 Conclusion
The use of contracts is essential to show how and why
requirements have been decomposed. This paper has
shown how contracts are generated through the use of a
structured and integrated safety and design process. As
part of this we have shown how different properties and
objectives can be traded-off to achieve an appropriate
design. A safety analysis process is then applied to the
resulting design to manage the risk associated with the
key hazards. This is demonstrated using a Stores
Management System from an aircraft. In the example the
objective of managed change is given particular attention,

and therefore both safety and design contracts and
appropriate interfaces are established that allow us to
meet the objective. Further to this we have shown how
the contracts can be used to facilitate lifecycle upgrades
and as such reduce lifecycle costs.

8 References
Audsley, N. and I. Bate (2003): Utilising Co-Design

Techniques in the Hard Real-Time Systems
Development and Implementation. submitted to the
Co-Design Track of Real-Time Systems Symposium.

Audsley, N. and A. Grigg (2001): Reservation-Based
Timing Analysis - A Practical Engineering Approach
for Distributed Real-Time Systems. Proceedings of
IEEE Conference on Engineering Computer-Based
Systems.

Basili, V. and H. Rombach (1988): The TAME Project:
Towards Improvement-Oriented Software
Environments. IEEE Transactions on Software
Engineering 14(6): 758-773.

Bate, I. and N. Audsley (2002): Architecture Trade-off
Analysis and the Influence on Component Design.
Proceedings of Workshop on Component-Based
Software Engineering: Composing Systems from
Components.

Bate, I. and T. Kelly (2003): Architectural Considerations
in the Certification of Modular Systems. Special Issue
from SAFECOMP 2002 of the Journal of Reliability
Engineering and System Safety.

Cengarle, M. and A. Knapp (2002): Towards OCL/RT.
Lecture Notes in Computer Science 2391: 390-409.

Douglass, B. P. (1999). Doing Hard Time - Developing
Real-Time Systems with UML, Objects, Frameworks,
And Patterns, Addison-Wesley.

Gorski, J. and B. Nowicki (1995): Object Oriented
Approach to Safety Analysis. Proc. ENCRESS '95:
338-350.

Kazman, R., M. Klein, et al. (2001). Evaluating Software
Architectures - Methods and Case Studies, Addison-
Wesley.

Kelly, T. (1998): Arguing Safety - A Systematic
Approach to Safety Case Management. Department of
Computer Science, The University of York.

Kleppe, A. and J. Warmer (2000): Extending OCL to
Include Actions. Lecture Notes in Computer Science
1939: 440-450.

Kogure, M. and Y. Akao (1983): Quality Function
Deployment and CWQC in Japan. Quality Progress:
25-29.

Liskov, B. and J. Wing (1994): A Behavioural Notion of
Subtyping. ACM Transactions on Programming
Languages and Systems 16: 1811-1841.

Meyer, Bertrand (1988): Object-Oriented Software
Construction, Prentice Hall.

OMG (2001). Object Constraint Language Specification.
Unified Modeling Language Specification version 1.4,
Object Management Group.

Warmer, J., A. Kleppe, et al. (2003): Response to the
UML 2.0 OCL RfP - Revised Submission, Version 1.6,
OMG.

G14
Work needed to

perform change is
reduced

A41
Changes to safety

properties will manifest
themselves via

functional requirements
A

A42
Changes to reliability

requirements alters integrity
requirements and hence
needs re-designing or re-

implementing via a different
process

A

St42
Split into timing,

memory and
availability

G41
Work needed to perform
change is reduced when
non-functional properties

change

St41
Split into

functional and
non-functional

properties

G44
Work needed to

perform change is
reduced when

memory properties
change

G45
Work needed to

perform change is
reduced when

availability properties
change

G42
Work needed to perform
change is reduced when

functional properties
change

A43
Stores_Manager is to
maintain inventory list

with information
provided by Stores

A

A44
Stores_Manager is to
manage store actions
(eg release) based on

inventory
A

A45
Key hazards obtained via

hazard analysis include centre
of gravity out of bounds and
performing wrong action on

store (e.g. unplanned release)

A

J11
Need for cost effective
upgrade and change,

especially to avoid
expensive changes that

are likely J

A11
We have insight and/
or data from previous

projects indicating
where changes are

likely A

G51
Common features of the

function are extracted
from the variables that

initialise it

G61
Functionality kept in one

component and a
generic interface

provided

G81
Functionality likely to
change separated out

G43
Work needed to perform
change is reduced when

temporal properties change

G47
Budgets defined for
each operation such

that all timing
requirements are met

G46
Platform chosen so

budgets are met

Figure 12: Argument for Ease of Change

