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Abstract. Architectural based approaches to designing 
software are motivating changes in the way software is 
developed for safety-critical systems. These new 
approaches allow developers to divide system 
requirements between components and their sub-
components. To allow systems to be designed in this way 
a component’s obligations to other components and 
interfaces with the rest of the system must be captured. 
This can be done using contracts. Other work has shown 
how contracts can be used to develop systems. In this 
paper we explore how to generate design and safety 
contracts, and then how to use them to support change 
and reuse. 

1 Introduction 
Safety-critical systems are those that have a direct 
influence on the safety of their users and the public. For 
such systems it is imperative that design and safety 
processes are conducted concurrently s o that each 
activity can account for each other without false 
assumptions being made. Perhaps more important is the 
integration of design and safety processes. 

Extensibility, adaptability, and resilience to change are 
increasingly desirable characteristics for many safety 
critical systems. Modular system architectures, such as 
Integrated Modular Avionics (IMA) in the aerospace 
sector, are being seen by many as offering the potential 
benefits of improved flexibility in function allocation, 
reduced development costs and a means of managing the 
ever present issues of technology obsolescence and 
update. 

The characteristics desirable in these systems (such as 
change resilience and timeliness) cannot be easily 
retrofitted into a system design. Ability to exhibit these 
characteristics depends to a large extent on the 
architecture of the system in question (e.g. concerning the 
partitioning, communication mechanisms and scheduling 
policies).  Therefore consideration must be given during 
architecture definition as to how these objectives will be 
satisfied. In this paper we highlight how dependability 
and maintainability criteria can be elaborated and 
considered during the architecture definition process. In 
particular, we describe how the exploration of alternative 
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satisfaction arguments for these criteria can enable 
assessment of architectural tradeoffs. 

One of the most significant problems posed by the 
adoption of modular systems in safety critical 
applications lies in their certification. The traditional 
approach to certification relies heavily upon a system 
being statically defined as a complete entity and the 
corresponding (bespoke) system safety case being 
constructed. However, a principal motivation behind IMA 
is that there is through-life (and potentially run-time) 
flexibility in the system configuration. An IMA system 
can support many possible mappings of the functionality 
required to the underlying computing platform. To have a 
safety case for each configuration would be infeasibly 
expensive and would reduce the benefits of the modular 
design. 

Previous work has addressed the need for modular safety 
arguments and how this links to design trade-off analysis 
(Bate and Kelly 2003). However for the approach to be 
successful, it is also necessary to control the interfaces 
between different parts of the system’s design and safety 
analysis in an integrated manner. Moreover, it is also 
essential that the safety requirements derived from top-
level hazards are allocated to individual parts of the 
design to prevent the system safety analysis being whole 
system and hence the benefit of modularity being lost. A 
promising method of achieving this is to have contracts 
between the parts. For this to be successful these 
contracts have to be established and broken down into 
individual requirements placed on the parts of the system. 

The contribution of this paper is to combine a trade-off 
analysis approach to reach an optimal design solution 
with a safety analysis approach to ensure the safety of a 
system. From these analyses, design contracts and safety 
contracts are established. The contracts capture 
dependencies between elements of the system design, i.e. 
what service the element provides and what each element 
relies upon to provide the intended service. These 
contracts enable documentation to be produced allowing 
for the effective change and maintenance of software 
components. The safety contracts can also be used as the 
basis for including safety considerations in the trade-off 
analysis. 

Section 2 of this paper presents the approach to trade-off 
analysis that has been developed. The objective of 
managing change is one of the objectives that can be used 
as part of the trade-off analysis, and is of particular 
relevance to the work presented in this paper. Therefore, 
section 3 presents a decomposition of this objective using 
the described approach, and establishes some design 
options that may support managing change. A small 



example system is presented in section 4 and the design 
options are assessed, using assessment criteria derived 
through the argument in section 3, from which some 
design contracts are proposed. The derivation of contracts 
through safety analysis to ensure the safety of the system 
and help support change is presented in section 5. The 
utilisation of safety contracts for safe handling of change 
and reuse is demonstrated in section 6. Finally section 7 
presents the conclusions. 

2 Architectural Design Processes 
In (Bate and Audsley 2002) and (Bate and Kelly 2003) 
our method for architectural trade-off analysis for use 
within a systems engineering process was presented. 
Figure 1 provides a diagrammatic overview of the 
proposed method, which is explained further in section 
2.1. It should be noted that the proposed approach could 
be used within the nine-step process of the Architecture 
Trade-Off Analysis Method (ATAM) (Kazman, Klein et 
al. 2001). The trade-off analysis technique has been 
extended from that which has previously been presented 
to show how design contracts are extracted and how our 
method for deriving safety contracts can be integrated. 
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Figure 1: Overview of the Method 

A key difference between our strategy and other existing 
approaches, e.g. ATAM, is the way in which quality 
attributes are derived. (Quality attributes are assessment 
criteria used to evaluate solutions, e.g. does the design 
support predictability?). The approach taken to deriving 
the attributes reuses techniques from the safety domain 
that offer strong traceability, the ability to capture design 
rationale and allows safety arguments to be reused. 

2.1 Overview of the Technique 
Stage (1) of the trade-off analysis method is producing a 
model of the system to be assessed. This model should be 
decomposed to a uniform level of abstraction. Currently 
our work uses class diagrams from UML for this purpose, 
however it could be applied to any modelling approach 
that clearly identifies components and the interfaces 
between the components. 

In stage (2), arguments are produced that decompose the 
key objectives and properties of the system into more 
detailed design claims to be satisfied, along with the 
appropriate context for the claims, and identifies where 
design choices are available. The arguments are produced 
using Goal Structuring Notation (Kelly 1998) -refer to 
section 2.2 for further details. The properties of interest 
include; lifecycle cost, dependability, and maintainability. 
Clearly these properties can be broken down further, e.g. 
lifecycle cost into development, future upgrades and 
maintenance. Objectives of interest include; managed 
change, ease of integration and ease of verification. 

Stage (3) then uses the information in the argument to 
derive design and verification options, and to determine 
assessment criteria to judge whether a particular design 
solution means the system meets its objectives. Other 
approaches for deriving assessment criteria from systems 
objectives include Goal Question Metrics (GQM) (Basili 
and Rombach 1988), and Quality Function Deployment 
(QFD) (Kogure and Akao 1983). Initially when the 
design is in its early stage the evaluation may have to be 
qualitative in nature but as the design is refined then 
quantitative assessment may be used where appropriate. 
Part of this activity uses representative scenarios to 
evaluate the solutions. 

Before stage (4) of the process, based on the findings of 
stage (3) the design is modified to fix any problems that 
are identified – this may require stages (1)-(3) to be 
repeated to show how the revised design is appropriate. 
When deciding on design solutions, the results from more 
than one assessment criteria have to be traded-off because 
a design modification that suits one assessment criterion 
may not suit another. For example, introducing an extra 
processor may reduce the load across the processors in 
the system making task schedulability easier. However it 
may increase the load on the communications bus making 
message schedulability more difficult and increasing 
power consumption. 

When the design modification process is complete and all 
necessary design choices have been made, stage 4(a) of 
the process extracts design contracts from the arguments 
and safety contracts using the safety analysis technique 
presented in section 5. Then, as part of stage 4(b) of the 
process, the process returns to stage (1) where the system 
is decomposed to the next level of abstraction using 
guidance from the arguments. Components reused from 
another context could be incorporated as part of the 
decomposition. Only proceeding when design choices are 
complete (and any identified problems are fixed) is 
preferred to allowing trade-offs across components at 
different stages of decomposition because the abstractions 
and assumptions are consistent. 



Figure 2 illustrates how a component from a higher-level 
can be broken down in a number of ways and how the 
trade-off analysis should be performed across the options 
to determine which is the “best” solution. To minimise 
the effort required when applying this method to large 
systems, contracts are only defined across the interfaces 
of the “best” solution as shown in the figure. 
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Figure 2: How the Components are Decomposed 

2.2 Background on Goal Structuring Notation 
GSN (Kelly 1998) is widely used in the safety-critical 
domain for making safety arguments. Any safety case can 
be considered as consisting of requirements, argument, 
evidence and definition of bounding context. GSN - a 
graphical notation - explicitly represents these elements 
and (perhaps more significantly) the relationships that 
exist between these elements (i.e. how individual 
requirements are supported by specific arguments, how 
argument claims are supported by evidence and the 
assumed context that is defined for the argument). 

The principal symbols in the notation are shown in Figure 
3 (with example instances of each concept). 

System can
tolerate single

component
failures

Sub-systems
are independent

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1
A/J

Goal Solution Strategy Assumption /
Justification

All Identified
System Hazards

Context

Undeveloped Goal
(to be developed) Developed Goal

ChildGoal

Child Goal

ParentGoal

ChoiceUninstantiated Context  

Figure 3: Principal Elements of the Goal Structuring 
Notation 

The principal purpose of a goal structure is to show how 
goals (claims about the system) are successively broken 
down into sub-goals until a point is reached where claims 
can be supported by direct reference to available evidence 
(solutions). As part of this decomposition, using the GSN 

it is also possible to make clear the argument strategies 
adopted (e.g. adopting a quantitative or qualitative 
approach), the rationale for the approach (assumptions, 
justifications) and the context in which goals are stated 
(e.g. the system scope or the assumed operational role). 
For further details on GSN see [3]. 

3 Argument for Reducing the Work Needed to 
Support Changes 

The role of this section is to present a decomposition of 
the management of change objective using the described 
approach, this establishes some design options that may 
support this objective. The design options are later 
supplemented to support safety using the analysis 
approach in section 5. In (Bate and Kelly 2003) a series 
of arguments were presented for the main top-level 
objectives of a system. The main objectives were 
considered to be reducing cost, achieving dependability 
goals and supporting managed change. The paper showed 
how the argument for managed change could be split into 
the following parts; increasing the resilience to change, 
reducing the work needed when change has to be 
performed, and reducing the scope of change. In this 
section, we use the argument for reducing the work 
needed when changes have occurred as an example. 

Figure 12 contains the argument that expands the 
previously stated goal, G14, that the work needed to 
perform change is reduced. This goal is satisfied by a 
strategy that splits it into non-functional properties, G41, 
and functional properties, G42. 

The non-functional properties are broken down here into 
three parts; timing, memory usage and reliability. Timing 
is then developed through two parts; assigning budgets so 
that all timing requirements are met and then showing the 
platform used allows the budgets to be met. Taking this 
approach allows each individual task to be reasoned about 
independently of one another. The result is the 
establishment of contracts between the platform and the 
tasks. This approach to scheduling and timing analysis 
technique is referred to as Reservation Based Timing 
Analysis (Audsley and Grigg 2001). Memory usage and 
reliability are left undeveloped but, like timing, the use of 
budgets could help ease the problems of change. 

The functional aspects of the system can be handled 
through a choice of one of the following design strategies. 
• having generic functions that are initialised at run-

time using separate initialisation details, or 
• specific functions and generic interfaces, or 
• separating out the functionality that is likely to 

change.  

A key reason for using GSN for decomposing the 
objectives is the way it supports the capturing of context. 
For example in Figure 12, we have an assumption, A11, 
that we have an understanding of what types of changes 
are likely and a justification, J11, reducing the work 
needed to perform changes is essential if cost effective 
upgrade is to be supported. 



Table 1 presents a summary of the choices extracted from 
the argument in Figure 12 and a description of the pros 
and cons of each choice. The actual best choice in a 
particular situation will depend on the nature of the 
component’s functionality and the types of change that 
need to be carried out. For instance there are only certain 
classes of function that can be made generic or robust to 
change without considerable cost and effort. However 
generic interfaces and separating out functionality are 
more universally applicable. 

It should be noted that: 
• a combination of the options can be employed where 

needed 
• some options will be affected by other objectives, 

e.g. supporting managed change at the expense of a 
more complicated design might affect the ability to 
certify the final product. 

• currently the options are chosen based on the results 
of assessing the design options against the 
assessment criteria extracted from the arguments. 
Other work has shown how multi-criteria 
optimisation may be used to explore the design space 
as part of evaluating which is the best solution 
(Audsley and Bate 2003). 

Goal Choice Pros Cons 

G51 – 
Initialisation 
and generic 
function 

Only the 
initialisation file 
needs altering 
not the code 

1. Component can be 
represented by a generic 
function 

2. Anticipated changes can be 
handled by the initialisation 
language. This means not 
only the types of changes 
but also their nature needs 
to be known. 

3.  The design will become 
more complicated leading 
to other difficulties (e.g. 
certification) which may 
negate any benefit 

G61 – Use a 
standard 
interface 

Only the specific 
function needs 
altering 

1. Interface semantics can be 
represented by standard 
interface 

2. Anticipated changes can be 
handled by specific 
function. This means not 
only the types of changes 
but also their nature needs 
to be known. 

G42 

G71 – Separate 
out 
functionality 

Only a single 
module needs to 
be updated 

1. The types of changes must 
be known 

2. Changes can be contained 
behind a standard interface 

Table 1: Consideration of the Choice from Figure 12 

4 Design Contracts 
A proposed design for an aircraft Stores Management 
System (SMS) is shown in Figure 4. It is important to 
note that for the purpose of this paper this is a highly 
simplified and fictitious design with much of the 
functionality of an SMS removed. The main functional 
requirements of the SMS are to update the stores 
inventory. The inventory contains details of what stores 
are available, where these stores are located and their 
current status. The SMS will also send and receive data 
from the rest of the system and choose the next weapon to 

be deployed. It will also instigate remote operations e.g. 
arming of a weapon, and update health level information 
that can be used for maintenance and fault tolerance. It 
should be noted that WOW is ‘Weight on Wheels’ which 
is used to indicate when the aircraft is on the ground.  

In the context of this paper, we are aiming to show how 
the approach described in section 2 can be used to assess 
whether a design meets its objectives. For the purposes of 
this paper, we are mainly interested in establishing 
contracts between components to help in the management 
of change. 

From the arguments presented in section 3, Table 2 
presents a number of assessment that can be applied to 
potential solutions. For a complete list of assessment 
criteria, refer to (Bate and Kelly 2003). This table 
indicates that the importance of all assessment criteria 
related to managed change is Value Added rather than 
Essential. (Essential criteria are those that have to be met, 
e.g. ‘Timing requirements are met’, whereas Value 
Added are those where it is advantageous if they are met, 
e.g. ‘Timing requirements are met even if the software’s 
execution times increase by 20%’.) In this case, the 
reason is the “Managed Change” objective itself is Value 
Added. However it does affect cost and when/if changes 
can be carried out during the system’s operational life. 

+getCurrentInventory()
+checkConfig()
+initialise()
+checkWOW()
+checkIntervals()
+runRecorder()

-WOW : bool
-late_arm : bool
-MASS-live : bool

Stores_Manager

+addStore()
+removeStore()

-ID
-configError : bool

Station

+jettison()
+release()
+select()

-type
-status
-mnemonic
-ID

Store

1

*

1

*

1 0..*

+locate()

-stationID
-storeID

Location

Weapon Fuel Tank

Dumb Weapon Smart Weapon

 

Figure 4: Class Diagram for part of the Stores 
Management System 

Using the proposed design presented in Figure 4, Table 2 
indicates the need for appropriate contracts to manage the 
interactions between the class Stores_manager and the 
rest of the system. Even with only a basic current 
knowledge of the design, the approach has allowed the 
general location and purpose of the contracts to be 
identified as shown below. The contracts will become 
more refined through the lifecycle, in part by using the 
safety analysis technique in the next section. 



1. The rest of the system to provide Stores_manager 
with sufficient information so they can maintain an 
up to date inventory. This would require Store to 
provide type information and station to provide 
information concerning the store that it holds. 

2. Stores_manager to correctly manage the actions of 
the rest of the system (e.g. which bomb to release 
next to maintain centre of gravity) where there is 
appropriate control. 

3. Stores_manager to sufficiently mitigate the risk of 
hazards related to the stores. The responsibility of 
Stores_manager for avoiding hazards is on top of the 
self-contained mechanisms that individual stores may 
have. 

Arg 
Ids Question Impor-

tance Response Design Advice 

G51 

Can the nature of 
the function be 
made abstract of 
the likely/costly 
changes and a 
standard 
language be 
defined for 
instantiating the 
function? 

Value 
Added 

Information about 
the stores is 
contained within the 
stores and used by 
Stores_Manager. 
This dependency 
should be formalised 
in a contract. 

This information 
could be stored in 
a central blueprint 
file which would 
be accessed using 
a stores id. 

G61 

Can an interface 
be produced that 
isolates the 
likely/costly 
changes on 
either side of an 
interaction? 

Value 
Added 

There is currently no 
definition of the 
interfaces between 
classes. 

Use standard 
interfaces 
between classes 
for passing data. 
This interface 
could be kept 
simple especially 
if the majority of 
store specific 
information was 
held in a blueprint 
file. 

A43 
Is an accurate 
inventory list 
maintained? 

Essential 
Not enough design 
details at this level of 
refinement. 

Establish an 
appropriate 
contract. 

A44 

Are the correct 
actions 
performed in 
relation to the 
stores? 

Essential 
Not enough design 
details at this level of 
refinement. 

Establish an 
appropriate 
contract. 

A45 
Are key hazards 
related to stores 
avoided? 

Essential 
Not enough design 
details at this level of 
refinement. 

Establish an 
appropriate 
contract. 

G46 

Does the 
platform allow 
the budgets to be 
met 

Essential 
Not enough design 
details at this level of 
refinement.. 

Establish 
appropriate 
contracts. 

G46 

Does the 
platform allow 
the budgets to be 
changed 

Value 
Added 

Not enough design 
details at this level of 
refinement. 

Choose a platform 
that allows some 
changes in the 
budgets to be met.

G47 

Do the budgets 
allow the timing 
requirements to 
be met 

Essential 
Not enough design 
details at this level of 
refinement. 

Establish 
appropriate 
contracts. 

G47 

Do the budgets 
allow the timing 
requirements to 
be met 

Value 
Added 

Not enough design 
details at this level of 
refinement. 

Choose budgets 
that allow some 
changes in the 
timing 
requirements to be 
met. 

Table 2: Evaluation Based on Change Argument  

The principal modification recommended in Table 2 is to 
separate out information concerning the stores in the 

system into a blueprint file (blueprints are basically a 
look-up table used in avionic systems to hold 
configuration information) which would allow changes to 
be localised and standard interfaces to be employed. This 
would mean that contracts would have to be established 
for the dependencies between the classes and the 
blueprint. Also as stated in item (1) of Table 2, if the 
current arrangement is maintained then contracts would 
have to be established between individual stores and 
Stores_Manager. 

Table 2 also indicates that the timing properties of the 
system can be managed by the use of budgets as 
described in section 3. These budgets result in contracts 
being created between the tasks of the software and the 
platform used to execute the software. In section 6, the 
establishment of these contracts, based on timing 
requirements derived during safety analysis, is presented. 

5 Safety Contracts 
In this section the design solution proposed in Figure 4 is 
used to illustrate how safety contracts may be generated 
for a safety related system designed using UML. This 
requires that existing proven safety analysis techniques be 
adapted such that they can be applicable to an object 
oriented system. We then go on to see how these safety 
properties and requirements can be represented in a useful 
and meaningful way using the object constraint language 
(OCL) and how safety contracts can be used to facilitate 
the safe management of change of the system.  

Contracts have been used in software development for 
many years. The principles where developed by Bertrand 
Meyer as the concept of ‘design-by-contract’ (Meyer 
1988) where correctness requirements are expressed as a 
contract between a method and its callers. Safety 
contracts constrain the interactions that occur between 
objects, and hence can ensure system behaviour is safe. 
Contracts are made up of pre and post conditions. 
Preconditions must be true before the operation call is 
made and postconditions must be ensured by the 
execution of the call. The properties of an interaction that 
we are interested in from a safety perspective are 
function, timing and value. Analysis of each of these 
aspects results in requirements that are included in the 
safety contract. Safety is a system property and therefore, 
the analysis process will begin with the consideration of a 
system level hazard. 

For the aircraft SMS in Figure 4, the initial hazard 
identification process identified a number of system 
hazards including : 
• Inadvertent release of store 
• Release of store whilst on the ground 
• Inadequate temporal separation of store releases 
• Unbalanced stores configuration 
• Release of incorrect store 

5.1 Functional Aspects 
For all hazards identified it is necessary to perform 
analysis to identify how the hazard may be brought about. 
For this example we will look solely at the release of a 



store whilst on the ground hazard. A UML sequence 
diagram is developed to illustrate the dynamic behaviour 
of the system for the relevant normal operation scenario. 
This can be seen in Figure 5. A fault tree is constructed 
using system information collected from the UML 
diagrams in Figures 4 and 5, and domain knowledge. This 
fault tree shows the failures that can occur to bring about 
the top event “Release of store whilst on ground”. A 
simplified version of this fault tree can be seen in Figure 
6. 

It is possible to relate leaf nodes (undeveloped failure 
events) in the fault tree to classes in the system. For 
example the ‘WOW not checked by store’ event can be 
associated with the Store class in the system design. The 
information from the fault tree can be used to generate a 
definition of the hazardous behaviour of the system. This 
information is recorded in a table as shown in table 3. 
Hazardous 
event 
(from FT) 

Class Interaction Role Hazardous class behaviour

WOW not 
checked by 
store 

Store checkWOW() Client Stores_Manager.checkWO
W() call not made as 
required 

Store 
releases 
anyway 

Store release() supplier Store moves to released 
state inappropriately 

SM fails to 
respond to 
WOW 
signal 

Stores 
Manager 

WOW(true) – 
signal 

supplier Stores_Manager fails to 
move to WOW state  

Table 3: Table of Hazardous Class Behaviour 

Stores Manager Store Station

Pilot
Select()

Release()

CheckWOW()

RemoveStore()

Select()

Release()

CheckWOW()

RemoveStore()

 
Figure 5: Sequence Diagram of Dynamic Behaviour 

We have now derived hazardous conditions for classes in 
the system. In order to derive safety requirements and 
construct safety contracts for these classes it is necessary 
to understand how the class may behave such that these 
conditions can occur. To do this the state charts of these 
classes are studied. For the purposes of this example we 
will consider just the Store class. A simple state chart has 
been developed for this and is shown in Figure 7. 

This proposed state chart design is now checked to ensure 
that it does not result in the hazardous behaviour 
identified from the fault tree, this hazardous behaviour is: 
• State = release ^ ¬checkWOW 
• State = release ^ WOW = true 

Firstly it is assumed that the system behaves as specified 
in the design, that is that the class exhibits no faulty 
behaviour. In this simple example it can be seen from 
examining the state chart that this design does not exhibit 
any of the hazardous behaviours defined above. Checking 
that a proposed design does not exhibit hazardous 
behaviour can also be achieved using a reachability 
analysis tool. 

This analysis has so far assumed that the class exhibits no 
faulty behaviour. The effects on the safety of the system 
if an object were to behave in an unexpected manner, that 
is to behave in a way other than that specified in the 
design, must also be investigated. 

Release of store
whilst on ground

Aircraft
on

ground

Store
released

Uncommanded
Release

Commanded
Release

WOW
ignored

WOW not
detected

Stores Man.
Fails to respond
to WOW signal

WOW signal not
received by
Stores Man.

WOW not
checked
by store

Store
releases
anyway

Failure of
communication

Failure of
WOW sensor

 
Figure 6: Fault Tree for Release of Store on Ground 

WOW Checked

Released

Select /
status=select

Deselect /
status=deselect

Release/
check WOW

Selected

[WOW=true]

[WOW=false]

Unselected

Jettison / remove
store

/ remove store

 
Figure 7: State Chart for Store Class 

To do this we mutate the transitions in the state chart 
using ideas originally developed by Gorski and Nowiscki 
(Gorski and Nowicki 1995). Transitions in a state chart 
are of the general form event[condition]/action. The 
event triggers the state transition, the condition is a 
Boolean expression that must evaluate to true for the 



transition to occur and the action is triggered when the 
transition fires. Transitions may have any, all, or none of 
these elements. In order to identify possible faulty 
behaviours for the transitions we can apply guidewords to 
each of the elements of the relevant transitions. In order 
to be able to simulate these faulty behaviours, extra 
transitions must be added to represent these deviations in 
the state chart. Applying the guidewords ‘omission’, 
‘commission’ and ‘value’ to each of the elements results 
in five distinct transitions: 
1. e[c] self-transition – event or condition is ignored 
2. not e[c] / a – event spuriously generated or action 

performed without initiating event 
3. e[not c] / a – condition taken as true when false 
4. e[c] – action is ignored 
5. e[c] / b (where b is an action other than a of the 

initiator object) – wrong action performed. 
For each of the transitions in the state chart relevant to the 
hazardous behaviour, these five extra transitions are 
added to the diagram to simulate faulty behaviour. The 
results of this can be seen in Figure 8. It is now possible 
to identify if any of the faulty behaviours are unsafe. 
These are the faulty behaviours that can lead to the 
hazardous object behaviour which was defined 
previously. 
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Figure 8: Mutated State Chart Showing Faulty 
Transitions 

The faulty transitions that could lead to the hazard 
‘Release of store whilst on the ground’ can now be 
analysed. The results of this are shown below. 

A1. release – Not Hazardous 
A2. not release / check WOW -  Not Hazardous 
A4. release – Hazardous – WOW is not checked but 
class may enter release state 
A5. release / remove store – Not Hazardous  
B1. [WOW=false] – Not Hazardous  
B3. [WOW=true] – Hazardous – class enters release state 
when WOW is true 
C1. [WOW=true] - Not Hazardous 
C3. [WOW=false] - Not Hazardous 
It should be noted that although many of these transitions 
are not hazardous, they are still faulty and would result in 
incorrect operation. Only the hazardous behaviour is of 
interest however, and so it is only this which is 
constrained. The system is permitted to perform 
incorrectly if this behaviour is non-hazardous.  

There is now sufficient information about the intended 
and faulty behaviour of the class to begin to construct a 
contract for operations which may contribute to the 
release of a store whilst on the ground. In UML, contracts 
may be specified using the Object Constraint Language 
(OCL) (OMG 2001). OCL can be used to specify 
contracts using pre- and postconditions. Preconditions 
and postconditions are constraints defined on operations. 
Preconditions must be true at the moment the operation is 
to be executed. Postconditions must be true at the 
moment the operation has just ended its execution. Unlike 
with invariants, pre- and postconditions need only be true 
at a certain point in time and not all the time. These 
constraints will form the basis of the safety contracts. An 
OCL expression for an operation can be expressed as 
follows: 
context 
Typename::opName(param1:Type1,…):ReturnType 
 pre: param1 > … 
 post: result = … 
The constraints expressed in this manner are all 
requirements on static aspects of the system. As can be 
seen with the worked example, it is often necessary from 
a safety perspective to express that events have happened 
or will happen, that signals have or will be sent, or that 
operations are or will be called. An extension to OCL 
then known as an action clause was proposed by Kleppe 
and Warmer (Kleppe and Warmer 2000) to address this 
problem. This has formed part of the Response to the 
UML 2.0 OCL Request for Proposals submission where it 
has become known as a message expression (Warmer, 
Kleppe et al. 2003). To specify that communication has 
taken place, the hasSent (^) operator is used. A simple 
example is given below: 
context Subject::hasChanged() 
 post: observer ^ update(12,14) 
The post condition here results in true if an update 
message with arguments 12 and 14 was sent to observer 
during the execution of the hasChanged() operation. 
Update() is either an operation that is defined in the class 
of observer, or it is a signal specified in the UML model. 
The arguments of the message expression must conform 
to the parameters of the operation/signal definition. 
Messages in OCL are particularly useful for describing 
the functional aspects of the safety requirements. From 
the results of the analysis carried out in the example, a 
safety contract can be defined for the store class which 
restricts the hazardous behaviour. This safety contract is 
shown below: 
context Store ::release() 

pre: none 
post: WOW=false 

  and 
Stores_Manager ^ checkWOW() 

5.2 Timing and Data Aspects 
Although a large part of the safety requirements 

generated for any given system will be functional in 
nature, it is important to also consider the impact of non-
functional properties on the safety of the system. Firstly 
the timing of the interactions is investigated. This 



analysis process hinges on identifying deadlines, 
separations and priorities for tasks performed by the 
system. A task is an encapsulated sequence of operations 
that executes independently of other tasks (Douglass 
1999). Therefore a task will consist of a number of 
interactions between classes in the system. Again the 
analysis begins with the identified system level hazards 
and at this point we focus on the normal scenario for 
releasing a store as shown in the sequence diagram in 
Figure 5. This scenario can be broken into the following 
tasks: 
• Select store – This task begins with the pilot 

choosing a store and ends with that store being 
selected 

• Release store – This task begins with the pilot 
requesting a release and ends with the store being 
removed from its station. This task also includes a 
subtask of checking WOW. 

The effects of deviations on the system is investigated to 
identify which of these deviations may contribute to a 
system hazard. Firstly, tasks occurring too quickly or too 
slowly are considered. It should be noted that ‘quickly’ 
and ‘slowly’ are with respect to some undefined ‘most 
desirable’ time. It is not felt that a more concrete 
definition than this is necessary as this kind of 
assumption about interaction time is included in the 
model design anyway. The effect of tasks occurring too 
early or too late must also be considered. For this step of 
the analysis process it is assumed that the order in which 
the tasks occur for the scenario is fixed. Instead we 
investigate if there is a hazardous effect if the task occurs 
too soon after (early) or too long after (late) the previous 
task. Table 4 shows the result of applying these 
deviations to the tasks. As more details of the underlying 
implementation become available, more hazardous effects 
may become evident. This table considers deviations at 
the current level of abstraction. 
Task Deviation Effect 

Quick No safety consequence (positive effect) 
– It is desirable that the selection of the 
correct store occur as quickly as possible 

Slow Potential safety impact – Delays in 
selecting the appropriate store for jettison 
may delay release 

Early 

Select Store 

Late 
This task is triggered by the pilot who’s 
decision to select a store will impact 
safety only if incorrect store is chosen 

Quick No safety consequence (positive effect) 
– It is desirable that the store be released 
as quickly as possible when requested 

Slow Potential safety impact – A delay in 
releasing a store could be hazardous to 
the aircraft under certain circumstances 

Early  Hazardous – A weapon released too soon 
after a previous weapon could be 
catastrophic 

Release Store 

Late No safety consequence 

Table 4: The Effects of Timeliness of Tasks on System 
Hazards 

Those tasks whose timeliness can have an impact on 
safety have now been identified. Constraints must be 
specified for these tasks. For quick and slow interactions 
it is necessary to constrain the response time of the task. 
If necessary a minimum response time and a maximum 

response time, or deadline can be specified for a task. A 
minimum response time will be specified for those tasks 
where too quick is identified as being hazardous and a 
deadline is specified for those where too slow could be 
hazardous. For tasks where early or late may be 
hazardous, minimum and maximum separations 
respectively between the completion of one task and the 
triggering of the next or between an event and the 
triggering of a task must be specified. These constraints 
can be used to define a safe scenario of tasks. 

Domain knowledge allows us to place the following 
requirements on the tasks identified above as being 
hazardous or potentially hazardous. It should be noted 
that the requirements specified here are fictitious and are 
only used as an indication for the purposes of the 
example. In addition, the requirements generated makes 
no assumption concerning the type of scheduling and 
timing analysis approach adopted for the system. 
• Select store – From the pilot choosing a store to that 

store being selected should be no longer than 200ms 
– Deadline = 200ms 

• Release store – The minimum permissible time 
between store releases will vary depending on the 
type of store being released. For this example we will 
specify – Min Separation = 100ms 

• Temporal release of store – The time from the pilot 
requesting a store release to that store’s removal from 
the station should not exceed 50ms – Deadline = 
50ms 

Up to this point only the normal scenario has been 
identified. A scenario is a sequence of actions that 
illustrates the execution of a use case. Therefore a normal 
scenario simply represents the normal or expected 
sequence of actions which occurs for a particular use 
case, in this example releasing a store. When considering 
safety however, it is important to consider alternative 
scenarios that may occur as these could potentially be 
hazardous, and may also lead to a requirement for extra 
timing constraints. To illustrate the scenarios clearly, the 
UML notation of activity diagrams can be used to show 
the different sequences of tasks that may realise the use 
case. Although activity states in an activity diagram are 
normally used to model a step in the execution of a 
procedure, here each activity state is used to represent a 
task or sub-task. Activity diagrams are felt to be 
particularly suited to this application as they emphasize 
the sequential and concurrent nature of the tasks in a 
scenario.  

The alternative scenarios can be identified by omitting 
tasks from the normal scenario, adding in extra tasks (i.e. 
repetition of existing tasks), tasks occurring concurrently 
with other tasks or tasks occurring in an alternate order. 
Many of these will be of little interest and need not be 
considered. It is necessary to identify if any of the 
alternative scenarios identified could be hazardous. That 
is to say that they could provide an additional 
contribution to the hazard, they could also necessitate 
additional timing requirements. As part of the trade-off 
analysis approach, the use of scenarios to judge how well 
assessment criteria are met is demonstrated 



As with the functional requirements, the timing 
requirements must be included in the safety contracts for 
the classes in the system. As was noted earlier, standard 
OCL does not provide a way of representing constraints 
over the dynamic behaviour of a system. An extension to 
OCL for modelling real-time systems has been proposed 
by Cengarle and Knapp (Cengarle and Knapp 2002) 
which provides a mechanism for representing deadlines 
and delays. 

Deadlines for operations can be represented in the 
following manner: 
context 
Typename::opName(param1:Type1,…):ReturnType 

pre: … 
post:Time.now<=Time.now@pre + timeLimit 

Where Time is a primitive data type that represents the 
global system time and timeLimit is a variable 
representing a time interval. In our examples we take the 
unit of time to be milliseconds. The above constraint 
represents a maximum permissible execution time equal 
to timeLimit for the operation opName.  

Delays in reactions to signals or events can be 
represented in the following manner: 
context 
Typename::opName(param1:Type1,…):ReturnType 

pre:lastEvent.at+timeLimit>= Time.now 
post: … 

Where lastEvent.at is the arrival time of the last event. 
This represents a maximum delay equal to timeLimit for 
reaction to the lastEvent. So based on our temporal safety 
analysis the following safety contract may be proposed: 
context Store ::release() 

pre: previous_release.at+100<=Time.now 
post: Time.now <= Time.now@pre + 50 

The data represented in the system can also contribute to 
system hazards if important data attributes are incorrect. 
It is important for each system hazard to identify which 
data attributes are critical. These critical data items must 
be constrained to ensure that they won’t contribute to the 
hazard. It is possible to take advantage of the information 
hiding principle when trying to place constraints. Because 
the attributes of a class are private, it is only possible for 
them to be manipulated by operations provided by the 
class. It is therefore possible to protect the accuracy of 
data items by constraining the interactions that may 
manipulate that data. Again this can be done through the 
use of contracts. 

For the system hazard ‘incorrect store released’ it can be 
identified (through a fault tree) that the pilot selecting an 
incorrect store, or the wrong store information being 
displayed to the pilot could cause incorrect store 
selection. This would be caused by the incorrect store 
being associated with a particular station. The critical 
attributes here are the station ID and store ID, which are 
associated through the location class. The only operation 
in our system design which can manipulate this data is the 
addStore() operation of the station class. When this 
operation is called on a station, the store ID passed as a 
parameter is associated with the station through the 
creation of a location object. By constructing a 
precondition for the addStore() operation it can be 

constrained to ensure the store ID being passed is correct. 
Even more so than for functional and timing aspects of 
systems, the data within a system is dependant on domain 
knowledge for deriving effective safety requirements. 

6 Utilisation of Contracts 
From our analysis in section 5, the safety contract for the 
release() operation of the Store class can be defined as: 
context Store ::release() 

pre: previous_release.at+100 <=Time.now 
post: WOW=false  

and 
Time.now <= Time.now@pre + 50 
and 
Stores_Manager ^ checkWOW() 

The safety contract specifies that if a service is required 
(in this case operation release), then to ensure this is done 
safely the pre-condition must be met by the client class. 
In return the store class will ensure the post-condition is 
achieved. If either the pre-condition or the post-condition 
is violated then the operation may be unsafe. When a 
system is designed, classes collaborate using message 
passing to achieve functionality. Figure 9 shows three 
classes collaborating in such a manner. The filled 
rectangles before or after the operation indicate that a pre- 
or post-condition respectively of a safety contract exist 
for that operation. 
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Figure 9: Interactions including pre- and post-
conditions 

 

pre-conditions of X() X()W

System : SMS_Aircraft X v.1.2

Reqts . to be met InteractionSupplier

Stores_Manager ^ 
checkWOW ()

Time.now <= 
Time.now@pre + 50

WOW=false previous_release.at  
+ 100 <= Time.now Release()A

Guarantees to be madeReqts . requiring  
satisfactionInteractionClients

Class : Store

pre-conditions of X() X()W

System : SMS_Aircraft X v.1.2

Reqts . to be met InteractionSupplier

Stores_Manager ^ 
checkWOW ()

Time.now <= 
Time.now@pre + 50

WOW=false previous_release.at  
+ 100 <= Time.now Release()A

Guarantees to be madeReqts . requiring  
satisfactionInteractionClients

Class : Store

Table 5: A Table to Capture Safety Requirements 

In this situation class A must meet the pre-condition of 
Release() as this operation is being called by A’s 
operation B(). It is important to note that even though the 
pre-condition of Release() is defined in the class store, it 
becomes a derived safety requirement for class A. In turn, 
the store class must meet the post-condition of Release(), 
it must also however meet the pre-condition of operation 
X() defined in class W as the Release() operation makes a 
call to X(). The pre-condition of X() may not necessarily 
match the post-condition of Release() and therefore an 
extra derived safety requirement has been identified for 
class Store. 



The above example has been used to illustrate that when 
interactions occur between classes, the requirements get 
‘shared out’ amongst the participating classes. For the 
system to be safe it must be shown that all classes meet 
any safety requirements placed upon them. 

As part of using contracts it is important to be able to 
show that when a system is constructed the classes ‘fit 
together’ safely. That is to say that all the requirements 
are picked up by the relevant classes. It is suggested that a 
table could be used as a way of capturing the information. 
Table 5 shows such a table. 

This basic table specifies the system and the class in that 
system for which the table is being constructed. If more 
than one version of the system has been designed then it 
is important to record which version the requirements in 
the table relate to. As is discussed later, changes to the 
system design can alter the derived requirements 
applicable to a particular class. The table then records a 
list of the client classes. These are classes that make calls 
to services of the class. Table 5 shows the table for the 
store class from Figure 9 and therefore the only client is 
class A. The only interaction that class A has with the 
store class is through the Release() operation. The pre- 
and post-conditions of this operation give the 
‘Requirements requiring satisfaction’ and ‘Guarantees to 
be made’ respectively. The table also records the supplier 
classes for the store class. These are classes whose 
services store utilises. Again there is just one supplier 
class in this example, class W. The interaction that store 
has with class W is recorded and the pre-conditions of 
those interactions give the ‘Requirements to be met’. 

Using the table constructed in table 5 the derived safety 
requirements of class store can be identified as being 
those defined in ‘Guarantees to be made’ plus those in 
‘Requirements to be met’. The derived safety 
requirements of the relevant client class are those defined 
in  ‘Requirements requiring satisfaction’. It is important 
to ensure that ‘Requirements requiring satisfaction’ in 
store are reflected as ‘Requirements to be met’ in the 
relevant client class (class A). It must also be ensured that 
‘Requirements to be met’ in store are those defined in 
‘Requirements requiring satisfaction’ in relevant supplier 
class (class W). In this way a table such as that in table 5 
can be used to check that the classes in the proposed 
system design can work together safely. This is done by 
checking that all the correct derived safety requirements 
have been allocated between the classes in the system. 
Another advantage of constructing a table such as this is 
that it allows an individual class in a system to be 
developed independently of other classes. All the derived 
safety requirements for that particular class are explicitly 
laid out and further reference to other classes to elicit 
requirements is not necessary. 

6.1 Applying Trade-Off Analysis Results to the 
Derived Safety Requirements 

This section shows how the results of the safety analysis 
integrates with the trade-off analysis method to manage 
the objective of “Ease of Change” as well as ensure safety 
requirements are met 

In section 2.2, the use of timing budgets to mange the 
problems of change was introduced. In the case of the 
example requirements given in Table 5, there are two 
timing requirements that have been derived as part of the 
safety analysis process. These are a separation (i.e. 100 
ms) requirement and a deadline (i.e. 50 ms). 

Using Reservation Based Analysis, these response 
requirements would be decomposed into execution timing 
budgets on each individual method. The difference 
between response time and execution time is dependent 
on the scheduling method employed, and hence how the 
method may be interfered with (by higher priority 
methods/tasks) or blocked (by lower priority 
tasks/methods). For example, the following budget may 
be assigned 
Release() – Best-Case Execution Time >= 1 ms 
Release() – Worst-Case Execution Time <= 5 ms 

When choosing/changing a hardware platform, it has to 
be shown that the budgets for each method/task are met. 
Where this is not possible, either different hardware 
would be needed or the budgets re-allocated across tasks. 
In addition when “new” requirements are introduced or 
existing ones change, checks have to be performed to see 
whether the existing budgets are still valid. For the 
approach to be successful, the budgets assigned to each 
method/task have to be chosen to promote flexibility, 
scalability and help manage obsolescence. In (Audsley 
and Bate 2003) an allocation approach of this form is 
presented. 

6.2 Handling Change 
A number of changes will normally occur to the design of 
a system during the development process. It is preferable 
that the majority of these changes, particularly major 
architectural level changes, will happen as early as 
possible in the process. In this way the amount of rework 
required as a result of that change can be minimised. It is 
highly likely however that change will occur to a system 
after a large amount of the safety analysis effort has been 
performed. It is often the case that when a change occurs 
to a system, the amount of reanalysis effort required in 
order to show that the modified system is still safe is 
proportional to the size of the system as a whole rather 
than to the size of the change that has been made. 

Using a modular approach enables the impact of a change 
to a system design to be minimised. The change tends to 
affect a particular aspect of a model rather than affecting 
the entire structure of the system, therefore the ‘cost’ of 
making a change is thus greatly reduced (Liskov and 
Wing 1994). If this benefit is to be realised in a safety-
related or safety-critical system, it is imperative that the 
effect of change on the safety of the system can be 
‘contained’ in a similar manner. This allows the required 
re-analysis to become more proportional to size of the 
change made. This can be achieved through the use of 
safety contracts. 

If the design of a class in the system is changed then it is 
necessary to show that the requirements that were placed 
upon that class can still be met. The class may do better 



or worse than it did before as long as the requirements are 
still met. This is the simplest form of change to deal with 
as the requirements placed on classes have not changed. 
Things are more complicated if additional interactions are 
introduced to the system as a result of changes. This is 
due to the fact that these interactions may introduce new 
ways in which a hazard could occur.  

Figure 10 shows the system from Figure 9 but with an 
additional interaction introduced between the store class 
and class W. Also an extra class, X, has been introduced 
to the system. This new class interacts with both the store 
class and class A. It is necessary to understand the impact 
that these new interactions may have on the safety of the 
system. The impact of the interactions introduced in 
Figure 10 is fairly straightforward to deal with as the 
interactions that occur are calling operations that 
previously existed in the system design. Therefore no 
new analysis is required on these interactions as the 
operations would have been covered as part of the 
original safety analysis process. It is only required that 
any contractual obligations that exist on these operations 
are picked up as derived safety requirements on the 
relevant class. 

For the interactions in Figure 10 that occur between class 
store and class W, and class X and class A, no safety 
contracts exists for the operations involved in these 
interactions, therefore no new safety requirements are 
derived for any of the participating classes. For the 
interaction between class X and class store, there exists a 
safety contract on the Release() operation. Therefore class 
X, as the client for that interaction, will acquire a derived 
safety requirement of the pre-conditions of Release(). 
This would be captured in a safety requirements table 
constructed for class X. 
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Figure 10: Introducing Additional Interactions 

Figure 11 again shows the system from Figure 9 with 
some different changes. In this case the new interactions 
that have been introduced to the system are calling 
operations in class X. As this class was not part of the 
original system for which the safety analysis was 
conducted, there may be ways in which the operations of 
class X may contribute to a system hazard which have not 
been considered by the analysis. To ensure they don’t 
contribute to a system hazard, these operations may 
require the specification of a safety contract. This will 
require further analysis in order to determine the nature of 
any safety contract. Any contract identified would lead to 
additional derived safety requirements. The original 
analysis performed on the system started from top-level 

system hazards and worked downwards. To minimise and 
localise the reanalysis required for these additional 
interactions, the analysis may instead be performed 
bottom-up. This would identify if and how that specific 
interaction can contribute to any of the system hazards. 
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Figure 11: Introducing calls to new operations 

6.3 Reuse 
There is a great potential for reusing elements of a system 
in another similar system. This saves the expense of 
designing that part of the system from scratch. As with 
change however, it must be shown that this can be done 
safely. It is therefore necessary if the savings are to be 
realised that the relevant safety contracts can also be 
reused in the new system. It is not enough however just to 
be able to show that the existing contract is still met in the 
new system. As the new system will be different from the 
original, there may be new system level hazards which 
need to be considered which will not have formed part of 
the original analysis. 

A key issue is that the context of the system may also 
have changed. Context will include such things 
operational role and physical or regulatory environment. 
This means that the safety contracts derived for the 
original system may not be appropriate in the new 
system. The differences in the new system will 
necessitate further analysis to ensure that the correct 
safety contracts are defined. Therefore the less the new 
system differs from the original system, the easier it will 
be to reuse it. If too much additional analysis is required 
due to differences in the systems, then the savings from 
reuse will be greatly reduced. It is important therefore 
that if classes or components are going to be reused 
successfully that as much contextual and system 
information as possible is captured. This information 
could be added to the table of requirements. 

7 Conclusion  
The use of contracts is essential to show how and why 
requirements have been decomposed. This paper has 
shown how contracts are generated through the use of a 
structured and integrated safety and design process. As 
part of this we have shown how different properties and 
objectives can be traded-off to achieve an appropriate 
design. A safety analysis process is then applied to the 
resulting design to manage the risk associated with the 
key hazards. This is demonstrated using a Stores 
Management System from an aircraft. In the example the 
objective of managed change is given particular attention, 



and therefore both safety and design contracts and 
appropriate interfaces are established that allow us to 
meet the objective. Further to this we have shown how 
the contracts can be used to facilitate lifecycle upgrades 
and as such reduce lifecycle costs. 
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perform change is
reduced when

memory properties
change

G45
Work needed to

perform change is
reduced when

availability properties
change

G42
Work needed to perform
change is reduced when

functional properties
change

A43
Stores_Manager is to
maintain inventory list

with information
provided by Stores

A

A44
Stores_Manager is to
manage store actions
(eg release) based on

inventory
A

A45
Key hazards obtained via

hazard analysis include centre
of gravity out of bounds and
performing wrong action on

store (e.g. unplanned release)

A

J11
Need for cost effective
upgrade and change,

especially to avoid
expensive changes that

are likely J

A11
We have insight and/
or data from previous

projects indicating
where changes are

likely A

G51
Common features of the

function are extracted
from the variables that

initialise it

G61
Functionality kept in one

component and a
generic interface

provided

G81
Functionality likely to
change separated out

G43
Work needed to perform
change is reduced when

temporal properties change

G47
Budgets defined for
each operation such

that all timing
requirements are met

G46
Platform chosen so

budgets are met

 

Figure 12: Argument for Ease of Change 


