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Abstract 
 
In this paper the use of Field Programmable Gate Arrays (FPGAs) has been investigated as  
an alternative target device for safety-critical software to the use of traditional  
microprocessor (e.g. Von Neumann-based architectures). FPGAs are a desirable alternative  
in comparison to microprocessors for reasons including: ease of analysis in comparison to  
modern microprocessors such as the PowerPC, and the obsolescence problems with using  
short-lifetime microprocessors in long lifetime systems. The work in this paper uses the  
Goal Structuring Notation to decompose the safety claims for FPGA-based systems. It then  
considers how the necessary evidence can be gathered. The results of this work are the  
following three contributions. Firstly, we identify the necessary evidence required to  
justify that the resulting FPGA-based system is of sufficient integrity. Secondly, we  
identify techniques that can be used to gather the required evidence. Thirdly, we show the  
relation to the evidence currently gathered for microprocessor-based systems and the  
guidance given by the Safety and Security Annex for the Ada programming language. 

Introduction 

The use of Field Programmable Gate Arrays (FPGAs) is being investigated as an alternative target device 
for safety-critical software to the use of Von Neumann style processors. The reasons for choosing an FPGA 
include; the behaviour of modern processors, such as the PowerPC is difficult to analyse [1], the production 
lifecycle of processors is becoming shorter leading to systems with longer lifecycles (e.g. Avionics) facing 
difficult and expensive production decisions (i.e. buy and store components, make the design technology 
transparent increasing cost and inefficiency, or regularly update the product), and FPGAs lend themselves 
to hardware software co-design. The work is being performed in the context of the following: critical 
systems, FPGAs that are re-programmable technology rather than based on write-once technology, and 
software written in safe subsets of Ada. However much of the argument and evidence requirements are 
generally applicable to any compiler and language. The work does not deal with architectural issues such as 
fault tolerance. 
The starting point for this paper is the work performed on compiling suitable subsets of Ada such that they 
can be hosted on a FPGA [2]. (Suitable subsets are defined as those for which the resulting code can be 
predicted with reasonable cost effectiveness, e.g. SPARK Ada [3].) The reasons writing software and 
compiling it down to a digital design is preferred to producing a digital design in the first place are that 
software produced through an appropriate software engineering process is considered to be easier to 
change, more effective at representing complex designs, and provide better support for reusing existing 
designs and/or development approaches. The reasons Ada is preferred to other languages (e.g. Handel-C 
[4]) that already have support for compilation down to FPGA are that its use in critical systems is more 
extensive particularly for higher integrity applications and it is considered a better language for software 
engineering. 
The aim of this paper is to identify the necessary evidence needed to justify that the resulting system is of 
sufficient integrity (i.e. the risk of hazards is acceptably low), and then identifying the techniques by which 
this evidence can be provided. Whilst achieving these objectives, an important goal is, where possible, to 
use the same approaches to development, verification and certification as would be used for software being 
hosted on a traditional Von Neumann architecture. This allows existing approaches and techniques to be 
reused and it also eases any migration that might take place between the two approaches. 



Background 

The following subsections provide background to the context for the applications to be executed on the 
FPGA, a survey of relevant certification standards, and summarises the compilation approach that has been 
developed. 
Application Context: 
As previously stated, this work is being performed in the context of critical systems up to and including the 
highest integrity levels prescribed by current safety standards with the functionality being produced in 
software, notably Ada, and then compiled for use on a FPGA. The nature of the application, whether 
continuous or discrete in nature, is not being assumed. However, it is being assumed that the software’s 
source code is being produced using rigorous methods that keep systematic errors to a minimum. That is, 
the methods should ensure the source code meets its specification. However since the primary goal of the 
work is to ensure that the risk of hazards being introduced is acceptable, then the number of systematic 
errors in the software written in Ada is not relevant to the arguments presented.  
Certification Standards: 
There are number of safety standards and guidance documents that govern the development of hardware for 
use in safety-critical applications. Therefore, rather than presenting arguments targeted to a specific safety 
standard, we present the arguments that can be regarded as ‘core’ to all standards, e.g. the identification, 
avoidance and control of systematic errors in the transformation between the source code of the software 
and the eventual executable realisation.  
A benefit of abstracting away from specific standards is that there is significant difficulty interpreting the 
current standards because the standards are largely separated out into hardware and software but this work 
effectively spans the two areas. Since the majority of the work is concerned with software and related tools 
for mapping the software to hardware and not the actual hardware itself, greater relevance is given to what 
the software standards raise on these issues. However issues from the hardware standards are still relevant 
because the internals of the compiler are based on mapping individual Ada language statements to circuit 
schematics, the latter of which should be verified using hardware techniques. The situation is eased because 
the hardware and corresponding software standards are very similar in their requirements meaning that we 
can mainly highlight common areas and identify any notable differences.  
Compilation Approach: 
The objective for the work is the compilation of Ada such that it can be predictably and efficiently 
represented on a FPGA. The current approach involves the following steps: 
• Software is produced in a sequential form of Ada (e.g. SPARK) – note concurrent subsets of Ada (e.g. 

Ravenscar) may be supported at a later date. 
• The compiler produced at York converts the Ada into EDIF (Electronic Design Interchange Format) 

format. The compiler is template-driven and features no optimisation. The templates are produced and 
verified through simulation using standard schematic design facilities provided by most electronic 
design suites. At this stage the information is still technology transparent and human readable. 

• Standard tools are then used to place and route the EDIF design; this results in a file in NGD (Native 
Generic Design) format that is still human readable and is mostly (approx 90%) technology 
transparent. The non-technology transparent parts are related to device-specific components, which are 
infrequently used across FPGA families. 

• The final stage is conversion to a bit stream that can be loaded onto a specific device. 
Clearly as a result of this work developing certification strategies for the use of FPGA, some changes in the 
way the compiler operates might be needed. 

Safety Argument 

The purpose of this section is to present the safety argument for the execution of compiled software on a 
given platform using the Goal Structuring Notation (GSN). A short introduction to GSN is given in the 
following subsection. The safety argument that has been produced demonstrates how it can be shown the 
behaviour of the software as defined in the source code is as expected on the platform. This concentrates on 
whether the compiler and other tools (e.g. place and routing – the process by which a logical design is 
mapped to physical hardware) perform an appropriate transformation rather than whether the hardware 



itself contains systematic errors. The argument assumes the software is written in a language (or subset) 
whose behaviour is amenable to verification, for example SPARK Ada [3]. 
Introduction to Goal Structuring Notation: 
Within this and the following sections, we use the GSN [5] to outline the safety arguments that need to be 
made to support the use of software compiled and executed on a platform within a safety-critical system. 
Any safety case can be considered as consisting of requirements, argument, evidence and definition of 
bounding context. GSN - a graphical notation - explicitly represents these elements and (perhaps more 
significantly) the relationships that exist between these elements (i.e. how individual requirements are 
supported by specific arguments, how argument claims are supported by evidence and the assumed context 
that is defined for the argument). 
The principal symbols in the notation are shown in Figure 1 (with example instances of each concept). 
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Figure 1 - Principal Elements of the Goal Structuring Notation 

The principal purpose of a goal structure is to show how goals (claims about the system) are successively 
broken down into sub-goals until a point is reached where claims can be supported by direct reference to 
available evidence (solutions). As part of this decomposition, using GSN it is also possible to make clear 
the argument strategies adopted (e.g. adopting a quantitative or qualitative approach), the rationale for the 
approach (assumptions, justifications) and the context in which goals are stated (e.g. the system scope or 
the assumed operational role). For further details on GSN see [5]. 
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Figure 2 - Platform is Acceptably Safe 

Figure 2 gives the top-level safety argument whose main goal is to show that the platform is safe to use in 
the intended operational context. (Part of the context for this argument is that the platform consists of an 



executable form of the software and an infrastructure which is predominantly hardware but could include 
an operating system.) To achieve this aim it is necessary to show that the risk of errors in the system 
associated with the use of the platform is acceptable for the given system (goal ProcAcceptSafe). The 
acceptable risk is related to the system’s integrity requirement. The argument is split into two parts; one 
part deals with the cases where the system does not fail while operating (goal OpnCorrAndBound), and 
the other with the cases where the system does fail (goal AcceptSafeWithFailures). The goal 
OpnCorrAndBound has an assumption associated that the platform conforms to a minimum standard, this 
refers to issues such as a maximum gate delay being specified and met. 
The failure cases are further split into systematic and random failures. As previously stated, it is outside of 
the scope of this work to deal with how the system deals with failures during operation. Therefore, the 
systematic and random failure goals are left undeveloped (as indicated by the diamond under the goal). 
Instead, this work is to concentrate on expanding the argument for the non-failure case (i.e. trying to ensure 
errors do not occur in the design) – refer to the following subsection for further details. It should be noted 
that the previous work [1] concentrated on the actual execution on a specific platform rather than how the 
executable is realised. 
Argument for the Prevention of Errors: 

OpnCorrAndBound
(Limited) Platform operation
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(non-failure) case

OpnLimitations
Limitations on platform
operation (e.g. includes

disabled features)

DisabFeatsNonInterf
Disabled platform

features do not interfere
with processing device

operation

ResUsageDet
Limits on platform
resource usage

determined a priori

OpnMeetsIntent
Observable platform
functional operation

conforms to source code
intent

DisabFeats
Disabled features are

those where systematic
errors are known to exist

Resources
Processing

utilisation and
storage capacity

ArgOverRes
   Argument over

platform resources

ExecTimeDet
Code is produced so

that its timing behaviour
is predictable and

bounded

CodeUsageDet
Code is produced so

that the storage needed
for it is predictable and

bounded

CompilationCorrect
Compilation process
creates executable

conforming to source
code intent

ExecFormCorrect
Processing of executable
conforms to source code

intent

DataUsage
Code is produced so
that its data usage is

predictable and
bounded

ResUsageAssum
The system-level

argument uses the
information gained to

show requirements are
met

A

ComponentAssum
Critical systems domain

unlikely to use erroneous
components as others are

available

A
HLLAssum

 Language(s) used
for the source code

chosen to avoid
unpredictable

features A

CodeUsageSol
Evidence that the
resource usage
properties of the
source code are

upheld

DataUsageSol
Evidence that the
resource usage
properties of the
source code are

upheld

ExecTimeSol
Evidence that the
resource usage
properties of the
source code are

upheld

HLLPredAssum
The language (or subset)

used to implement the
source code is amenable

to verification

A

 
Figure 3 – Prevention of Errors 

The argument to support goal OpnCorrAndBound is given in Figure 3. A key assumption (assumption 
HLLPredAssum) is that the software’s source code has been implemented in a language (or subset) that is 
amenable to verification, i.e. its operation is predictable and boundable. 
The argument initially splits into three parts: 
• Goal ResUsageDet - that the maximum resource usage can be determined by virtue of how the 

software’s source code is compiled and then executed – it is assumed that the system-level argument 
then uses the information gained about resource usage to show the system-level requirements are met. 

• Goal OpnMeetsIntent - that the observable behaviour is as intended. This is split further into; goal 
CompilationCorrect which argues the compilation process results in an executable that conforms with 
the original intent of the source code, i.e. errors are not introduced, and goal ExecFormCorrect argues 
the processing of the executable conforms with source code intent. The correctness of the compiler is 
discussed further in the next subsection. Goal ExecFormCorrect refers to situations where errors in 



the actual device lead to errors in operation and consequently source code intent not being met. This 
part of the argument is not developed further because it is unlikely components with known systematic 
errors or fabrication would be used in the critical systems domain when ones without these known 
problems exist – assumption ComponentAssum. Where errors are known to exist, then the goal 
DisabFeatsNonInterf would apply. 

• Goal DisabFeatsNonInterf - that disabled features do not interfere with the platform’s operation. This 
refers to where features of the platform are not used either because they are spare capacity or because 
there are errors in the devices as discussed in the previous point with respect to goal 
ExecFormCorrect. Again, this part of the argument is not developed further for the same reasons as 
the previous point. 

Compilation Correct: 
Figure 4 presents the argument for the goal CompilationCorrect that originated in Figure 3. Satisfaction of 
the goal is split into two parts.  
The first part shows by a combination of manual inspection and evidence from testing on the target that the 
operational behaviour is as expected. The current practice for doing this involves each time the compiler is 
used re-performing a certain amount of testing on the target that was previously performed on a host. 
However as confidence grows in the compilers correctness, the amount of testing is reduced. 
The second parts assesses whether the compilation process is correct. There are two parts to this; loading 
the resulting executable correctly onto the platform (evidence generated that an appropriate loading 
mechanism is applied) and consequently checking it (evidence that an appropriate verification mechanism 
is used, e.g. CRC checks), and showing that the executable is produced according to the Language 
Reference Manual (LRM). The latter of these is further explored in Figure 5. 
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LoadCorrContext
Sufficient = likelihood
of undetected error

sufficiently low

 
Figure 4 – Compilation Correct Argument 

Figure 5 presents the safety argument for the executable being produced following the intent of the LRM. 
(The ability to gather evidence to support this argument depends on a sufficiently rigorous LRM being 
available.) This argument is split into two parts. The first part deals with whether the language syntax and 
synthesisability are checked before compilation begins. The second part deals with the language semantics 



for each instruction, and combinations thereof, being checked and preserved during compilation. (The term 
instruction is used in this document to refer to the representation of a single Ada language statement 
through the compilation levels until it is ultimately realised in the executable form.) The syntax and 
semantics checks should be performed where possible through the various levels of compilation. 
The need for evidence that semantics are preserved can be satisfied by a number of approaches leading to 
the necessary evidence being generated - the approaches can be used in combination. The approaches 
include; constructing the compiler formally so that the evidence is generated as it is designed, using formal 
verification via model checkers to generate evidence of correctness, and using non-formal techniques to 
generate the evidence. The formal techniques include; checking for semantic correctness and traceability 
through the compilation levels, and simulation and requirements-based testing performed sufficiently that 
coverage metrics indicate enough confidence has been gained in the approach. 
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Figure 5 – Argument for Executable Conforms with LRM 

Relationship with Existing Work: 
In Whalen and Heimdahl [6] five requirements for high integrity code generation were established that are 
considered relevant when assessing our approach. Their consideration is given below: 
1. Source and target languages must have formally well-defined syntax and semantics. 

This argument has been defined in Figure 5 that there is a need to be able to check syntax and 
semantics against a rigorously defined enough language reference manual. 

2. The translation between a specification expressed in a source language and a program expressed in a 
target language must be formal and proven to uphold the meaning of the specification. 
This is satisfied by the arguments stated in Figure 4 that evidence is needed that source code intent is 
upheld in subsequently generated code and in Figure 5 that both representations have a traceable path 
between them and conform to the LRM. 

3. Rigorous arguments must be provided to validate the translator (a compiler is an example of a 
translator) and/or the generated code. 
A rigorous argument and the evidence needed to satisfy it have been presented. 

4. The implementation of the translator must be rigorously tested and treated as high assurance software. 
A rigorous argument and the evidence needed to satisfy it have been presented. Included in this is the 
argument stated in Figure 4 that evidence is needed that source code intent is upheld in subsequently 
generated code. 

5. Generated code must be well-structured, documented and traceable to the specification. 



Being able to show that source code intent is upheld in subsequently generated code as defined in 
Figure 4 and that both representations have a traceable path between them and conform to the LRM 
given in Figure 5 satisfies this need. 

To show that the argument presented is complete, the evidence required of the software is compared in 
Table 1 to the evidence requirements discussed in the Ada HRG standard [7]. The reason the Ada HRG 
standard is used is that it collectively represents the requirements of certification standards for software. In 
addition, Table 1 contains evidence requirements for review and traceability which are demanded by most 
standards. 
Category Verification 

Technique Description Coverage in Argument 

Traceability Showing how and where requirement(s) are satisfied in the 
code. 

Figure 5, solution SemTraceSol. 
Quality 
Control Reviews Checking the output of individual process stages, e.g. 

verification. 
Figure 4, solution InspSol. 

Control flow 
analysis 

Ensure code is executed in correct order and that it is 
structurally well formed. 

Mainly source code issue but also 
Figure 4, solution InspSol. 

Data flow analysis Ensure no variable can be accessed before it has been set. Same as for control flow analysis. 

Information flow 
analysis 

Identifies relationships between inputs and outputs in-order to 
ensure the correct dependencies are implemented and no other 
dependencies exist. 

Same as for control flow analysis. 

Symbolic 
execution 

Verify properties of the software, without resorting to formal 
proofs and proof tools. 

Figure 5, solutions SimSol, 
CoverSol, and UnitSol. 

Formal code 
verification 

Proving that the code is correct with respect to a formal 
specification. 

Figure 5, solution ForVerifSol. 

Range checking Verify that data values are within a specified range. Same as for control flow analysis. 

Main memory 
usage analysis 

Determine the main memory usage used and show that the 
processor has sufficient memory. 

Figure 3, solutions InterMemSol, 
IntraMemSol, CombMemSol, and 
TestConfSol2. 

Stack usage 
analysis 

Determine the maximum stack usage used and show that the 
processor has sufficient stack memory. 

Figure 3, solutions CallDepthSol, 
DynMemSol, and CombDynSol. 

Timing analysis 
Determine the maximum execution time for tasks and that 
execution times are bounded. 

Figure 3, solutions CodeUsageSol, 
DataUsageSol, ExecTimeSol, and 
TestConfSol1. 

Other memory 
usage 

Determine worst-case other memory usage (e.g. 
communications buffers) and whether the system has sufficient 
capacity. 

Figure 3, solutions CodeUsageSol, 
DataUsageSol, ExecTimeSol, and 
TestConfSol1. 

Analysis 

Object code 
analysis 

Determine the object code upholds the source code intent. All solutions following on from goal 
CompilationCorrect in Figure 4. 

Equivalence class 

Given that exhaustive testing is impractical, equivalence class 
testing subdivides the input and output data spaces into classes 
such that a test with any of the values within one class should 
give equivalent results. 

Figure 5, solutions CoverSol and 
UnitSim. 

Require-
ments Based 
Testing 

Boundary value 
Builds on the equivalence class of testing to test at the 
boundaries of value classes, rather than just at some point in 
the class. 

Same as for equivalence class. 

Statement 
coverage 

Apply test cases so that each program statement has been 
invoked at least once. 

Same as for equivalence class. 

Branch coverage Apply test cases so that each decision in the program has taken 
each of its possible outcomes. 

Same as for equivalence class. Structure 
Based Testing 

Modified 
condition / 
decision coverage 

Show that each basic condition independently affect each basic 
decision. 

Same as for equivalence class. 

Table 1 – Coverage of the Ada HRG Verification Requirements in the Arguments 

Roadmap for Future Work on FPGAs 

In this section the intention is to go through the forms of evidence needed to support the arguments 
presented, discuss how it might be provided with the current tools and techniques and establish any future 
verification techniques that need to be developed. 
Table 2 presents the result of the assessment. In the table; the first two columns define where the need for 
evidence is identified in the arguments that have been produced, the third column a description of the 
evidence needed, the fourth column a discussion of how the evidence requirement could be satisfied, and 
the final column whether the techniques are currently available. 



Table 2 shows that most forms of analysis for gathering the evidence needed are currently available. 
However a number of specific caveats have been identified (in italics). There is also the general issue that 
whilst tools and techniques may exist they may not have been justified and qualified for use in the context 
of critical system applications. 
Figure 

Ref 
Solution Ref Verification Needs Proposed Technique Available Now? 

CodeUsageSol Evidence that assumed 
predictability in the high-level 
language is maintained 
through to the platform. 

Static analysis and code review to show that the 
maximum code size can be determined apriori. This 
needs to be performed in the context of a given 
device. 

 
(Properties emerge 

from circuit design and 
place and route. 
Results normally 

verified using separate 
tool.) 

DataUsageSol Evidence that assumed 
predictability in the high-level 
language is maintained 
through to the platform. 

Static analysis and code review to show that the 
maximum data size can be determined apriori. This 
needs to be performed in the context of a given 
device. 

 
(Properties emerge 

from circuit design and 
place and route. 
Results normally 

verified using separate 
tool.) 

Figure 
3 

ExecTimeSol Evidence that assumed 
predictability in the high-level 
language is maintained 
through to the platform. 

Static analysis and code review to show that the 
maximum and minimum timings of the executable 
can be determined apriori. This needs to be performed 
in the context of a given device. 

 
(Properties emerge 

from circuit design and 
place and route. 
Results normally 

verified using separate 
tool.) 

InspSol 

Evidence from manual 
inspection that executable 
meets source code intent. 

Code review and traceability analysis on both 
individual source-level statements and program 
examples. This is similar to how object code analysis 
is currently performed on compilers. 

 

VerifSol 

Evidence from functional 
verification activities that 
executable meets source code 
intent. 

Unit testing and scenario-based testing repeated on 
target and results compared. The unit testing can be 
performed on both individual source-level statements 
and program examples. This is similar to how object 
code analysis is currently performed on compilers. 

 

LoadCorrSol 

Evidence that the loading 
mechanism of executable onto 
the FPGA is of sufficient 
integrity. 

Loading mechanism developed according to a suitable 
process. 

 
(Loading mechanisms 

currently exist but 
their integrity needs 

checking.) 

Figure 
4 

CRCCheck 

Evidence from post-loading 
checks that the loading has 
indeed been performed as 
required. The checks should be 
performed after loading and to 
a limited extent during normal 
operation. 

Appropriate checking mechanism based on CRC 
techniques developed according to a suitable process. 

 
(Post-loading checks 

currently exist but 
their integrity needs 

checking.) 

SynSol 

Evidence that language 
statements are syntactically 
correct at the various levels of 
compilation. 

The code can be passed through appropriate checkers 
and results obtained. The checkers may be an integral 
part of a compile or a separate tool such as Lint. More 
than one compiler or an independent checker may be 
deployed to reduce the qualification needs of 
individual checkers 

 
(There are a variety of 

compilers and tools 
such as lint that can 

perform these checks.)

Figure 
5 

ProofConsSol 

Evidence gathered during the 
formal design of the FPGA 
compiler that language 
semantics are preserved at the 
various levels of compilation. 

It is generally considered and accepted that it is 
infeasible and unnecessarily expensive to formally 
develop applications or their supporting tools, e.g. 
autocode generators. However, formal methods for 
logic circuits are more practicable than for software 
so some assessment may be possible. Otherwise, 
other forms of similar evidence such as from SimSol 
should compensate for the lack of formal assessment. 

 
(Projects normally 
justify that formal 

design is unnecessary.)



Figure 
Ref 

Solution Ref Verification Needs Proposed Technique Available Now? 

SimSol 

Evidence gathered during 
simulation that language 
semantics are preserved. 

Perform simulation of individual language statements 
and their interfaces to show that their operation 
matches that expected. Simulation should be used 
more for FPGAs than for conventional Von Neumann 
architecture due to the improved tools available. The 
simulation can be performed on both individual 
source-level statements and program examples. 

 
(Simulation can 

currently be performed 
at most, if not all, 

compilation levels.) 

CoverSol 

Evidence from the various 
forms of non-formal 
assessment (see SimSol, 
UnitSol) that the language 
semantics are preserved. 

Assessment that sufficient confidence has been 
gained. The assessment would be similar to that 
normally performed as part of determining when 
sufficient functional verification has been performed. 
The coverage analysis can be performed on both 
individual source-level statements and program 
examples. 

 

UnitSol 

Evidence gathered during unit 
testing that language semantics 
are preserved. 

Perform unit testing of individual language statements 
and their interfaces to show that their operation 
matches that expected. The unit testing can be 
performed on both individual source-level statements 
and program examples. 

 
(Unit testing can 

currently be performed 
at most, if not all, 

compilation levels.) 

SemTraceSol 
Evidence gathered through the 
compilation steps that 
semantics preserved. 

Techniques exist for tracing the meeting of 
requirements through a number of steps. 

 

SemCorrSol 

Evidence gathered through the 
compilation steps that 
semantics are complaint with 
reference manual. 

Techniques exist for checking semantics’ compliance. 
An often used tool is lint which is available for many 
languages. 

 
(There are a variety of 

compilers and tools 
such as lint that can 

perform these checks.)

Figure 
5 

ForVerifSol 

Evidence gathered through 
post-design assessment that 
semantics are complaint with 
reference manual. 

Powerful model checking techniques exist for this 
purpose. 

 
(Projects normally 
justify that formal 
approaches are 
unnecessary.) 

Table 2 – Verification Techniques to Support Safety Argument 

In general, gathering evidence using the Ada targeted at an FPGA is easier than Ada targeted at a 
conventional Von Neumann architecture for the following reasons: 
• The analysis techniques and tools available are more powerful and operationally mature. This means a 

compiler targeting an FPGA could be demonstrated as having a higher integrity than for a conventional 
microprocessor. Having a higher integrity compiler could reduce the amount of object-code analysis 
and target-based testing needed. 

• The analysis techniques and tools available are able to operate at different level of abstractions (e.g. at 
the source code level, intermediate levels and executable form), and there are significantly more 
powerful and accurate simulators available. This would help in meeting some of the IMA goals – i.e. 
technology transparency and delaying the choice of hardware platform. 

• The target is much simpler in the case of an FPGA and could be statically analysed whereas many of 
the modern microprocessors available can not  easily be analysed [1, 2]. 

• The timing behaviour of a circuit on a FPGA is normally optimised and analysed for the worst-case 
which is more suitable for embedded systems than for a modern microprocessor. In contrast, it is 
normally the average case that optimisation is performed for and worst-case analysis is not generally 
available. 

Summary and Future Work 

This work has complemented the work on developing an Ada to FPGA compiler by producing a safety 
argument that defines the necessary evidence needed to justify the application software’s source code is 
transformed and executed in a manner that introduces acceptable risk, and then identifying the techniques 
by which this evidence can be provided. When defining the argument the same approaches to development, 
verification and certification have been proposed, where possible, as for software being hosted on a 
traditional Von Neumann architecture. This allows existing approaches and techniques to be reused and it 
also eases any migration that might take place between the two approaches.  



One of the main conclusions of this work is that the analysis techniques and tools available for FPGAs are 
more powerful and operationally mature. This means a compiler targeting an FPGA could be demonstrated 
as having a higher integrity than for a conventional microprocessor. Having a higher integrity compiler 
could reduce the amount of object-code analysis and target-based testing needed. Additionally, the analysis 
techniques and tools available are able to operate at different level of abstractions (e.g. at the source code 
level, intermediate levels and executable form), and there are significantly more powerful and accurate 
simulators available. This would help in meeting some of the IMA goals – i.e. technology transparency and 
delaying the choice of hardware platform. 
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