
Safety Arguments for use of an Ada to FPGA Compiler

Iain Bate; Department of Computer Science; University of York; UK

Simon Bates; Department of Computer Science; University of York; UK

John McDermid; Department of Computer Science; University of York; UK

Keywords: FPGAs, safety, software

Abstract

In this paper the use of Field Programmable Gate Arrays (FPGAs) has been investigated as
an alternative target device for safety-critical software to the use of traditional
microprocessor (e.g. Von Neumann-based architectures). FPGAs are a desirable alternative
in comparison to microprocessors for reasons including: ease of analysis in comparison to
modern microprocessors such as the PowerPC, and the obsolescence problems with using
short-lifetime microprocessors in long lifetime systems. The work in this paper uses the
Goal Structuring Notation to decompose the safety claims for FPGA-based systems. It then
considers how the necessary evidence can be gathered. The results of this work are the
following three contributions. Firstly, we identify the necessary evidence required to
justify that the resulting FPGA-based system is of sufficient integrity. Secondly, we
identify techniques that can be used to gather the required evidence. Thirdly, we show the
relation to the evidence currently gathered for microprocessor-based systems and the
guidance given by the Safety and Security Annex for the Ada programming language.

Introduction

The use of Field Programmable Gate Arrays (FPGAs) is being investigated as an alternative target device
for safety-critical software to the use of Von Neumann style processors. The reasons for choosing an FPGA
include; the behaviour of modern processors, such as the PowerPC is difficult to analyse [1], the production
lifecycle of processors is becoming shorter leading to systems with longer lifecycles (e.g. Avionics) facing
difficult and expensive production decisions (i.e. buy and store components, make the design technology
transparent increasing cost and inefficiency, or regularly update the product), and FPGAs lend themselves
to hardware software co-design. The work is being performed in the context of the following: critical
systems, FPGAs that are re-programmable technology rather than based on write-once technology, and
software written in safe subsets of Ada. However much of the argument and evidence requirements are
generally applicable to any compiler and language. The work does not deal with architectural issues such as
fault tolerance.
The starting point for this paper is the work performed on compiling suitable subsets of Ada such that they
can be hosted on a FPGA [2]. (Suitable subsets are defined as those for which the resulting code can be
predicted with reasonable cost effectiveness, e.g. SPARK Ada [3].) The reasons writing software and
compiling it down to a digital design is preferred to producing a digital design in the first place are that
software produced through an appropriate software engineering process is considered to be easier to
change, more effective at representing complex designs, and provide better support for reusing existing
designs and/or development approaches. The reasons Ada is preferred to other languages (e.g. Handel-C
[4]) that already have support for compilation down to FPGA are that its use in critical systems is more
extensive particularly for higher integrity applications and it is considered a better language for software
engineering.
The aim of this paper is to identify the necessary evidence needed to justify that the resulting system is of
sufficient integrity (i.e. the risk of hazards is acceptably low), and then identifying the techniques by which
this evidence can be provided. Whilst achieving these objectives, an important goal is, where possible, to
use the same approaches to development, verification and certification as would be used for software being
hosted on a traditional Von Neumann architecture. This allows existing approaches and techniques to be
reused and it also eases any migration that might take place between the two approaches.

Background

The following subsections provide background to the context for the applications to be executed on the
FPGA, a survey of relevant certification standards, and summarises the compilation approach that has been
developed.
Application Context:
As previously stated, this work is being performed in the context of critical systems up to and including the
highest integrity levels prescribed by current safety standards with the functionality being produced in
software, notably Ada, and then compiled for use on a FPGA. The nature of the application, whether
continuous or discrete in nature, is not being assumed. However, it is being assumed that the software’s
source code is being produced using rigorous methods that keep systematic errors to a minimum. That is,
the methods should ensure the source code meets its specification. However since the primary goal of the
work is to ensure that the risk of hazards being introduced is acceptable, then the number of systematic
errors in the software written in Ada is not relevant to the arguments presented.
Certification Standards:
There are number of safety standards and guidance documents that govern the development of hardware for
use in safety-critical applications. Therefore, rather than presenting arguments targeted to a specific safety
standard, we present the arguments that can be regarded as ‘core’ to all standards, e.g. the identification,
avoidance and control of systematic errors in the transformation between the source code of the software
and the eventual executable realisation.
A benefit of abstracting away from specific standards is that there is significant difficulty interpreting the
current standards because the standards are largely separated out into hardware and software but this work
effectively spans the two areas. Since the majority of the work is concerned with software and related tools
for mapping the software to hardware and not the actual hardware itself, greater relevance is given to what
the software standards raise on these issues. However issues from the hardware standards are still relevant
because the internals of the compiler are based on mapping individual Ada language statements to circuit
schematics, the latter of which should be verified using hardware techniques. The situation is eased because
the hardware and corresponding software standards are very similar in their requirements meaning that we
can mainly highlight common areas and identify any notable differences.
Compilation Approach:
The objective for the work is the compilation of Ada such that it can be predictably and efficiently
represented on a FPGA. The current approach involves the following steps:
• Software is produced in a sequential form of Ada (e.g. SPARK) – note concurrent subsets of Ada (e.g.

Ravenscar) may be supported at a later date.
• The compiler produced at York converts the Ada into EDIF (Electronic Design Interchange Format)

format. The compiler is template-driven and features no optimisation. The templates are produced and
verified through simulation using standard schematic design facilities provided by most electronic
design suites. At this stage the information is still technology transparent and human readable.

• Standard tools are then used to place and route the EDIF design; this results in a file in NGD (Native
Generic Design) format that is still human readable and is mostly (approx 90%) technology
transparent. The non-technology transparent parts are related to device-specific components, which are
infrequently used across FPGA families.

• The final stage is conversion to a bit stream that can be loaded onto a specific device.
Clearly as a result of this work developing certification strategies for the use of FPGA, some changes in the
way the compiler operates might be needed.

Safety Argument

The purpose of this section is to present the safety argument for the execution of compiled software on a
given platform using the Goal Structuring Notation (GSN). A short introduction to GSN is given in the
following subsection. The safety argument that has been produced demonstrates how it can be shown the
behaviour of the software as defined in the source code is as expected on the platform. This concentrates on
whether the compiler and other tools (e.g. place and routing – the process by which a logical design is
mapped to physical hardware) perform an appropriate transformation rather than whether the hardware

itself contains systematic errors. The argument assumes the software is written in a language (or subset)
whose behaviour is amenable to verification, for example SPARK Ada [3].
Introduction to Goal Structuring Notation:
Within this and the following sections, we use the GSN [5] to outline the safety arguments that need to be
made to support the use of software compiled and executed on a platform within a safety-critical system.
Any safety case can be considered as consisting of requirements, argument, evidence and definition of
bounding context. GSN - a graphical notation - explicitly represents these elements and (perhaps more
significantly) the relationships that exist between these elements (i.e. how individual requirements are
supported by specific arguments, how argument claims are supported by evidence and the assumed context
that is defined for the argument).
The principal symbols in the notation are shown in Figure 1 (with example instances of each concept).

A

Goal Solution Context Assumption Strategy

InContextOf Choice Undeveloped Goal SolvedBy

Figure 1 - Principal Elements of the Goal Structuring Notation

The principal purpose of a goal structure is to show how goals (claims about the system) are successively
broken down into sub-goals until a point is reached where claims can be supported by direct reference to
available evidence (solutions). As part of this decomposition, using GSN it is also possible to make clear
the argument strategies adopted (e.g. adopting a quantitative or qualitative approach), the rationale for the
approach (assumptions, justifications) and the context in which goals are stated (e.g. the system scope or
the assumed operational role). For further details on GSN see [5].
Top Level Argument:

ProcAcceptSafe
Platform demonstrably

acceptably safe for use in
intended operational

context

ProcOpContext
Operational Context of

Platform

ArgOverFailNonFail
Argument over failure and

non-failure cases

OpnCorrAndBound
(Limited) Platform's

operation correct and
boundable

(non-failure) case

AcceptSafeWithFailures
Platform's operation

acceptably safe in the
presence of failures

ArgOverRandSyst
Argument over systematic

and random cases

SysFailEffectReduced
Effects of systematic

failures in the platform's
design sufficiently

controlled

RandRateAccLow
Random platform failures

occur only at an
acceptable rate

AcceptSafeContext
Acceptably safe is that the

Platform does not introduce
errors that could lead to

hazards too high a risk for
given system

OpnAssum
All platforms used

conform to a minimum
standard and we don't

exceed this in use

A

PlatOpContext
Platform consist of software
and the infrastructure that it
relies upon (mainly hardware

but also any operating
system needed)

Figure 2 - Platform is Acceptably Safe

Figure 2 gives the top-level safety argument whose main goal is to show that the platform is safe to use in
the intended operational context. (Part of the context for this argument is that the platform consists of an

executable form of the software and an infrastructure which is predominantly hardware but could include
an operating system.) To achieve this aim it is necessary to show that the risk of errors in the system
associated with the use of the platform is acceptable for the given system (goal ProcAcceptSafe). The
acceptable risk is related to the system’s integrity requirement. The argument is split into two parts; one
part deals with the cases where the system does not fail while operating (goal OpnCorrAndBound), and
the other with the cases where the system does fail (goal AcceptSafeWithFailures). The goal
OpnCorrAndBound has an assumption associated that the platform conforms to a minimum standard, this
refers to issues such as a maximum gate delay being specified and met.
The failure cases are further split into systematic and random failures. As previously stated, it is outside of
the scope of this work to deal with how the system deals with failures during operation. Therefore, the
systematic and random failure goals are left undeveloped (as indicated by the diamond under the goal).
Instead, this work is to concentrate on expanding the argument for the non-failure case (i.e. trying to ensure
errors do not occur in the design) – refer to the following subsection for further details. It should be noted
that the previous work [1] concentrated on the actual execution on a specific platform rather than how the
executable is realised.
Argument for the Prevention of Errors:

OpnCorrAndBound
(Limited) Platform operation

correct and boundable
(non-failure) case

OpnLimitations
Limitations on platform
operation (e.g. includes

disabled features)

DisabFeatsNonInterf
Disabled platform

features do not interfere
with processing device

operation

ResUsageDet
Limits on platform
resource usage

determined a priori

OpnMeetsIntent
Observable platform
functional operation

conforms to source code
intent

DisabFeats
Disabled features are

those where systematic
errors are known to exist

Resources
Processing

utilisation and
storage capacity

ArgOverRes
 Argument over

platform resources

ExecTimeDet
Code is produced so

that its timing behaviour
is predictable and

bounded

CodeUsageDet
Code is produced so

that the storage needed
for it is predictable and

bounded

CompilationCorrect
Compilation process
creates executable

conforming to source
code intent

ExecFormCorrect
Processing of executable
conforms to source code

intent

DataUsage
Code is produced so
that its data usage is

predictable and
bounded

ResUsageAssum
The system-level

argument uses the
information gained to

show requirements are
met

A

ComponentAssum
Critical systems domain

unlikely to use erroneous
components as others are

available

A
HLLAssum

 Language(s) used
for the source code

chosen to avoid
unpredictable

features A

CodeUsageSol
Evidence that the
resource usage
properties of the
source code are

upheld

DataUsageSol
Evidence that the
resource usage
properties of the
source code are

upheld

ExecTimeSol
Evidence that the
resource usage
properties of the
source code are

upheld

HLLPredAssum
The language (or subset)

used to implement the
source code is amenable

to verification

A

Figure 3 – Prevention of Errors

The argument to support goal OpnCorrAndBound is given in Figure 3. A key assumption (assumption
HLLPredAssum) is that the software’s source code has been implemented in a language (or subset) that is
amenable to verification, i.e. its operation is predictable and boundable.
The argument initially splits into three parts:
• Goal ResUsageDet - that the maximum resource usage can be determined by virtue of how the

software’s source code is compiled and then executed – it is assumed that the system-level argument
then uses the information gained about resource usage to show the system-level requirements are met.

• Goal OpnMeetsIntent - that the observable behaviour is as intended. This is split further into; goal
CompilationCorrect which argues the compilation process results in an executable that conforms with
the original intent of the source code, i.e. errors are not introduced, and goal ExecFormCorrect argues
the processing of the executable conforms with source code intent. The correctness of the compiler is
discussed further in the next subsection. Goal ExecFormCorrect refers to situations where errors in

the actual device lead to errors in operation and consequently source code intent not being met. This
part of the argument is not developed further because it is unlikely components with known systematic
errors or fabrication would be used in the critical systems domain when ones without these known
problems exist – assumption ComponentAssum. Where errors are known to exist, then the goal
DisabFeatsNonInterf would apply.

• Goal DisabFeatsNonInterf - that disabled features do not interfere with the platform’s operation. This
refers to where features of the platform are not used either because they are spare capacity or because
there are errors in the devices as discussed in the previous point with respect to goal
ExecFormCorrect. Again, this part of the argument is not developed further for the same reasons as
the previous point.

Compilation Correct:
Figure 4 presents the argument for the goal CompilationCorrect that originated in Figure 3. Satisfaction of
the goal is split into two parts.
The first part shows by a combination of manual inspection and evidence from testing on the target that the
operational behaviour is as expected. The current practice for doing this involves each time the compiler is
used re-performing a certain amount of testing on the target that was previously performed on a host.
However as confidence grows in the compilers correctness, the amount of testing is reduced.
The second parts assesses whether the compilation process is correct. There are two parts to this; loading
the resulting executable correctly onto the platform (evidence generated that an appropriate loading
mechanism is applied) and consequently checking it (evidence that an appropriate verification mechanism
is used, e.g. CRC checks), and showing that the executable is produced according to the Language
Reference Manual (LRM). The latter of these is further explored in Figure 5.

CompilationCorrect
Compilation process
creates executable

conforming to source
code intent

ExecCompSourInt
 Executable form of
application shown to

meet source code intent

CompilerCorrect
Compilation process
shown to be correct

CompCorr
Correct = compliance

with Language
Reference Manual

(LRM)

CompSourInt
Amount of verification
needed reduces as
operational usage

demonstrates compiler
reliability A

ExecCorr
Executable produced
follows intent of the

LRM

ExecLoad
Executable loaded

correctly

Comp
Compilation process

= producing
executable and

loading onto FPGA

LoadingCorrect
Loading operation
shown to prerserve
executable form's

intent

LoadingChecked
Checks ensure
operation has

occurred as expected

LoadCorrSol
Evidence that the

loading
mechanism's

integrity is
sufficient for the

system

CRCCheck
Evidence that the
undetectable error

likelihood of the
checking

mechanism is
sufficient

Inspection
 Manual inspection

shows executable is as
expected

Verification
 Operational assessment
shows executable is as

expected

InspSol
Evidence

manually gathered
that source code

intent upheld

VerifSol
Evidence from

operational
assessment that

source code intent
upheld

CRCCheckContext
Sufficient = likelihood
of undetected error

sufficiently low

LoadCorrContext
Sufficient = likelihood
of undetected error

sufficiently low

Figure 4 – Compilation Correct Argument

Figure 5 presents the safety argument for the executable being produced following the intent of the LRM.
(The ability to gather evidence to support this argument depends on a sufficiently rigorous LRM being
available.) This argument is split into two parts. The first part deals with whether the language syntax and
synthesisability are checked before compilation begins. The second part deals with the language semantics

for each instruction, and combinations thereof, being checked and preserved during compilation. (The term
instruction is used in this document to refer to the representation of a single Ada language statement
through the compilation levels until it is ultimately realised in the executable form.) The syntax and
semantics checks should be performed where possible through the various levels of compilation.
The need for evidence that semantics are preserved can be satisfied by a number of approaches leading to
the necessary evidence being generated - the approaches can be used in combination. The approaches
include; constructing the compiler formally so that the evidence is generated as it is designed, using formal
verification via model checkers to generate evidence of correctness, and using non-formal techniques to
generate the evidence. The formal techniques include; checking for semantic correctness and traceability
through the compilation levels, and simulation and requirements-based testing performed sufficiently that
coverage metrics indicate enough confidence has been gained in the approach.

SynCorrect
Language syntax
checked and code
can be synthesised

SynSol
Evidence language
syntax is compliant
with LRM generated
by use of syntactic

checker

SemCorrect
Language semantics

checked and
preserved

NonForVer
Non-formal

techniques show
design to be correct

ProofCons
Design proved by

construction

ForVerif
Formal means shows
design to be correct

ProofConsSol
Evidence that

design is correct
generated during

artefact's
construction ForVerifSol

Evidence that
design is correct

generated by
formal verification

SimSol
Evidence that

design is correct
generated during

simulation

UnitSol
Evidence that

design is correct
generated during

requirements
testing

ExecCorr
Executable produced
follows intent of the

LRM

UnitConnected
Needs to be shown for

individual language
statement and how they
are connected together

SimVer
Simulation shows

design to be correct

UnitVer
Requirements-based
testing shows design

to be correct

CoverSol
Evidence that

design is correct
generated by use

of coverage
metrics

CoverVer
Coverage of techniques

show non-formal
techniques to be

sufficient

SemCorrSol
Evidence that
semantics are

compliant
generated by use

of semantic
checker

CheckCont
Checked refers to
compliance with

reference standards
(e.g. LRM)

PresCont
Preserved refers

intended operation of
functional blocks

through compilation
levels is maintained

SemTraceSol
Evidence that

semantics
maintained

generated from
traceability checks

SemCorrect
Language semantics

compliant

SemMain
Language semantics
maintained through
compilation levels

SemChecked
Language semantics

checked

SemPreserved
Language semantics

preserved

ExecCorrAssum
LRM well defined

A

Figure 5 – Argument for Executable Conforms with LRM

Relationship with Existing Work:
In Whalen and Heimdahl [6] five requirements for high integrity code generation were established that are
considered relevant when assessing our approach. Their consideration is given below:
1. Source and target languages must have formally well-defined syntax and semantics.

This argument has been defined in Figure 5 that there is a need to be able to check syntax and
semantics against a rigorously defined enough language reference manual.

2. The translation between a specification expressed in a source language and a program expressed in a
target language must be formal and proven to uphold the meaning of the specification.
This is satisfied by the arguments stated in Figure 4 that evidence is needed that source code intent is
upheld in subsequently generated code and in Figure 5 that both representations have a traceable path
between them and conform to the LRM.

3. Rigorous arguments must be provided to validate the translator (a compiler is an example of a
translator) and/or the generated code.
A rigorous argument and the evidence needed to satisfy it have been presented.

4. The implementation of the translator must be rigorously tested and treated as high assurance software.
A rigorous argument and the evidence needed to satisfy it have been presented. Included in this is the
argument stated in Figure 4 that evidence is needed that source code intent is upheld in subsequently
generated code.

5. Generated code must be well-structured, documented and traceable to the specification.

Being able to show that source code intent is upheld in subsequently generated code as defined in
Figure 4 and that both representations have a traceable path between them and conform to the LRM
given in Figure 5 satisfies this need.

To show that the argument presented is complete, the evidence required of the software is compared in
Table 1 to the evidence requirements discussed in the Ada HRG standard [7]. The reason the Ada HRG
standard is used is that it collectively represents the requirements of certification standards for software. In
addition, Table 1 contains evidence requirements for review and traceability which are demanded by most
standards.
Category Verification

Technique Description Coverage in Argument

Traceability Showing how and where requirement(s) are satisfied in the
code.

Figure 5, solution SemTraceSol.
Quality
Control Reviews Checking the output of individual process stages, e.g.

verification.
Figure 4, solution InspSol.

Control flow
analysis

Ensure code is executed in correct order and that it is
structurally well formed.

Mainly source code issue but also
Figure 4, solution InspSol.

Data flow analysis Ensure no variable can be accessed before it has been set. Same as for control flow analysis.

Information flow
analysis

Identifies relationships between inputs and outputs in-order to
ensure the correct dependencies are implemented and no other
dependencies exist.

Same as for control flow analysis.

Symbolic
execution

Verify properties of the software, without resorting to formal
proofs and proof tools.

Figure 5, solutions SimSol,
CoverSol, and UnitSol.

Formal code
verification

Proving that the code is correct with respect to a formal
specification.

Figure 5, solution ForVerifSol.

Range checking Verify that data values are within a specified range. Same as for control flow analysis.

Main memory
usage analysis

Determine the main memory usage used and show that the
processor has sufficient memory.

Figure 3, solutions InterMemSol,
IntraMemSol, CombMemSol, and
TestConfSol2.

Stack usage
analysis

Determine the maximum stack usage used and show that the
processor has sufficient stack memory.

Figure 3, solutions CallDepthSol,
DynMemSol, and CombDynSol.

Timing analysis
Determine the maximum execution time for tasks and that
execution times are bounded.

Figure 3, solutions CodeUsageSol,
DataUsageSol, ExecTimeSol, and
TestConfSol1.

Other memory
usage

Determine worst-case other memory usage (e.g.
communications buffers) and whether the system has sufficient
capacity.

Figure 3, solutions CodeUsageSol,
DataUsageSol, ExecTimeSol, and
TestConfSol1.

Analysis

Object code
analysis

Determine the object code upholds the source code intent. All solutions following on from goal
CompilationCorrect in Figure 4.

Equivalence class

Given that exhaustive testing is impractical, equivalence class
testing subdivides the input and output data spaces into classes
such that a test with any of the values within one class should
give equivalent results.

Figure 5, solutions CoverSol and
UnitSim.

Require-
ments Based
Testing

Boundary value
Builds on the equivalence class of testing to test at the
boundaries of value classes, rather than just at some point in
the class.

Same as for equivalence class.

Statement
coverage

Apply test cases so that each program statement has been
invoked at least once.

Same as for equivalence class.

Branch coverage Apply test cases so that each decision in the program has taken
each of its possible outcomes.

Same as for equivalence class. Structure
Based Testing

Modified
condition /
decision coverage

Show that each basic condition independently affect each basic
decision.

Same as for equivalence class.

Table 1 – Coverage of the Ada HRG Verification Requirements in the Arguments

Roadmap for Future Work on FPGAs

In this section the intention is to go through the forms of evidence needed to support the arguments
presented, discuss how it might be provided with the current tools and techniques and establish any future
verification techniques that need to be developed.
Table 2 presents the result of the assessment. In the table; the first two columns define where the need for
evidence is identified in the arguments that have been produced, the third column a description of the
evidence needed, the fourth column a discussion of how the evidence requirement could be satisfied, and
the final column whether the techniques are currently available.

Table 2 shows that most forms of analysis for gathering the evidence needed are currently available.
However a number of specific caveats have been identified (in italics). There is also the general issue that
whilst tools and techniques may exist they may not have been justified and qualified for use in the context
of critical system applications.
Figure

Ref
Solution Ref Verification Needs Proposed Technique Available Now?

CodeUsageSol Evidence that assumed
predictability in the high-level
language is maintained
through to the platform.

Static analysis and code review to show that the
maximum code size can be determined apriori. This
needs to be performed in the context of a given
device.

(Properties emerge

from circuit design and
place and route.
Results normally

verified using separate
tool.)

DataUsageSol Evidence that assumed
predictability in the high-level
language is maintained
through to the platform.

Static analysis and code review to show that the
maximum data size can be determined apriori. This
needs to be performed in the context of a given
device.

(Properties emerge

from circuit design and
place and route.
Results normally

verified using separate
tool.)

Figure
3

ExecTimeSol Evidence that assumed
predictability in the high-level
language is maintained
through to the platform.

Static analysis and code review to show that the
maximum and minimum timings of the executable
can be determined apriori. This needs to be performed
in the context of a given device.

(Properties emerge

from circuit design and
place and route.
Results normally

verified using separate
tool.)

InspSol

Evidence from manual
inspection that executable
meets source code intent.

Code review and traceability analysis on both
individual source-level statements and program
examples. This is similar to how object code analysis
is currently performed on compilers.

VerifSol

Evidence from functional
verification activities that
executable meets source code
intent.

Unit testing and scenario-based testing repeated on
target and results compared. The unit testing can be
performed on both individual source-level statements
and program examples. This is similar to how object
code analysis is currently performed on compilers.

LoadCorrSol

Evidence that the loading
mechanism of executable onto
the FPGA is of sufficient
integrity.

Loading mechanism developed according to a suitable
process.

(Loading mechanisms

currently exist but
their integrity needs

checking.)

Figure
4

CRCCheck

Evidence from post-loading
checks that the loading has
indeed been performed as
required. The checks should be
performed after loading and to
a limited extent during normal
operation.

Appropriate checking mechanism based on CRC
techniques developed according to a suitable process.

(Post-loading checks

currently exist but
their integrity needs

checking.)

SynSol

Evidence that language
statements are syntactically
correct at the various levels of
compilation.

The code can be passed through appropriate checkers
and results obtained. The checkers may be an integral
part of a compile or a separate tool such as Lint. More
than one compiler or an independent checker may be
deployed to reduce the qualification needs of
individual checkers

(There are a variety of

compilers and tools
such as lint that can

perform these checks.)

Figure
5

ProofConsSol

Evidence gathered during the
formal design of the FPGA
compiler that language
semantics are preserved at the
various levels of compilation.

It is generally considered and accepted that it is
infeasible and unnecessarily expensive to formally
develop applications or their supporting tools, e.g.
autocode generators. However, formal methods for
logic circuits are more practicable than for software
so some assessment may be possible. Otherwise,
other forms of similar evidence such as from SimSol
should compensate for the lack of formal assessment.

(Projects normally
justify that formal

design is unnecessary.)

Figure
Ref

Solution Ref Verification Needs Proposed Technique Available Now?

SimSol

Evidence gathered during
simulation that language
semantics are preserved.

Perform simulation of individual language statements
and their interfaces to show that their operation
matches that expected. Simulation should be used
more for FPGAs than for conventional Von Neumann
architecture due to the improved tools available. The
simulation can be performed on both individual
source-level statements and program examples.

(Simulation can

currently be performed
at most, if not all,

compilation levels.)

CoverSol

Evidence from the various
forms of non-formal
assessment (see SimSol,
UnitSol) that the language
semantics are preserved.

Assessment that sufficient confidence has been
gained. The assessment would be similar to that
normally performed as part of determining when
sufficient functional verification has been performed.
The coverage analysis can be performed on both
individual source-level statements and program
examples.

UnitSol

Evidence gathered during unit
testing that language semantics
are preserved.

Perform unit testing of individual language statements
and their interfaces to show that their operation
matches that expected. The unit testing can be
performed on both individual source-level statements
and program examples.

(Unit testing can

currently be performed
at most, if not all,

compilation levels.)

SemTraceSol
Evidence gathered through the
compilation steps that
semantics preserved.

Techniques exist for tracing the meeting of
requirements through a number of steps.

SemCorrSol

Evidence gathered through the
compilation steps that
semantics are complaint with
reference manual.

Techniques exist for checking semantics’ compliance.
An often used tool is lint which is available for many
languages.

(There are a variety of

compilers and tools
such as lint that can

perform these checks.)

Figure
5

ForVerifSol

Evidence gathered through
post-design assessment that
semantics are complaint with
reference manual.

Powerful model checking techniques exist for this
purpose.

(Projects normally
justify that formal
approaches are
unnecessary.)

Table 2 – Verification Techniques to Support Safety Argument

In general, gathering evidence using the Ada targeted at an FPGA is easier than Ada targeted at a
conventional Von Neumann architecture for the following reasons:
• The analysis techniques and tools available are more powerful and operationally mature. This means a

compiler targeting an FPGA could be demonstrated as having a higher integrity than for a conventional
microprocessor. Having a higher integrity compiler could reduce the amount of object-code analysis
and target-based testing needed.

• The analysis techniques and tools available are able to operate at different level of abstractions (e.g. at
the source code level, intermediate levels and executable form), and there are significantly more
powerful and accurate simulators available. This would help in meeting some of the IMA goals – i.e.
technology transparency and delaying the choice of hardware platform.

• The target is much simpler in the case of an FPGA and could be statically analysed whereas many of
the modern microprocessors available can not easily be analysed [1, 2].

• The timing behaviour of a circuit on a FPGA is normally optimised and analysed for the worst-case
which is more suitable for embedded systems than for a modern microprocessor. In contrast, it is
normally the average case that optimisation is performed for and worst-case analysis is not generally
available.

Summary and Future Work

This work has complemented the work on developing an Ada to FPGA compiler by producing a safety
argument that defines the necessary evidence needed to justify the application software’s source code is
transformed and executed in a manner that introduces acceptable risk, and then identifying the techniques
by which this evidence can be provided. When defining the argument the same approaches to development,
verification and certification have been proposed, where possible, as for software being hosted on a
traditional Von Neumann architecture. This allows existing approaches and techniques to be reused and it
also eases any migration that might take place between the two approaches.

One of the main conclusions of this work is that the analysis techniques and tools available for FPGAs are
more powerful and operationally mature. This means a compiler targeting an FPGA could be demonstrated
as having a higher integrity than for a conventional microprocessor. Having a higher integrity compiler
could reduce the amount of object-code analysis and target-based testing needed. Additionally, the analysis
techniques and tools available are able to operate at different level of abstractions (e.g. at the source code
level, intermediate levels and executable form), and there are significantly more powerful and accurate
simulators available. This would help in meeting some of the IMA goals – i.e. technology transparency and
delaying the choice of hardware platform.

References

[1] I Bate, P Conmy, T Kelly, J McDermid, Use of Modern Processors in Safety-critical Applications, The
Computer Journal, 44 (6), 531-543, 2001.

[2] M. Ward, N. Audsley, Hardware Compilation of Sequential Ada, Proceedings of CASES’01, pp. 99-
107, 2001.

[3] J. Barnes, High Integrity Ada: The SPARK Approach, Addison-Wesley, 1997.
[4] M. Bowen, Handel-C Language Reference Manual, Embedded Solutions Limited, edition 2.1, 1998.
[5] T. P. Kelly, Arguing Safety – A Systematic Approach to Safety Case Management, DPhil Thesis

YCST99-05, Department of Computer Science, University of York, UK, 1998.
[6] M. Whalen, M. Heimdhal, On the Requirements of High-Integrity Code Generation, Proceedings of

the 4th High Assurance in Systems Engineering Workshop, 1999.
[7] ISO, Guide for the Use of Ada Programming Language in High-Integrity Systems, ISO/IEC PDTR

15952:1998, 1998.

Biography

I. Bate, Research Fellow, Department of Computer Science, University of York, Heslington, York, YO10
5DD, U.K, telephone - +44 1904-432786, facsimile - +44 1904-432708, e-mail – iain.bate@cs.york.ac.uk.

Dr Iain Bate has been a Researcher within the Real-Time Systems Research Group within the Department
of Computer Science at the University of York since 1994. His doctoral research, completed in 1998,
focused upon establishing and demonstrating an approach to scheduling and timing analysis for safety-
critical systems. His research has mainly been in the real-time systems, aspects of safety-critical systems.

S.A. Bates, MEng, Research Associate, Department of Computer Science, University of York, Heslington,
York, YO10 5DD, UK, Tel: 0044 (0) 1904 433385, Fax: 0044 (0) 1904 432708, Email:
simon.bates@cs.york.ac.uk

Simon Bates has been a Research Associate in the BAE SYSTEMS funded Dependable Computing
Systems Centre (DCSC) at the University of York since October 2002. He graduated from the University of
Manchester in 2002, where he attained a MEng (Hons) in Electronic Systems Engineering. Since taking up
his role with the DCSC he has developed the following research interests: Safety Cases, Safety Case
Architectures, Modular and Incremental Certification of Safety Related Systems, and Software
Architectures.

Prof J.A. McDermid, Professor of Software Engineering, Department of Computer Science, University of
York, Heslington, York, YO10 5DD, UK, Tel: 0044 (0) 1904 432786, Fax: 0044 (0) 1904 432708, Email:
john.mcdermid@cs.york.ac.uk

John McDermid has been Professor of Software Engineering at the University of York since 1987 where he
runs the high integrity systems engineering (HISE) research group. HISE studies a broad range of issues in
systems, software and safety engineering, and works closely with the UK aerospace industry. Professor
McDermid is the Director of the Rolls-Royce funded University Technology Centre (UTC) in Systems and
Software Engineering and the BAE SYSTEMS-funded Dependable Computing System Centre (DCSC).
He is author or editor of 6 books, and has published about 250 papers.

