
Design For Flexible And Scalable Avionics Systems
I. Bate and P. Emberson

Department of Computer Science
University of York

York, United Kingdom
{iain.bate, paul.emberson}@cs.york.ac.uk

Abstract— Large-scale complex embedded systems pose
unique problems to developers. The development of these
systems is often performed in a concurrent and iterative fash-
ion. This has lead to a great deal of work on developing
processes and product technologies to support scalability and
flexibility, i.e. managing change. One example of this is the
DARPA funded MoBIES project which approaches the prob-
lem by allowing the designer to concentrate on the model
level. From a real-time systems perspective, one area that
needs greater attention is that of task allocation and attribute
assignment. The reason is that, whilst a great deal of work has
been done on task allocation, it has been targeted at meeting
the current set of timing requirements without giving appro-
priate consideration for the need to manage change.

TABLE OF CONTENTS

1 INTRODUCTION

2 QUALITY ATTRIBUTES FOR SYSTEMS

3 BUILDING A VALUE FUNCTION TO MEASURE

“QUALITY”

4 TURNING THE VALUE FUNCTION INTO AN AS-
SESSMENT FRAMEWORK

5 EVALUATION

6 CONCLUSIONS

7 APPENDIX

1. INTRODUCTION

The embedded systems required for avionics applications are
large scale and complex. Avionics systems must also be val-
idated and verified prior to deployment. Any changes made
to a system must be retested as must any parts of the sys-
tem which the changes may impact. If the system is not well
designed, a small change could require a disproportionately
large part of the system to be retested. This leads to high
costs and long development lifecycles.

Although there has been significant work in making avion-
ics embedded system design more modular such as the use of
IMA in the Boeing 777 AIMS project[1], less work has been
done on assessing the flexibility and scalability of a partic-
ular design. Part of the reason for this is that it is difficult
to assess how a system will cope with change since the future

0-7803-8870-4/05/$20.00/ c©2005 IEEE
IEEEAC paper #1399

changes are not always understood in sufficient detail. Avion-
ics systems are hard real-time systems where deadlines must
be met. If extra functionality is added to the system, there
may be a need to reschedule the software on top of any func-
tional changes. For example, following a change to a task, if
the utilisation of the processor on which the task is running
becomes too high, some tasks must be relocated to a different
processor or a hardware upgrade is required.

Design should be produced so that they are flexible and the
impact of changing the design is minimised and hence eas-
ier to manage. For this to be possible, it is necessary to have
a method to quantitatively measure the flexibility of a design
and a further method to modify the design in order to improve
its flexibility. As the nature of most changes are not known
in advance, especially where there may be multiple changes
at once, then scenario-based assessment provides a good ba-
sis for evaluating the likelihood that changes can be handled.
Scenarios may be randomly generated or pre-defined. For ex-
ample it can be used to assess whether new tasks can be added
to a task set. If some areas of the design are known to be
more likely to change, the generated scenarios can be biased
towards these areas. A value function measures the ability of
the solution to meet the different scenarios. By searching the
design space to maximise the value, the design can be modi-
fied to improve the way the system meets its objectives.

To measure the scalability of a design, factors such as indi-
vidual task sensitivity and whole task set sensitivity are com-
bined into the value function. Sensitivity is defined as the
maximum changes that can be handled before the design no
longer meets its requirements. The results can be used to give
feedback on where the most sensitive parts of the system are.
This will show system designers which parts of the system
are most likely to break if changes are made.

Metrics such as the number of processors used also constitute
part of the value function since the need for a flexible system
must be balanced with the cost of the hardware.

In this work, given an appropriate value function, heuristic
search techniques such as simulated annealing or a genetic
algorithm are used to improve a design’s ability to meet its
objectives. The search can modify the design by assigning
tasks to different processors and also by making lower level
changes to task attributes such as scheduling order, e.g. by
modifying priority, and release point, e.g. by altering offsets.
Each design must be checked to ensure all timing require-

1

ments are still met. Instead of this being a hard constraint the
schedulability of a design is a constituent of the value func-
tion to give greater freedom to the search algorithm. That is,
a null value is not necessarily returned if the design does not
meet all its requirements.

The contributions of the paper are the systematic derivation
of a suitable value function for evaluating the flexibility and
scalability of an embedded system design, showing the results
of this function by combining it with a search environment for
design and timing analysis.

Section 2 of this paper discusses the quality attributes for em-
bedded systems which are used to guide the development of
the value functions in section 3. An evaluation framework
based on the value function is then presented in section 4
which is demonstrated through an example in section 5. Fi-
nally, section 6 presents the summary.

2. QUALITY ATTRIBUTES FOR SYSTEMS

The aim of this section is to consider the needs of the product
and its lifecycle in order to derive typical quality attributes.
The lifecycle stages considered are its development and main-
tenance. The approach taken is to derive the quality attributes
for each of these in turn. The consideration of quality at-
tributes should, where possible, be general across all embed-
ded systems. This work focusses on the non-functional prop-
erties of systems rather than their functional properties.

For most embedded systems, especially consumer applica-
tions, cost is associated with the production and distribution
of the final product. That is, the developers are willing to
spend more time and money developing products in order to
save money on the final production, e.g. optimising the soft-
ware to fit on a cheaper microprocessor.

Within the scope of this work, change as part of development
and maintainability can be considered to be in one of two
categories. Firstly, changes that improves the way a set of
requirements is met (termed flexibility) and secondly change
that involves the addition of new requirements (termed scala-
bility).

For certain classes of system (e.g. large-scale, low volume
systems or individual systems in a product family), the cost
of development and maintenance may become a much bigger
issue. It is noted the issue of scalability to support mainte-
nance has so far been raised in two separate places: firstly
through dependability and secondly through cost. Therefore
it is felt the issues surrounding it should be given extra atten-
tion.

Quality Attributes for the Final Product

The quality attributes of any final product are that it meets its
non-functional requirements with the lowest cost and so that
it is fit for purpose. The non-functional requirements of sys-

tems were summarised by [2] as timing, power, memory and
dependability. Dependability is further refined by Laprie [3]
to be reliability, availability, safety, confidentiality, integrity
and maintainability.

A system however cheap is of little use if it is not considered
fit for purpose. Fit for purpose covers a wide range of issues
and it could be argued that it is much more dependent on the
nature of the system being considered than some of the other
quality attributes. It is recognised that not all non-funcional
attributes are covered, some of which include:

• size
• shape
• weight
• battery life and power consumption
• usability

Other quality attributes related to perception, e.g. appearance
and colour, are not considered.

Quality Attributes for Flexibility

Software and systems engineering has for a long time sup-
ported the notion of partitioning up designs with each part
communicating with the others via well-defined interfaces
[4]. To allow designs to evolve, the nature of interfaces
should be made tolerant to the expected changes and vari-
ances that may occur on either side of it. For some systems,
such as aircraft control systems, a build may be required for
the engineers to learn about the dynamics of the system to
be controlled before the control system can be properly im-
plemented. This often leads to an iterative process. Other
areas of engineering have demonstrated the importance and
feasibility of flexible interfaces. For example, bridges are de-
signed so that its sections can cope with thermal effects and
amplifiers are produced so that defined tolerances on compo-
nents (e.g. resistors) can be handled. For a design to work
as expected, the magnitude of the possible differences in the
design parameters must be known , including combinations
of differences between parameters. Where possible the flex-
ibility at the interfaces should accommodate anticipated and
un-anticipated changes.

Quality Attributes for Scalability

Scalability shares many of the quality attributes discussed for
flexibility. However, it also includes how enlargement of the
system (anticipated or not) may be managed. There are two
options:

1. Expansion Capability - Produce a system with spare ca-
pacity that can be used when needed.
2. Expansion Facilities - Produce a system such that extra
facilities / capacity can be “bolted on”. Providing a facility
for expansion is not considered a non-functional property and
hence is not discussed further in this work .

2

3. BUILDING A VALUE FUNCTION TO
MEASURE “QUALITY”

The method used here to measure system quality is based
on timing properties and hardware usage. Properties such
as memory usage could easily be incorporated as required.
Other work has looked at how failure behaviour as well as
timing can be accommodated [5]. Even with only considering
a small number of system properties, the design is complex to
produce and the associated design tensions are hard to trade-
off against one another. For example, the need for a smaller
size suggests fewer processing devices are used but having
tight resource constraints is bound to make any system less
flexible.

Timing Properties

The timing properties of a system can be split into two broad
categories; essential and value added. The essential category
contains the timing requirements that have to be met, often
referred to as “hard” real-time requirements. The value added
category contains all other timing requirements and includes
“soft” requirements such as scalability.

Timing requirements exist for both individual tasks or mes-
sages and also for dependencies between tasks or mes-
sages. The requirements are independent of the computa-
tional model used. In [6], [7], [8] the set of possible timing
requirements were defined as follows.

1. Independent tasks and messages
(a) period - the rate at which a periodic task or message is

to be executed at.
(b) deadline - the time from release until when a task or

message has to complete.
(c) completion jitter - the allowed variation in task or mes-

sage completion.
2. Dependencies

(a) precedence - the order in which tasks and messages
should be executed. A precedence sequence is sometimes re-
ferred to as a transaction or process chain.

(b) end-to-end deadline - the allowed time from the release
of the first task to the completion of the last task in a particular
precedence sequence.

(c) separation - the minimum time between a task or mes-
sage commencing its execution from the completion of an
earlier task or message in the precedence sequence.

(d) completion jitter - the allowed variation in a precedence
sequence completing.

For all of the commonly used computational models in real-
time systems there exists timing analysis. E.g. refer to [9] for
fixed priority scheduling and [10] for static scheduling. The
methods used are based on the limits of execution times for
tasks being available [11]. The execution time limits needed
are the worst case and best case, although often the best case
is taken as zero. Independent of the timing analysis used, the
analysis is equally applicable to tasks or messages [12] and
the following results are normally available.

• Worst-Case Response Time (WCRT)
• Best-Case Response Time (BCRT)

Based on the WCRT and BCRT, it can be determined whether
all of the timing requirements are met except for the period.
Period is an implementation detail and is therefore not con-
sidered part of this optimisation problem. For all deadlines it
is necessary to show the WCRT is less than or equal to the
deadline.

These results can be used to build value functions for both
hard and soft timing requirements.

Value Function for Timing Requirements

To perform the trade-offs it is necessary to quantify how well
a system meets certain parameters. This can be done by as-
signing a value to each of the design requirements.

For value functions to be generally effective, they should be
normalised. That is, the value output should be based entirely
on the quality of the solution rather than being scaled by other
factors. The purpose of normalisation is to allow two different
designs, potentially for different problems, to be compared
without being prejudiced by either the number of elements
(tasks or messages) that make up the system or the values of
the properties for each element. For example, having a value
function where the value equals the number of tasks that meet
their deadlines is clearly influenced by the number of tasks as
well as the quality of the solution. By changing the value
function so that it is a ratio of the number of deadlines met to
the number of deadline requirements removes the dependence
on the number of tasks.

Value Function for “Essential” Timing Properties

For individual task deadlines, the value valueind deadline is
calculated using equation (1).

valueind deadline =
Dmet

Dnum

(1)

where Dmet is the number of tasks where the WCRT for
the task is less than or equal to the deadline and

Dnum is the number of deadline requirements.

Completion jitter is calculated using equation (2). The value
associated with the jitter requirements can then be calculated
using equation (3),

jitter = WCRT − BCRT (2)

valuejitter =
Jmet

Jnum

(3)

where Jmet is the number of tasks where the completion
jitter is less than the maximum allowed
completion jitter and

Jnum is the number of jitter requirements.

3

A value for end to end deadlines are calculated in the same
way as shown in equation (4). Methods for calculating end
to end worst case response times based on release jitter have
been presented in [12] and further improved with the use of
offsets in [13].

valueee deadline =
EEDmet

EEDnum

(4)

where EEDmet is the number of transactions with WCRT
less than equal to end to end deadlines and EEDnum is the
number of end to end deadline requirements.

If separation requirements are included in the design then the
value function may be formed using the same pattern as with
the transaction requirements.

valuesep =
sepmet

sepnum

(5)

where sepmet is the number of separation requirements
met and

sepnum is the number of separation requirements.

An important aspect in building a value function is to suf-
ficiently distinguish between a solution that is almost suc-
cessful and one that is completely successful. (Successful is
defined as when all essential requirements, e.g. timing, are
met.) Therefore during earlier work an investigation was per-
formed into the best way of doing this. A variety of methods
were tried. Below are two examples.

1. square law - Nicholson [14] proposed a method whereby
the result of the value functions are squared.
2. step - A bonus factor is given when a completely success-
ful solution is found.

For our work, we are using the the step method but further
investigation is needed. The reason is that the step method
gives the greatest differential between all requirements being
met and all but one requirement being met. To remain con-
sistent in our approach the step is implemented with another
value function component as shown in equation (6).

valuestep =

{

1 if all requirements are met,

0 otherwise
(6)

For example, in the case of all tasks meeting their deadlines,
the step function becomes

valueind deadline step =

{

1 if Dmet = Dnum,

0 otherwise
(7)

The weightings which are applied to value function compo-
nents when they are combined (as shown later in equation
(18)) can be used to change the size of the step.

Value Function for the Hardware Used

The value function for the hardware used has a number of in-
fluences on the design of systems including weight, physical
locality and power (consumption and dissipation). The hard-
ware associated with the design includes not only the micro-
processors needed but also a range of other items including:

• Programmable Logic Devices (PLD)
• Memory
• Communication Controllers
• Disk Drives
• Cabling

As the work presented here is restricted to the timing domain,
the main parameter considered is the microprocessor. The
reason parameters such as memory are not considered within
this problem is that their impact on the timing characteris-
tics mainly causes effects at a lower abstraction level. That
is, memory impacts on the tasks’ WCET which are assumed
inputs to this particular problem.

With respect to the microprocessors used, the key quality pa-
rameter is whether the most efficient use of hardware has been
made, i.e. that there are enough processors to host the appli-
cations but not too many which would push up costs or take
up too much space in the device. The ideal number of proces-
sors, Pideal, can be approximated using equation (9).

Umax =
∑

∀i∈tasks

Ci

Ti

(8)

Pideal = dUmaxe (9)

where Ci is the worst case execution time of task i and Ti is
the period of task i.

A normalised value can be produced using equation (11).

Pideal dist =

∣

∣

∣

∣

Pnum − Pideal

Pideal

∣

∣

∣

∣

(10)

valueproc = e−Pideal dist (11)

where Pnum is the number of processors used

The reason it is considered ideal is that the equation consid-
ers a processor loaded to 100% as being schedulable. Whilst
a task set may always be schedulable with a 100% load under
ideal assumptions and an optimal computational model [15],
this is not usually the case, especially where the idealistic as-
sumptions do not hold [16]. However, for the purposes of this
work, the approximation is considered sufficient. The fact
that there are no optimum computational models or timing
analysis for realistic assumptions is further reason for sup-
porting the use of heuristic search strategies.

Value Function for Flexibility

Tolerance to change is difficult to assess as the number of pos-
sible combinations of change makes the problem intractable.

4

It is, however, possible to assess by how much a limited num-
ber of parameters can be changed before the design no longer
meets its requirements. An emerging area that can help with
evaluating change is Scenario-Based Assessment (SBA) [17].
SBA has been used to evaluate the quality of architectural
solutions that would be otherwise difficult to assess, i.e. at-
tributes with subjective criteria or ones that are intractable
to evaluate using static analysis. For a survey of work per-
formed refer to [17]. The work to date on scenario-based
assessment has concentrated on evaluating the quality of the
functional aspects of architectures. In addition, to the best of
our knowledge the application of the technique to evaluating
change with respect to non-functional aspects of systems has
not been addressed except briefly in our own work [5]. The
work in [5] also shows how SBA can be used to assess the
impact of failures.

To assess the ability of a design solution to cope with change,
the types of change are split into two categories - anticipated
and unanticipated. An example of an anticipated scenario is
that a task’s execution time is expected to increase by 20%.
Unanticipated changes are those where the exact nature is not
known, however the scale of the changes may be bounded.
For example, it may be known that no task will have its
WCET increased by more than 100%.

The means of assessing whether particular scenarios can be
handled is to make a change and determine whether all the
timing requirements are met or not using the value functions
described previously. It should be noted SBA can be used
to assess how close a solution is to meeting all the timing
requirements if it does not already do so. In the context of
timing this would entail creating scenarios which reduce the
WCET and determine the number of timing requirements that
are met. However this is outside the scope of this work.

The value function for the SBA is given in equation (12). The
equation sums the value calculated with respect to how well
the timing requirements are met for each scenario generated.

valuescen =

∑

s∈scen values

Nscen

(12)

where scen is the set of scenarios being assessed,
Nscen is the number of scenarios, and
values is derived from equations (1) to (6),

e.g. by summing the value components.

Value Function for Scalability

As well as using SBA to sample the ability to cope with
change, it is also useful to be able to assess the extremes of
change. For this reason sensitivity analysis [18] is used to
determine individual task sensitivity and whole task set sen-
sitivity.

Individual Task Sensitivity—For each task determine by how
much its WCET can increase before the timing requirements

are no longer met. The value function can be calculated using
equation (16). The value function must be normalised against
the size of the WCET and secondly against the number of
tasks.

For each task, a value C INCi is calculated which is the
amount the WCET of the task can increase before the sys-
tem becomes unschedulable. If the system is already un-
schedulable, C INCi will be a negative value representing
the amount the WCET must decrease before the system is
schedulable. If decreasing the WCET of a task does not make
the system schedulable (e.g. reducing the WCET of a low pri-
ority task will not make a higher priority task schedulable),
then C INCi is undefined.

Assuming C INCi is defined, let

si = −

(

C INCi

Ci

+ 1

)

(13)

where Ci is the WCET of task i. As C INCi ≥ −Ci, si ≤
0. This leads to the sensitivity value for a single task being
defined as

sensi = 1 − esi (14)

If C INCi is undefined, it means modifying the WCET for
task i will not make the system schedulable. Having several
tasks which cannot be modified to make an unschedulable
system schedulable is not desirable and hence the full defini-
tion for sensi is

sensi =

{

1 − esi if C INCi is defined,

0 otherwise.
(15)

The over all individual task sensitivity value is then

valuesens =

∑

i sensi

Ntasks

(16)

where Ntasks is the number of tasks.

As well as having the average sensitivity for the individual
tasks, it is also important to know the minimum sensitivity.
The reason is as well as having a high average scalability it
is also useful for a design to not be particularly sensitive in
certain areas. That is, no individual task should be particu-
larly sensitive to change. For this reason the value function,
expressed in equation (17), also has a value for the minimum
individual sensitivity.

valuesens min = min
i

sensi (17)

Whole Task Set Sensitivity— For a whole task set, it is de-
termined by how much all the tasks’ WCET can uniformly
increase before the timing requirements are no longer met,
represented by the value ri for task set i. For example if
all WCETs in a task set may increase by 10%, ri = 1.1.

5

If all WCETs need to decrease by 10% before the system is
schedulable, ri = 0.9. By redefining si in equation (13) as
si = −ri, the same method of calculating a whole task set
sensitivity value as the individual task sensitivity value, re-
placing the number of tasks with the number of task sets as
appropriate.

Using the scalability analysis on unschedulable task sets has
been found to be particularly useful to distinguish between
two designs that don’t meet their requirements. It can be used
to guide the search towards a schedulable solution.

The means of searching for the amount by which task(s)’
WCETs can be increased on decreased is a classical search
problem. Currently a binary search is used. For each value
examined, the timing analysis is performed to determine
whether the timing requirements are met.

Combining the Value Functions

Given the individual results of the value functions, these have
to be combined into a single result. This is achieved using
equation (18).

overall value =

∑

∀i∈value fns valuei · weighti
∑

i weighti
(18)

where value fns is the set of value functions,
valuei is the result of value function i, and
weighti is the weight applied to value function i.

The equation features a summation over all value functions
with a weighting applied to each value function. The pur-
pose of the weighting is to ensure appropriate balances are
achieved for the design trade-offs and to help improve search
efficiency. As the resulting values from this function are used
to influence the simulated annealing search described later,
it is necessary to normalise the value against the weightings
used. This means that only the values of the weightings rela-
tive to each other affect the search rather than the weightings
themselves.

One aspect shown to be effective in finding the best solution
(i.e. reducing the search time and attaining the best resulting
design) is to use different weightings when all the timing re-
quirements are met. For instance, by making the number of
processors used with respect to the ideal less important when
the timing requirements are not all met means the searching
can use more processors and make it more likely the require-
ments are met. Then, once the requirements are met the de-
sign can be fine tuned.

4. TURNING THE VALUE FUNCTION INTO AN
ASSESSMENT FRAMEWORK

Tool Architecture

Figure 1 presents the basic architecture of the optimisation
framework. The key issue is the only part of the framework

Evaluation

Cost Function

Choose
Solution
(between

current and
existing best)

Modify
Solution

Exit
= yes

Final Solution
Static

Analysis

Scenario-
based

Analysis

Sensitivity
Analysis

Exit = no

Timing
Analysis

Solution to be
evaluated

Initial
Solution

Design
Constraints

Resource
Usage

Analysis
(i.e. no of

processors)

Random
Scenarios

Pre-defined
Scenarios

Figure 1. Architecture of the Assessment Tool

that is technology dependent is the computational model
which in this case is how tasks are scheduled and executed
on the chosen platform. The architecture chosen maintains
a clear separation between the schedulability analysis per-
formed, the calculation of the value function (including static
analysis, sensitivity analysis and scenario-based assessment)
and the search algorithm used as part of optimisation. Within
the scenario-based assessment, facilities are provided for the
use of pre-defined scenarios and scenarion which have been
randomly generated within defined bounds.

Search Algorithm

For the purposes of this paper a heuristic search technique,
simulated annealing, is used in order to explore the design
space and trade-off the different design tensions that are
present in the problem space. The reason for choosing sim-
ulated annealing [19] is based on it having previously been
demonstrated as effective for this class of problem [14]. Other
work we have performed has explored a range of heuristic al-
gorithms such as genetic algorithm, memetic algorithms and
nested annealing [19]. Simulated annealing has been found
to provide good performance while being relatively simple to
implement. Future work will examine whether the other algo-
rithms can be tuned so they are more effective. The simulated
annealing algorithm used in our work can be described by the
pseudo-code in figure 2

Design Choices

In our previous work [5], [20], the design choices for this
problem were established. The choices available were split
into three categories. Those applicable to individual tasks,
those applicable to messages and those applicable to the sys-
tem architecture. For some systems part or the whole of the
system architecture may be a design invariant and in these

6

set t to initial temperature
select new model as random starting model
loop
num moves = 0
loop
move to new model
increment num moves
calculate overall value using value functions
if value is highest value found so far
best model = current model
moves since improvement = 0

else
increment moves since improvement

endif
if value is higher than previous value
adopt new model

else
produce random probability
d = previous value - current value
if probability < exp(-d/t)
adopt new model

endif
endif
select new model

while num moves < M and moves since improvement < N
reduce t

while moves since improvement < N

Figure 2. Simulated annealing algorithm used to search
design space

cases the changes that can be made to its design would have
to be restricted. The choices are:

1. Individual Tasks
(a) Deadline
(b) Ordering - this can mean priority in priority scheduling

schemes or slot position in static scheduling
(c) Offset - the time of task’s first release relative to a fixed

point in time
(d) Release jitter - the maximum variation in when the task

is released
(e) Allocation - the processor on which a task executes

2. Messages - messages exist where tasks are linked by an
end-to-end deadline. They be sent on a network between pro-
cessors or a bus within a processor.

(a) Deadline
(b) Ordering
(c) Offset
(d) Allocation - allocation to a network if more than one

possible communications method exists.
3. System Architecture

(a) Addition or removal of additional processors

Derivation of Weightings

The purposes of the weightings are two fold. Firstly to ob-
tain the best possible design by biasing the different design
tensions. For example ensuring meeting all timing require-
ments is more important than supporting change. Secondly,
to improve the ability and efficiency of searching. For exam-
ple, by having too great a weighting for meeting all timing

requirements then the search algorithm may not be able to
move between two areas of the design space through a region
where the timing requirements are not all met. This could
prevent a design with better properties, e.g. ability to cope
with more changes, being found. The problem of assigning
weights is widely recognised as a significant problem [14],
[19]. To date our approach has derived the values by trial and
error but it is recognised further research should be performed
into finding a principled method.

5. EVALUATION

The evaluation presented in this section is intended to show
how the framework uses a set of requirements and an esti-
mated WCET to generate what it considers the best solu-
tion. Note that not all value function components such as
scenario based analysis and completion jitter requirements
are included in this evaluation. To demonstrate the way the
framework operates in the available space, a small example
with a few tasks is chosen. However, the approach is equally
applicable to large-scale systems. In addition, other work, in-
cluding [5], has shown heuristic search algorithms can handle
the scalability to allocating tasks for large systems.

For the purposes of the example, the fixed priority scheduling
approach is used though the framework has been applied to
other approaches. For the example presented, it is assumed
there are no kernel overheads or blocking. Timing analysis
for fixed priority scheduling is presented in section 7. In this
approach all tasks and messages are given a static priority
off-line and then at run-time the priority is used to decide
which task (i.e. the highest priority one) should be executed
at any particular time. The priorities are assigned randomly.
These priorities are then adapted during the execution of the
heuristic search algorithm.

Requirements of the Example

The example consists of 18 tasks forming 3 software appli-
cations each of which may be decomposed into a number of
transactions. Table 1 gives the individual task requirements
and WCETs. Tasks 1A to 1E belong to application 1, tasks
2A to 2F belong to application 2 and tasks 3A to 3G make up
application 3.

Messages which are sent between tasks are shown in figure
3. Messages must be allocated to a communications medium
which connects the processors which the sending and receiv-
ing tasks are allocated to. Messages are assumed to have a
fixed size and the execution times for messages are dependent
upon the speed of the network. For this example there is a sin-
gle network connecting all processors for sending messages
between processors. Sending a message on this network takes
93ms. If both tasks are located on the same processor, the
message can be sent on a communications bus which is as-
sumed to take 1ms. Messages have the same period as that
of the sending task. Messages are scheduled using the same
fixed priority scheduling analysis as used on the tasks as pro-

7

Id T D WCET
1A 500 500 180
1B 1000 750 150
1C 1000 1000 75
1D 1000 1000 140
1E 1000 1000 75
2A 2000 2000 200
2B 2000 2000 200
2C 2000 2000 200
2D 1750 1500 275
2E 2000 2000 225
2F 2000 1500 200
3A 2000 2000 200
3B 2000 2000 150
3C 2000 1500 200
3D 2000 2000 200
3E 2000 2000 225
3F 2000 2000 200
3G 2000 2000 200

Table 1. Individual task timing requirements

posed in [21]. Like tasks, messages are assumed to be able
to preempt each other which is not realistic. However, the
framework has been designed to allow different scheduling
models to be used for scheduling tasks and messages. It also
allows different scheduling models to be applied to different
processors or networks within the system. Future evaluations
will exploit this.

All transactions within application 1 must complete within
1000ms. Transactions within applications 2 and 3 may take
up to 2000ms. Transaction response times are calculated
based on the holistic scheduling release jitter method in [12].
This introduces a delay in the form of release jitter to take
account of preceding tasks and messages. In simple cases,
the release jitter is equal to the maximum WCRT of preced-
ing tasks / messages. Some additions have been made to the
method to reduce pessimism when two tasks are allocated to
the same processor. If a higher priority task is sending a mes-
sage to a lower priority task then the lower priority task will
already be delayed by interference from the higher priority
task. The lower priority task only needs to have an additional
delay (release jitter) to take account of time required to send
the message. If the message is being sent from a task on a dif-
ferent processor the release jitter must take account of the ex-
ecution of the sending task as well as the time required to send
the message. In the longer term, a more general approach to
holistic scheduling [13] will be taken to remove restrictions
such as deadlines must be less than or equal to period.

Table 2 shows the weightings used to produce the results.
These weightings are intended to balance scalability with
hardware usage.

Static Timing Analysis Results

The results of the task allocation and attribute assignment are
shown in table 3. RJ is the release jitter due to task communi-
cation and R is the worst case response time. P is the priority

1B1A

1D

1C

1E
1A_1B

1B_1C

1B_1D

1B_1E

1C_1E

1D_1E

2B

2A

2A_2B

2E

2C
2B_2C

2F

2D
2B_2D

2B_2E 2E_2F

3B

3A

3A_3B

3E

3C
3B_3C

3F

3D
3B_3D

3A_3E
3E_3F

3G

3D_3G

3F_3G

Figure 3. Messages sent between tasks

Value Function Weighting
Schedulable tasks 2000
Schedulable messages 2000
Schedulable processors 200
Schedulable communications 200
Schedulable system 500
Processors used 100
Task sensitivity 20
Processor sensitivity 20
Communications sensitivity 20

Table 2. Weightings used in framework

assigned to each task. A shows where the task is allocated to.
C MAX represents the largest possible value for the worst
case execution time of a task before the schedulability of the
system is broken, assuming all other execution times remain
the same. Figures in the SCAL column show the allowed
scaling of task execution time as a percentage derived from
C and C MAX .

Table 4 shows the results of the message allocation. In the
allocation column, Net indicates the message was allocated
to the network connecting the processors and Bus X indicates
the message was allocated to the communications bus for pro-
cessor X. The communications bus for a processor is used to
send messages between tasks allocated to the same proces-
sor. Scalability information is also available for messages but
these results are not considered in this evaluation. Table 5
shows the utilisation and scalability of each processor using

8

Id T C RJ R P A C MAX SCAL
2B 2000 200 665 865 6 1 530 165
2C 2000 200 758 1158 11 1 530 165
3D 2000 200 854 1454 12 1 530 165
3G 2000 200 870 1670 13 1 530 165
3A 2000 200 0 200 2 2 530 165
3E 2000 225 1 426 4 2 555 147
3B 2000 150 186 761 15 2 480 220
3F 2000 200 2 777 16 2 530 165
2A 2000 200 0 200 1 3 642 221
2E 2000 225 2 427 3 3 822 265
2D 1750 275 1 701 7 3 872 217
2F 2000 200 3 903 14 3 797 298
1A 500 180 0 180 8 4 275 53
1B 1000 150 3 333 9 4 341 127
1C 1000 75 5 410 10 4 266 255
1D 1000 140 5 730 17 4 331 136
1E 1000 75 9 809 18 4 266 255

Table 3. Results of task allocation and attribute assignment

Id T C RJ R P A
3F 3G 2000 93 777 870 4 Net
3A 3B 2000 93 200 386 7 Net
3B 3D 2000 93 575 854 9 Net
3B 3C 2000 93 575 947 12 Net
2A 2B 2000 93 200 665 15 Net
2B 2C 2000 93 400 958 16 Net
3D 3G 2000 1 1454 1455 14 Bus 1
3A 3E 2000 1 200 201 3 Bus 2
3E 3F 2000 1 425 427 11 Bus 2
2A 2D 2000 1 200 201 8 Bus 3
2A 2E 2000 1 200 202 10 Bus 3
2E 2F 2000 1 425 428 17 Bus 3
1C 1E 1000 1 410 411 1 Bus 5
1B 1D 1000 1 333 335 2 Bus 5
1A 1B 500 1 180 183 5 Bus 5
1B 1E 1000 1 330 334 6 Bus 5
1B 1C 1000 1 330 335 13 Bus 5
1D 1E 1000 1 728 734 18 Bus 5

Table 4. Results of message allocation

the weightings in table 2.

A second evaluation was performed with the weights adjusted
to minimise the number of processors used without consider-
ing scalability. These weightings are shown in table 6 and the
usage of each processor is shown in table 7. Whether the so-
lution with fewer processors is more desirable than the more
scalable solution is dependent upon the requirements of the
system.

A third set of weightings, shown in table 8 was used to max-
imise scalability. This solution again used 5 processors as
in the first evaluation but managed to schedule the system to
achieve higher mean processor scalability as shown in table 9
although the minimum scalability was not much improved.

Processor Utilisation Scalability
1 40.00% 41.75%
2 38.75% 42.76%
3 46.96% 66.56%
4 10.00% 176.78%
5 80.00% 23.96%

Table 5. Processor utilisation and scalability

Value Function Weighting
Schedulable tasks 2000
Schedulable messages 2000
Schedulable processors 200
Schedulable communications 200
Schedulable system 500
Processors used 300
Task sensitivity 10
Processor sensitivity 10
Communications sensitivity 10

Table 6. Weightings used to minimise hardware usage
(evaluation 2)

Processor Utilisation Scalability
1 66.96% 35.24%
2 80.00% 24.65%
3 68.75% 45.07%

Table 7. Processor utilisation and scalability results for
evaluation 2

Value Function Weighting
Schedulable tasks 2000
Schedulable messages 2000
Schedulable processors 200
Schedulable communications 200
Schedulable system 500
Processors used 20
Task sensitivity 50
Processor sensitivity 50
Communications sensitivity 50

Table 8. Weightings used to maximise scalability
(evaluation 3)

Processor Utilisation Scalability
1 21.25% 162.17%
2 80.00% 24.65%
3 30.00% 121.73%
4 38.75% 93.60%
5 45.71% 99.62%

Table 9. Processor utilisation and scalability results for
evaluation 3

9

Sensitivity Analysis

For the first evaluation which attempted to balance hardware
usage with scalability, individual task scalability ranged from
53% for task 1A to 298% for task 2F.

In evaluation 2, the task with least scalability was again task
1A with 54% but task 3B achieved a scalability of 412%. In
fact, many tasks were individually more scalable than the first
evaluation although the overall processor scalability values
presented in table 7 were lower. An explanation for this is
that by forcing the search to fit the tasks onto fewer processors
also forced it to find a more efficient scheduling solution.

The scalability of tasks in evaluation 3 ranged from 54% to
481% with a mean value of 368%. This is a large improve-
ment over the first evaluation which also used 5 processors. It
is noted that the scalability of processor 2 in table 9 matches
that of processor 2 in table 7. In both instances the tool chose
to place the whole of application 1 on a single processor.
Splitting up the tasks of this application would increase the
communications overheads and so this proved to be a good
solution in both cases.

These results indicate that the tool produces a better solution
with a definite aim of optimising one particular quality at-
tribute as opposed to balancing more than one. This could be
due to the fact that, in the first evaluation, no great importance
was given to either quality attribute over schedulability so the
search stopped soon after finding a schedulable solution.

The scalability of tasks varies greatly throughout the design.
It would be useful to include additional information such as
the probability that a particular task will change within the de-
sign. This would allow the sensitivity analysis to be targeted
more appropriately.

6. CONCLUSIONS

During the course of this paper we have presented a number
of non-functional quality attributes which may be considered
for real time embedded systems design. Using timing require-
ments as an example, we have shown how a value function
may be developed to quantify a quality attribute and how it
may be normalised to allow different designs to be compared
using the value function.

We have developed a framework which uses the value func-
tion within a heuristic search environment to optimise the de-
sign for different requirements. An example was presented
which evaluated maximising the scalability and minimising
the number of processors of a design. When attempting to
maximise scalability, the scalability of individual tasks var-
ied greatly and hence further work needs to be done on how
sensitivity analysis can be targeted to smaller sections of the
design. The framework was successful at trading off proces-
sor utilisation against scalability and reduced the number of
processors used from 5 to 3 when the weightings were biased

towards reducing the number of processors.

It has been shown how scenario based assessment may be in-
corporated into the value function but an evaluation is yet to
be done. Further work is required in assessing how to create
scenarios and where in the design to apply them. Some proto-
type implementations are being tested and will be the subject
of future research.

7. APPENDIX

Timing Analysis for the Fixed Priority Scheduling Model

The standard timing analysis for each individual processor is
solved using equation (A.1) which is taken from Harter [9].
The analysis is valid for task sets with an unique critical in-
stant. Harter’s analysis assumes there are a fixed number of
tasks, all of which have a fixed unique priority, zero offset,
and the deadlines are not greater than the period.

Ri = Ci + Bi + Ii (A.1)

where i is a task in the set of tasks for a given node
Ri is the WCRT of task i

Ci is the worst-case execution time of task i

Bi is the worst-case blocking time suffered by task i

Ii is the worst-case interference suffered by task i

The blocking time, Bi, is the longest time that a lower priority
task can prevent task i when it is runnable. The blocking time
is dependent on the computational model that is being used.
In an idealised preemptive model, the blocking time should be
zero. However cases exist, particularly with shared resources,
where some blocking may need to be accounted for.

The interference a task suffers is the maximum utilisation
from the critical instant for its higher priority tasks before
it executes for the first time. The interference is calculated
using equation (A.2) which represents the sum of the utilisa-
tions over the duration of interest for all the higher priority
tasks than task i. The utilisation is the product of the num-
ber of times the task can execute and its worst-case execution
time. The number of times a higher priority task can execute
is found by rounding up the result of the time during which
interference may occur (i.e. the response time of the task be-
ing analysed) divided by the period of the higher priority task.

Ii =
∑

j∈hp(i)

⌈

Ri + Jj

Tj

⌉

Cj (A.2)

where hp(i) is the set of higher priority tasks than task i

Ji is release jitter introduced waiting for preceding
tasks or messages

10

Equation (A.1) is solved by forming a recurrence equation as
shown in equation (A.3).

rn+1
i = Ci + Bi +

∑

j∈hp(i)

⌈

rn
i + Jj

Tj

⌉

Cj (A.3)

with r0
i = Ci

which terminates when rn+1
i = rn

i , or rn+1
i + Ji > Di.

where Di is the deadline of task i, and
Ti is the period of task i.
Ji is the release jitter based on Rj for j ∈ pre(i) and
pre(i) is the set of tasks preceding task i.

To obtain the final value for the WCRT, ri must be combined
with the possible delay from previous tasks at the point at
which the analysis converges or when the worst-case response
time exceeds the task’s deadline.

Ri = ri + Ji (A.4)

REFERENCES

[1] Y. Yeh, “Dependability of the 777 primary flight control
system,” 5th IFIP Working Conference on Dependable
Computing for Critical Applications, 1995.

[2] H. Kopetz, Real-Time Systems. Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publications, 1997.

[3] J. Laprie, J. Arlat, C. Beounes, K. Kanoun, and
C. Hourtelle, “Hardware and software fault-tolerance:
Definition and analysis of architectural solutions,” 7th
Annual International Symposium Fault-Tolerant Com-
puting, pp. 116–121, 1987.

[4] C. Jones, “Specification and design of (parallel) pro-
grams,” in Proceedings of IFIP Information Processing,
pp. 321–332, 1983.

[5] I. Bate and N. Audsley, “Flexible design of complex
high-integrity systems using trade offs,” in 8th IEEE In-
ternational Symposium on High Assurance Systems En-
gineering, pp. 22–31, 2004.

[6] I. Bate and A. Burns, “An integrated approach to
scheduling in safety-critical embedded control sys-
tems,” Real-Time Systems Journal, vol. 25, pp. 5–37,
Jul 2003.

[7] M. Torngren, “Fundamentals of implementing real-time
control applications in distributed computer systems,”
Real-Time Systems, vol. 14, pp. 219–250, May 1998.

[8] K. Sandstrm and C. Norstrm, “Managing complex tem-
poral requirements in real-time control systems,” in Pro-
ceedings of 19th IEEE Conference on Engineering of
Computer-Based Systems, pp. 103–109, 2002.

[9] J. Harter, “Response times in level-structured systems,”
ACM Trans. Computer Systems, vol. 5, pp. 232–248,
Aug. 1987. ACM Transactions on Computer Systems.

[10] G. Fohler and C. Koza, “Heuristic scheduling for dis-
tributed real-time systems,” Tech. Rep. Research Re-
port No. 6, Institut fur technische Informatik, Technis-
che Universtate Wien, Austria, 1989.

[11] P. Puschner and C. Koza, “Calculating the maximum
time of real-time programs,” Real-Time Systems, vol. 1,
no. 2, pp. 159–176, 1989.

[12] J. A. Clark and K. Tindell, “Holistic schedulability anal-
ysis for distributed hard real time systems,” Micropro-
cessing & Microprogramming, vol. 50, pp. 117–134,
April 1994.

[13] J. Gutierrez, J. Garcia, and M. Harbour, “On the schedu-
lability analysis for distributed real-time systems,” in
Proceedings of the 9th Euromicro Workshop on Real-
Time Systems, pp. 136–143, 1997.

[14] A. Burns, M. Nicholson, K. Tindell, and N. Zhang, Al-
locating And Scheduling Hard Real-Time Tasks On A
Parallel Processing Platform YCS 238. Dept of Com-
puter Science, University of York, October 1994.

[15] J. Stankovic, M. Spuri, K. Ramamritham, and G. But-
tazzo, Deadline Scheduling For Real-Time Systems:
EDF and Related Algorithms. Kluwer Academic Pub-
lishers, 1998.

[16] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard real-time environment,”
J. ACM, vol. 20, no. 1, pp. 40–61, 1973.

[17] L. Dobrica and E. Niemel, “A survey on software archi-
tecture analysis methods,” IEEE Transactions on Soft-
ware Engineering, vol. 28, pp. 638–653, July 2002.

[18] A. Burns, S. Punnekkat, L. Stringini, and D. Wright,
“Probabilistic scheduling guarantees for fault-tolerant
real-time systems,” in Proceedings of the 7th IEEE In-
ternational Working Conference on Dependable Com-
puting for Critical Applications, pp. 361 – 378, 1999.

[19] V. Rayward-Smith, I. Osman, C. Reeves, and G. Smith,
eds., Modern Heuristic Search Methods. Wiley, 1996.

[20] I. Bate and N. Audsley, “Architecture trade-off analysis
and codesign for safety-related real-time embedded sys-
tems,” in Proceedings of 1st International Workshop on
Embedded Systems Codesign, pp. 8–15, 2002.

[21] K. Tindell, A. Burns, and A. J. Wellings, “Analysis
of hard real-time communications,” Real-Time Systems,
vol. 9, no. 2, pp. 147–171, 1995.

11

Dr Iain Bate is a lecturer in Real-
Time Systems within the Department of
Computer Science at the University of
York. Prior to this, he has been a re-
searcher for ten years within the de-
partment based in both the BAE SYS-
TEMS and Rolls-Royce research centres.
His research interests include schedul-

ing and timing analysis, systems engineering including opti-
misation (design trade-offs) and design assurance. He is also
the editor of the journal “Microprocessors and Microsys-
tems” and a director of Origin Consulting (York) Ltd who
provide advice to the dependable real-time systems industry.

Paul Emberson is a Research Associate
at the University of York, U.K. His re-
search interests include scenario based
analysis and real time systems. He ob-
tained an MMath degree in Mathemat-
ics and Computer Science from the Uni-
versity of York in 2002. He previously
worked in industry in the fields of soft-

ware testing and mobile telecommunications.

12

