
Dealing with Emergent Properties in Embedded Systems

Iain Bate

Department of Computer Science, University of York,
York, YO10 5DD, United Kingdom

e-mail: iain.bate@cs.york.ac.uk

Abstract

The development of many systems suffer from unex-
pected problems during development leading to time and
cost penalties. A common situation that leads to problems
is when components are integrated and un-anticipated fea-
tures are formed. These features are often termed emer-
gent properties. In this paper, a compositional approach
is adopted where components are parameterised with ex-
tra information that can then be used to understand the
implications of integration and mapping.

1 Introduction
Emergent properties are an important issue in the devel-

opment of systems especially those where non-functional
properties are considered important or have to be guaran-
teed. Their importance is due to the fact they can cause
anomalous behaviour and hence costly changes [5]. There
are many different definitions of the term emergent prop-
erty, however during the course of this work it is taken to
mean those properties that are difficult to predict as they
are a by-product of integration and of mapping a design
onto a target platform. That is, those properties that could
not easily be predicted by simply considering the model
before it is mapped onto a platform. The term emergent
properties will still be used to describe the properties even
though a principal aim of the work is to ease the prob-
lems of their prediction so they are no longer classed as
emergent. A model is considered to be any appropriate
description of a system. In the context of this work no re-
strictions are assumed concerning the level of abstraction
of the model or how the model is represented. The de-
scription can be held in a wide range of formats including
MATLAB, Ada, assembly language etc..

There are a number of possible strategies for dealing
with emergent properties caused by integrating compo-
nents / models and mapping them onto the target platform.
The most popular of these, at least from industry’s per-
spective, is to produce models based on un-realistic mod-
els (e.g. assuming static latencies for control systems), test
the system and fine tune the model to compensate. The
problems with this method are each iteration is expensive
in terms of time and money, and often the problems are
difficult to overcome leading to significant re-designs.

Another method of dealing with emergent properties is
to embed realistic computational models into the overall

application model in the first place so that fewer surprises
are found when mapping the application. Some of our pre-
vious work has taken this strategy [2, 3]. Potential prob-
lems with this include, issues can still arise if the reference
model is incorrect and the approach is holistic, i.e. it deals
with whole systems. The holistic nature of the approach
means that if problems do arise then it might be difficult
to diagnose and fix the problem as the symptoms may be
known but not necessarily the root cause.

The purpose of this work is to investigate an alternative
method of solving the problem based on parameterised
components (defined here as a replaceable unit which pro-
vides a clear and specific function, and featuring a well-
defined interfaces) and composition. The basis of the ap-
proach is that the information about how emergent proper-
ties affect behaviour is embedded into the system at the
lowest level and then the components are combined to
produce the overall effect. Taking this approach allows
the non-functional properties to be established within the
model rather than emerge in the later parts of the design.
There are two principal benefits of this strategy. Firstly,
a detailed understanding of where and how the emergent
properties affect the system is available which is benefi-
cial from the perspectives of design, change control and
maintenance. Secondly, as the components are composed
into larger units, then interim checks can be performed on
whether constraints are met. The approach presented in
this paper is considered general purpose but is explained
using a control systems example.

2 Background on Control Systems
All scheduling approaches require a minimum set of

information about timing requirements so that an appro-
priate scheduler can be produced. For most scheduling
approaches the minimum set of information is the dead-
line and period of tasks [6]. This section explains why
these requirements are important in the context of a PID
(Proportional, Integral, Derivative) loops.

The main purpose of a PID loop is to ensure the re-
sponse to inputs is sufficiently fast whilst maintaining the
stability, accuracy and limits on data. Figure 1 depicts a
typical PID loop used to control the operation of a plant as
part of a control system. The control system input is the
difference between the input demand (denoted by I), which
is the desired plant state, and the plant’s actual output (de-
noted by OP) and it is referred to as the error, (denoted



by E). In addition, “real” systems have errors through ef-
fects such as measurement disturbance, load disturbance
and plant error which are also represented in Figure 1. The
PID loop features three gain factors (KP , KI , KD) which
are for the proportional, integration and differential parts
of the calculation respectively.

Controller

Plant
T(s)

Integration
Gain
(KI)

Gain
(Kp)

Differentiation
Gain
(KD)

+

Plant
Input
(O)

Error
(E)

Input
Demand

(I)
+_

Ideal
Plant

Output
(AO)

+

Load
Disturbance

(LD)

A/D

Sampling
Signal

+
Actual
Plant

Output
(OP)

Measurement
Disturbance

(MD)

A/D D/A
PID

Output
(OC)

De-sampling
Signal

Figure 1. Control System Using a PID loop
Equations (1)-(5) represent the stages of calculation

and transformation (in discrete form) performed in the cal-
culations performed by the “Controller” in Figure 1. The
equations are formed based on the assumption of a con-
stant sampling rate and latency. In a computer-based con-
trol system, these assumptions are unlikely to be valid.
Other work, e.g. [2, 3, 6], has explained how variances
from the assumptions can affect the overall control sys-
tems performance, e.g. introduce errors, affect stability
etc., by the use of appropriate timing requirements, i.e.
periods and deadlines. In this work knowledge of these ef-
fects are built up using parameterised components so that
the design reflects reality and hence less prone to unex-
pected errors.

E(z) = I(z) − OP (z) (1)

CKP = KD
P · E(z) (2)

CKI = KD
I ·

∑

∀z

E(z) (3)

CKD = KD
D · (E(z) − E(z − 1)) (4)

OC(z) = CKP + CKI + CKD (5)

where E(z) is the current sample of signal E(t)
E(z − 1) is the previous sample of signal E(t)

3 Building Emergent Properties into Com-
ponents

The emergent properties to be considered in this work
are value errors and timing. Others including power (con-
sumption and dissipation), memory usage and dependabil-
ity are not considered for space reasons. From a compo-
nent perspective, the components needed for a computer-
based PID loop are sampling, de-sampling and the calcu-
lation step. The following sub-section take each of these
components in turn and introduce the emergent properties.

3.1 Sampling Component
The purpose of a sampling component is to convert a

continuous analogue signal, I(t), to a discrete digital sig-

nal, I(z). In an ideal world, the values of I(t) and I(z)
would be the same. However value errors and timing have
two main impacts. Firstly converting from an analogue to
a digital signal introduces quantisation errors due to the
finite resolution available. The error due to the quantisa-
tion effect is shown in equation (6). The maximum quan-
tisation error is shown in equation (7) which represents
the difference between two consecutive sampled values. It
should be noted that the equations assume a linear conver-
tor that does not saturate.

quan_error = I(t)−









I(t)
range(I(z))

2
N

I(z)







 ·
range(I(z))

2NI(z)
(6)

where range(I(z)) is the range of values representable in
the sampled signal and NI(z) īs the number of bits used for
sampling, e.g. NI(z) = 14 for a 14 bit analogue to digital
convertor.

quan_error <
range(I(z))

2NI(z)
(7)

The second impact introduces a delay between a signal
being available on the input and it being ready for process-
ing. The potential error due to the sampling effect is shown
in equation (8). This equates to the difference between any
two consecutive samples. The maximum sampling error is
shown in equation (9). This is based on the maximum rate
of change of the sampled signal (often referred to as its
maximum slew rate) multiplied by the sampling period,
∆Ts. A key point these equations demonstrate is the de-
pendence not only only the design but also the application,
e.g. slew rate.

samp_error = I(t) − I

(

t −

∣

∣

∣

∣

t

∆Ts

∣

∣

∣

∣

∆Ts

)

(8)

max_samp_error = max

(

δ(I(t))

δt

)

· ∆Ts (9)

where max(f(t)) is the maximum of a function f(t)

3.2 De-sampling
The purpose of a de-sampling component is to convert a

digital signal, I(z), to a continuous analogue signal, I(t).
In an ideal world, the values of I(t) and I(z) would be the
same. However the process introduces timing errors, sim-
ilar to the previous sampling errors, due to the finite rate at
which de-sampling is performed. The cost of quantisation
errors can be included using equations (6) and (7).

The errors due to the de-sampling effect are similar
to those for sampling given in the previous section. The
equations for de-sampling are given in equations (10) and
(11). In a similar fashion to the previous sampling errors,
there is a mix of variables between application dependent
(i.e. rate of change of the input) and design (i.e. the de-
sampling rate). It should be noted that it is common for
the de-sampling rate to be equal to the sampling rate.

desamp_error = I(z) − I(z − 1) (10)



where I(z) is the current signal de-sampled, and I(z − 1)
is the previous signal de-sampled.

max_desamp_error = max

(

δ(I(z))

δz

)

· ∆Td (11)

where max(f(t)) is the maximum of any given function
f(t), and Td is the de-sampling rate.

3.3 Signal Transformation
For the purposes of this work, it is assumed that the

calculation performed does not introduce further signifi-
cant value errors. As most reasonably priced analogue to
digital convertors have less than 16 bits and most reason-
ably priced microprocessors support 32 bit mathematical
operations, even if the transformations are performed in
multiple stages it is considered a reasonable assumption.
However if further value errors were significant then equa-
tions of the form of (6) and (7) could be used.

The signal transformation does however introduce sig-
nificant latencies. On microprocessor-based solutions the
latencies are normally variable. The error due to latency
is given in equation (12). The approximate form is then
calculated in equation (13) which is based on an instan-
taneous value for the rate of change multiplied by the la-
tency. Then, the maximum value is given in equation (14)
which uses the approximation (equation (12)) in the worst-
case scenario where both the rate of change and the latency
are maximum. The minimum value for the error due to la-
tency is also given in equation (15) for completeness pur-
poses.

latency_error = I(t) − I(t − latency)(12)

latency_error ≈
d(I(t))

dt
· latency (13)

max_latency_error ≈ max

(

δ(I(t))

δt

)

· Ri (14)

min_latency_error ≈ min

(

δ(I(t))

δt

)

· Bi (15)

where Ri is the worst-case response time (or latency) of
the unit of computation being considered (i.e. a task or
transaction), and Bi is the best-case response time (or la-
tency)

Again, the maximum rate of change of the signal is ap-
plication dependent and the worst-case response time is a
by-product of design choices made.

4 Combining Components and Properties
There are two principal methods of combining compo-

nents. The first method is to treat each component individ-
ually, derive its worst-case properties (e.g. error) and then
combine using an appropriate method. This approach was
taken by Menard [4] where it was shown how noise asso-
ciated with components could be combined using square
functions. The advantage of this approach is its simplic-
ity and scalability, however significant pessimism may re-
sult as all related components may not have their worst-
case properties simultaneously. Instead in this paper, the

combination is to be done mathematically so that a re-
sulting expression is obtained for the whole system. This
approach is more precise and with modern tools such as
MATLAB and Mathematica then scalability should not be
a significant issue. The other reason for choosing this ap-
proach is its novelty.

Based on this strategy, in this section the equations (1)-
(5) without emergent properties are modified to account
for the appropriate errors introduced by the emergent prop-
erties identified in section 3. The first equation to be
modified is equation (1) which is to be modified to ac-
count for emergent property effects on the variables I(z)
and OP (z). Equation (16) shows how the variable I(z)
provides a modified input variable, I ′(z) to account for a
sampling rate of Tsi and quantisation errors caused by the
NI(z) bit sampling over the range magnitude range(I(z))
and the subsequent calculations. An assumption made
throughout this work is that variables neither underflow or
overflow. A specific instance of the calculation is given in
equation (17) which allows for the maximum sample error
between two samples z and z − 1.

I ′(z) = I(z) + max

(

δ(I(t))

δt

)

· ∆Tsi

±

(

range(I(z))

2NI(z)

)

(16)

I ′(z) = I(z) + (I(z) − I(z − 1))

±

(

range(I(z))

2NI(z)

)

(17)

Similarly, equation (18) shows how the variable OP (z)
provides a modified input variable, OP ′(z) to account
for a sampling rate of Tso and quantisation errors caused
by the NOP (z) bit de-sampling over the range magnitude
range(OP (z)). Again, a specific instance of the calcula-
tion is given in equation (19) which allows for the maxi-
mum sample error between two samples z and z − 1.

OP ′(z) = OP (z) + max

(

δ(OP (t))

δt

)

· ∆Tso

±

(

range(OP (z))

2NOP (z)

)

(18)

OP ′(z) = OP (z) + (OP (z) − OP (z − 1))

±

(

range(OP (z))

2NOP (z)

)

(19)

Upon first inspection of equations (17) and (19), it
would seem that the variables related to period have been
eliminated. However this is not the case as they still fea-
ture as part of the time between any two samples, e.g. the
time between samples I(z) and I(z − 1).

The modified version of equation (1) is given in equa-
tion (20) which has been updated to reflect the new vari-
ables given in equations (16) and (18).

E′(z) = I ′(z) − OP ′(z) (20)

The modified version of variable OC(z), which has
been updated to account for the latency that can arise in



the computer-based calculations performed is calculated
using equation (21).

OC ′(t) = OC(t) +

(

δ(OC(t))

δt

)

· latency (21)

Finally, the variable OC ′(t) is then modified to account
for the de-sampling rate Td to give OC ′′(t) as shown in
equation (22).

OC ′′(t) = OC ′(t) + max

(

δ(OC ′(t))

δt

)

· ∆Td (22)

A key issue here is that depending on how the system
is designed it could be argued that variable OC ′′(t) shown
in equation (22) features a double hit as the error features
timing components for both latency and update rate. This
version of the equation assumes that the sampling and de-
sampling of the system is performed asynchronously from
that of the calculations. Therefore the worst-case delay
from sampling to de-sampling is Tsi + latency. If a syn-
chronous approach was used, then the equation in (21)
with an appropriate latency would be used to calculate
OC ′′(t). A key benefit of having parameterised compo-
nents and dealing with emergent properties in the way pre-
sented, is that the different equations can be used to under-
stand the implications of different design and integration
strategies as part of the overall design trade-off analysis
associated with a system’s development.

5 Use of the Parameterised Components
The approach is demonstrated using the same ball and

beam example [1] as in our earlier work [2, 3]. The plant
(i.e. the ball and beam) has a variable to be controlled
is the position of a free-rolling ball on a beam. It can
be mathematically represented by a second-order system
using the linearised equation (23). The controller output
represents the angle of the gear, θ(s), and the variable un-
der control is the position of the ball, r(s). The ball and
beam is unstable without control and as such is more diffi-
cult than examples where the control system is inherently
stable.

r(s)

θ(s)
=

0.21

s
(23)

The PID equations (1) - (5) were modified to include
emergent properties based on equations (16) - (22) and the
application specific details from equation (23). Equations
(24)-(29) are the result.

The equations show that emergent properties come
from four sources. Firstly, properties that emerge from
components combined behaviour, e.g. delays due to se-
quential nature of the data flow between tasks. Secondly,
properties that emerge from the mapping of the tasks onto
the platform, e.g. errors due to the limited precision of the
platform. Thirdly, properties that emerge from executing
on the platform, e.g. errors due to latency. Finally, proper-
ties that emerge due to “real” world effects, e.g. errors due
to load disturbance.

In the full paper these equations were used to derive
constraints on the emergent properties in order to meet key
control objectives such as maximum output error. This
was achieved by feeding in known (worst-case) signals
and determining the error. Where appropriate this was
maximised using differentiation-based techniques. The re-
sults of the evaluation are valid periods and deadlines for
which the error was within the tolerable bounds.

O(t) = OC(t) + LD(t) (24)

AO(s) = T (s) · O(s) (25)

AO(s) =

(

0.21

s

)

· O(s) (26)

OP (t) = AO(t) + MD(t) (27)

E(z) = I(z) + (I(z) − I(z − 1))

±

(

range(I(z))

2NI(z)

)

− OP (z) + (OP (z)

− OP (z − 1)) ±

(

range(OP (z))

2NOP (z)

)

(28)

OC(t) = CKP + CKI + CKD

+ [(OC(t) − OC(t − ∆T )) · latency] (29)

6 Conclusions
In this paper, a means of dealing with emergent proper-

ties, e.g. latency, resolution error etc, has been presented.
The aim of the work has been to embed information into
components (e.g. resolution and latency) that can then be
used during the integration of components and subsequent
mapping onto a given platform in order to reduce the like-
lihood of emergent properties. The work has then been
demonstrated using a control systems example but full de-
tails are not included for space reasons.

References
[1] www.engin.umich.edu/group/ctm/examples/ball/ball.html.

[2] I. Bate, A. Cervin, and P. Nightingale. Establishing
timing requirements and control attributes for control
loops in real-time systems. In Proceedings of the 15th
Euromicro Conference on Real-Time Systems, pages
121–128, 2003.

[3] I. Bate, J. McDermid, and P. Nightingale. Establishing
timing requirements for control loops in real-time sys-
tems. Journal of Microprocessors and Microsystems,
27(4):159–169, 2003.

[4] D. Menard and O. Sentieys. Automatic evaluation of
the accuracy of fixed-point algorithms. In Proceedings
of DATE, pages 529–537, 2002.

[5] E. Rechtin. The synthesis of complex systems. IEEE
Spectrum, 34(7):50–55, 1997.

[6] M. Torngren. Fundamentals of implementing real-
time control applications in distributed computer sys-
tems. Real-Time Systems, 14(3):219–250, May 1998.


