
Safe Composition of Real Time Software

Iain Bate and Philippa Conmy

Department of Computer Science,
University of York, York,

YO10 5DD, United Kingdom
e-mail: {iain.bate,philippa.conmy}@cs.york.ac.uk

Abstract

There is an increasing move towards the use of modu-
lar approaches to software design and implementation in
the development of critical systems. The reason is the ap-
proaches have a number of benefits including providing
support for concurrent development and helping to sim-
plify software maintenance. However, there is little guid-
ance on how to perform a modular safety process for the
certification of critical systems as most of the standards
assume a monolithic design. Of particular concern is per-
forming safety analyses, with the limited context afforded
by a modular approach, in order to derive valid safety re-
quirements with appropriate context / assumptions.

Expressing requirements using contracts is one way to
help support change. An example use of contracts between
a Real-Time Operating System (RTOS) and application is
given. This example has been chosen as the use of an
RTOS is an increasingly prevalent form of modularisation,
instead of embedding operating system services within the
applications. In fact having an RTOS is considered a key
enabling technology as it provides a clear interface be-
tween the application and platform.

1 Introduction
The need for modular design in systems and software

engineering has long been established. The reasons for
moving to modular systems include partitioning designs
such that different teams can work concurrently and so that
change can be handled more effectively. More recently in
the critical systems domain, initiatives such as Integrated
Modular Avionic systems [7] have tried to introduce the
concept to the aerospace domain. Our work [3, 6] has es-
tablished the importance of contracts between modules for
supporting incremental certification and reducing obsoles-
cence. These contracts need to represent not just function-
ality but also other properties related to dependability.

Laprie [12] originally defined dependability as avail-
ability, reliability, maintainability, safety, confidentiality
and integrity. Our work has focussed on establishing a
method for deriving “safety” requirements based on the
failure analysis of components. The requirements are then
combined with other information (e.g. context and as-
sumptions) to form contracts. Context describes the type

of system the component is operating in, e.g. its opera-
tional environment. Assumptions concern the behaviour
of other components on the system, e.g. non-interference.
These contracts are then used as part of an integration ac-
tivity. The concepts are general purpose in nature but have
been principally developed for the interface between Real-
Time Operating Systems (RTOS) and applications. Our
previous work has shown how to derive safety require-
ments for the RTOS [6] and applications independently
[3]. In this paper the work is extended and it is shown
how the two bodies of work can be integrated.

This paper contributes an approach to the independent
safety analysis of an RTOS as part of a modular safety life-
cycle. The results of the RTOS analysis is a set of "safety
assurance contracts" which are instantiated and tailored
to a specific software application. The contracts and ev-
idence that the contracts are met by the system can then be
traced back to individually identified software failures.

This paper is laid out as follows. Section 2 provides
background on the trends in the use of RTOS, especially
in critical systems, their typical features and a discussion
of the general problems the features cause for the certi-
fication and development of safety critical systems. This
leads into an overview, section 3, of a high level process
intended to solve many of these problems based on the use
of safety "contracts". Section 4 then provides further de-
tails on the failure analysis part of the method along with
examples of its use. Next, section 5 describes some typi-
cal timing features of control systems, and in order to show
the types of evidence required. It is then shown in section
6 how contracts between the application and RTOS can be
derived. Section 7 provides a discussion of the applica-
bility and limitations associated with the method based on
experience applying the method in industry. Finally the
conclusions are given in section 8.

2 Motivation and Background
2.1 Using an RTOS in a Safety Critical System

Traditionally, the software in embedded control sys-
tems has been written as a monolithic (defined as being
composed of a single entity) set of code, tightly coupled
to the underlying hardware. This design approach was
necessary to ensure that the maximum performance was



achieved and hence timing requirements met. Unfortu-
nately, this type of design means it is very difficult to
maintain the software, both to fix application errors or to
port the software to a new processor. Some industries,
such as avionics, have system lifecycles of 10 or more
years, hence hardware obsolescence is a significant prob-
lem. This means there is a need to port applications to
new hardware at some point in the system’s overall lifecy-
cle. In many systems this has effectively lead to a complete
re-design as part of the Mid-Life Update [7].

In recent years hardware performance has improved
considerably. This helps support a move towards us-
ing Real-Time Operating Systems (RTOS) and modular
designs whilst still achieving the system timing require-
ments. By using an RTOS an application no longer needs
to contain hardware specific code, making it smaller and
easier to maintain. This clearer partitioning of hardware
specific code can, with suitable techniques, make porting
an application to new hardware easier as the extent of the
necessary changes is reduced.

Tanenbaum [1] describes an Operating System (OS) as
having two main functions. Firstly, an OS presents the
user with a “virtual machine that is easier to program than
the underlying hardware”. This is usually achieved using
an Application Programming Interface (API). Secondly an
OS provides “for an orderly and controlled allocation of
the processors, memories, and I/O devices among the var-
ious programs competing for them”. This is particularly
important for critical systems.

The typical architecture of an embedded system using
an RTOS is a three layer stack as shown in Figure 1. The
architecture provides clear abstractions between different
parts of the application(s), the OS and the hardware.

Application
partition 1

Application
partition 2

Application
partition N

API Layer

Operation System

Hardware

CO-EX

Data
Flow

Figure 1. Three Layer Stack Architecture

2.2 Certification Issues and Existing Work
Almost all safety critical systems must go through a

certification process prior to their use. As part of this
process the system developers must demonstrate that the
risk associated with any system hazards (potential to cause
harm) is at an acceptable level, and that the system ade-
quately meets its requirements, including timing require-
ments. This is done by the presentation of a system safety
case supported by concrete evidence, i.e. direct evidence

produced during design and evaluation. Processes for de-
riving this evidence are given in standards and guidance
documents, which are selected dependent on the domain.
For example, UK military equipment developed in recent
years has been certified according to Defence Standard 00-
56 [15] Issue 2, civil avionics software is generally certi-
fied according to DO-178B [21] and IEC 61508 [5] rep-
resents a more general safety standard. These standards
were written assuming a monolithic software design hence
they do not take into account the modular architecture of
software supported by an RTOS, but instead examine soft-
ware and/or system as a whole.

Using a modular development approach based on a
RTOS may simplify development and maintenance, but
it complicates the process of certification. Firstly, safety
analysis is hard to perform in a modular fashion as it relies
on whole system knowledge - context, assumptions and
most importantly hazards. Secondly, modular approaches
place a great deal of responsibility on the integration ac-
tivities associated with the system.

Some software systems supported by RTOS have been
certified using the existing standards. For example, Green-
hills Software Inc. have had Integrity 178B certified as
part of a high integrity system in a helicopter [9] and the
Digital Engine Operating System (DEOS) developed by
Honeywell has been certified as part of an aircraft sys-
tem [18]. The approach taken by these companies (and
others) has been to apply some of the procedures of exist-
ing standards to the software (such as condition coverage
testing to demonstrate each conditional statement can be
reached), and then, after integration, perform more testing
and analysis that the RTOS works as required in a given
context. By using this method it is possible to demonstrate
that a particular configuration of the application and RTOS
complies to standards so in some ways it can be judged to
be successful. But there are a number of problems with
forming evidence in this way independent of whether a
modular approach is used or not:

1. Firstly, very early on during system development a
developer needs to commit to a particular RTOS as
the testing and analysis needs to be in a specific en-
vironment (performing analysis for an application
with multiple RTOS would be extremely costly). It
is conceivable that a fundamental problem with the
behaviour of the RTOS may only be discovered after
the integration testing, at which point a large amount
of money and development time has already been
spent.

2. Secondly, by tying the evidence to a particular con-
figuration of the system a set of monolithic evidence
is produced. This can be extremely difficult to main-
tain - providing a costly barrier to maintenance.

3. Thirdly, and potentially the most important in the
context of this work, there is a problem with the



nature of the evidence itself. Compliance to pro-
cedures does not necessarily indicate that a product
is fit for purpose. Using the highest level of rigor
for testing and verification does in practice lead to
the production of a product which meets its specifi-
cation, but knowing whether that behaviour is safe
for a given situation is essential. That is, the require-
ments have to be validated in the context of intended
use.

4. Finally, during the integration of components emer-
gent properties evolve that need to be clearly identi-
fied and demonstrated. Emergent properties are es-
pecially difficult to handle as a change anywhere in
the system can lead to their characteristics being al-
tered.

The authors assert in this paper that the most desirable
approach is to perform safety analysis of the RTOS inde-
pendently of any particular application, and then use the
results of the analysis to determine whether a particular
RTOS is suitable for a system (allowing the application de-
velopers to compare different RTOS). In addition, by per-
forming analysis that identifies particular safety concerns
RTOS vendors can develop their product to avoid certain
failures, and application developers will be able to develop
their software to avoid any identified problems.

Performing analysis independently also has potential
pitfalls though. A recent report commissioned by the FAA
[10] looked at multiple independent testing and analy-
sis techniques for RTOS (e.g. fault injection and formal
analysis) and concluded that without context it was ex-
tremely difficult to demonstrate that the results are of rel-
evance to any particular application.

Safety and timing are emergent system properties [13]
and because of this integrated components don’t always
behave as expected even if they individually behave as
specified. One famous example of an RTOS problem is
the Mars pathfinder mission [8] which started to suffer
from persistent resets a few days into its mission, result-
ing in the loss of the system for considerable periods of
time. After some testing and analysis it was discovered
that the software fault was caused by priority inversion.
A low priority software task on board the pathfinder was
sharing a resource with a high priority task and the low
priority task blocked this resource after it was preempted
by other medium priority tasks. When another high prior-
ity task discovered the previous high priority task had not
completed, it initiated a system reset. A global, default,
setting in the on board RTOS was allowing the priority
inversion to take place. So although the RTOS was per-
forming as intended, its behaviour was wrong in context
due to an emergent property.

Therefore any approach taken for independent safety
analysis of RTOS must provide adequate coverage of the
range and types of failures which could lead to system
level hazards, and must also support a way to link those
failures to hazards.

3 Overview of The Method
This section provides an overview of the approach pro-

posed in this paper and supporting safety processes pre-
sented. The approach chosen is to allow engineers to per-
form analysis of the RTOS early in the system process and
then develop an application using the results.

The lifecycle and related processes of the approach are
summarised in Figure 2. Firstly, the RTOS is analysed
(see the LHS) and template contracts are derived which
describe the conditions under which certain failure condi-
tions can be avoided. An application developer will then
use these analysis results to determine which failure con-
ditions are relevant or credible for their system, and then
instantiate a set of template contracts as part of the trade-
off process shown in the centre of the diagram. Finally
evidence will be gathered to show the contract is met.

Figure 2. Modular software safety process
The template contracts for the RTOS are derived in two

stages. First an adapted failure analysis technique is used
to determine potential failures in the interactions between
an application and the RTOS. The technique uses guide-
words, e.g. omission, which are applied to a function or
data flow in order to determine potential failures. The out-
put from this analysis is a set of Derived Requirements
(DR) on the RTOS, hardware and applications. The sec-
ond part of the process is the development of contracts
for each of the derived requirements. The contracts con-
tain constraints on various properties of the applications
and RTOS, including architectural design (e.g. number
of permitted processes), behaviour (e.g. the creation and
destruction of processes), and performance characteristics
(e.g. execution times). Contracts are developed by exam-
ining the RTOS source code.

The next section describes the first part of the process in
more detail, using an example for illustration. The second
part of the process is described in section 6.

4 Performing Failure Analysis of an RTOS
This section provides an overview of the method used

for the failure analysis of the RTOS and demonstrates its
application to a small microkernel "L4" [11]. This exam-
ple was chosen as its small size is ideal for discussion here
for space reasons. Other work has looked at the applica-
tion of the failure analysis technique to more mainstream
OS such as Linux [6, 19].

The approach taken is to adapt an existing software
safety analysis technique - SHARD [20]. The advantage
of this approach is that safety engineers are familiar with



this type of process which helps increase the confidence
in the results they produce. By failure we mean any de-
viation from the required intent e.g. a thread starting exe-
cution later than intended. This includes systematic errors
(i.e. design faults) as well as any random failures in the
supporting hardware. These failures may lead to hazards
in a given situation e.g. the late response of the software
controlling a braking system may be hazardous.

Initial attempts at analysis looked at each API call in
isolation, but the results were not that informative as it
wasn’t clear what the effect of the failure was, or how it
could be caused. Therefore a framework has been devel-
oped which identifies the scenarios in which different API
calls are made. This is described in the following sub-
section and then examples of its use presented in subse-
quent sub-sections.

4.1 Summary of the Analysis Process
The analysis process follows the five steps given below.

The basis for the process is to first establish an understand-
ing of the RTOS and its services / calls, then determine
how the RTOS fails so that suitable derived requirements
can be produced.

1. The analyser familiarises themselves with the RTOS
specification. They should in particular look at com-
munications protocols, scheduling mechanisms (e.g.
prioritisation methods), and memory management
design.

2. The analyser lists all the Application Programming
Interface (API) calls, along with other key services
provided by the RTOS. The latter list would typi-
cally include scheduling and memory management
but may also include other services such as device
drivers.

3. The list of services should be matched against the
6 high level functions provided in table 2, using a
matrix as shown. The purpose of this exercise is
to assess the range of different scenarios the API
calls and services are used in, and hence help to en-
sure completeness in the analysis. The 6 functions
have been established and found to be sufficient for
a number of different OS analyses (the reader should
refer to [6, 19] for more details).

4. The analyser performs a failure analysis for each of
the functions in turn. This analysis is an adapta-
tion of the Software Hazard and Resolution in De-
sign (SHARD) [20] analysis which uses guidewords
(omission, commission, early, late, value) to suggest
possible failure modes. The reason a guideword-
based approach has been chosen is to further help
ensure completeness (these guidewords have been
demonstrated to categorise all software failures - see
[20]). The columns used in the analysis are shown
in table 3, and the method is summarised as follows:

(a) The analyser first lists all the failures which are
implied by the guidewords

(b) Then for each failure the assessor considers
how they could arise, in particular they should
consider how misuse of each of the mapped
services could cause that failure. Often there
are multiple causes of failures. These should
all be listed.

(c) The analyser should suggest DR which could
be used to prevent the listed causes of failures.

5. Finally, the analyser consolidates the DR, as in-
evitably there are repetitions in proposed solutions.

4.2 Example of Mapping Using L4
This section illustrates the application of the mapping

the list of services (stage 3 of the process) to a version
of the L4 microkernel [11]. The particular version used
was modified to support high-integrity avionics software,
within a distributed system [4]. The main advantages of
using this microkernel are that the authors had access to
the source code and that it is a small well written RTOS.
The core L4 philosophy is the provision of only the most
basic RTOS services and that the RTOS software runs in
privileged mode on the processor. Other software (includ-
ing an additional RTOS services if required) is then im-
plemented as a set of threads running in user mode. This
architecture is extremely flexible and secure. The micro-
kernel has only 7 API calls, and these are summarised as
follows:

• task_new - task creation and deletion. A task is an
address space within which a number of different
threads run (usually fixed at 128).

• thread_switch - releases the processor so that an-
other thread can consume processor time. Caller
may specify a thread to switch to or just donate time
to next scheduled thread.

• lthread_ex_regs - reads and writes the register val-
ues of a thread in the current task

• lthread_schedule - used to set the priority, time/-
slice length, and externel pre-empter of other
threads. Also allows thread states to be retrieved.

• IPC - Inter Process Communication, unbuffered and
synchronous communications between threads are
supported. IPC calls allow timeouts to be specified
on IPC waiting in order to prevent blocking.

• id_nearest - used to provide thread identifiers dur-
ing IPC, or for setting up registers for a thread.

• fpage_unmap - used to unmap the specified mem-
ory page from all address spaces into which the in-
voker mapped it



It should be noted the clans and chiefs protocol (refer to
[11] for further details) often associated with L4 was not
used due to the performance overhead associated with the
protocol. The microkernel contained special "real-time
address spaces" with predictable memory access times as
well as normal virtual addressing. Fixed priority schedul-
ing was used with round robin scheduling to arbitrate be-
tween runnable tasks that share the same priority.

The results of the service to function mapping is shown
in table 2. The services shown are the 7 API calls and also
memory management and scheduling. The results show
that each of the services are used to support multiple high
level functions. For example, the thread_switch call is re-
quired during communications in order to allow data to be
sent, is used to allow other threads (including health mon-
itor threads) access to the processor, and also to support a
consistent execution environment.

4.3 Example Failure Analysis
Table 3 shows an extract of the failure analysis of the

second function, thread_switch, which produces con-
trolled access to processing resources. Examination of the
results reveals a mixture of derived requirements. Some
requirements are placed on the application (e.g. to perform
analysis to ensure correct priorities are assigned). Some
are placed on the RTOS (e.g. to ensure the microkernel
does not allow memory corruption to change priorities).
Some requirements are also placed on the hardware (e.g.
to ensure random corruption is sufficiently low). Many of
the DR have options over what is specified. Where there
is an option one or both requirements can be used. The
decision over which option(s) to take would be part of the
overall design trade-off process. Refer to section 6.4 for
further details. Other DR require multiple conditions to
be satisfied. These results indicate that the DR must be
allowed for during application development if failures are
to be avoided. Section 6 describes the next phase of our
RTOS analysis which derives contracts for the integration
process.

One thing not immediately obvious from the extract
shown is that many of the derived requirements are re-
peated. For example, many of the omission failures have
related commission failures and the same DR can be used
to protect against them. An instance of this is the release
of tasks at the correct rate which in the presence of failures
can lead to too many or too few tasks being released. In
our experience of applying this technique the number of
consolidated requirements is usually between 20 and 30
for a component of this size and complexity. This means
that although the failure analysis tables can be large, the
actual consolidated results are manageable. Another point
of note from these results is that one derived requirement
states that interrupts should be disabled and another that
they should be enforced. Which DR is needed will depend
on whether late failures are deemed critical for a specific
context. Again, this is discussed in section 6. However,
first we look at timing aspects from an application per-

spective in order to assess whether the DR are relevant to
application development.

5 Timing Requirements Derived from the
Applications

This section describes how application timing require-
ments are derived for control based systems, in order to
provide a baseline for the assessment of the relevance of
the RTOS analysis results.

5.1 Timing Requirements
All scheduling approaches require a minimum set of

information about timing requirements so that an appro-
priate scheduler can be produced. For most scheduling ap-
proaches the minimum set of information is the deadline
and period of tasks. However for more complex systems,
e.g. those that feature task dependencies, more informa-
tion is needed. Previous work [2, 22] has demonstrated
that the typical timing requirements of applications can be
represented by the following.

1. Independent tasks and messages

(a) period - the rate at which a periodic task or
message is to be executed at.

(b) deadline - the time from release until when a
task or message has to complete.

(c) completion jitter - the allowed variation in task
or message completion.

2. Dependencies

(a) precedence - the order in which tasks and mes-
sages should be executed. A precedence se-
quence is sometimes referred to as a transac-
tion or process chain.

(b) end-to-end deadline - the allowed time from
the release of the first task to the completion
of the last task in a particular precedence se-
quence.

(c) separation - the minimum time between a task
or message commencing its execution from
the completion of an earlier task or message
in the precedence sequence.

(d) completion jitter - the allowed variation in a
precedence sequence completing.

The timing requirements can be explained in the con-
text of a typical control system. For this purpose, a simple
Proportional Integral Differential (PID) loop is used.

5.2 PID Loop
The main purpose of a PID loop is to ensure a suffi-

ciently fast response to inputs whilst maintaining stability,
accuracy and limits on data. Figure 3 depicts a typical PID
loop used to control the operation of a plant.



Controller

Plant
T(s)

Integration
Gain
(KI)

Gain
(Kp)

Differentiation
Gain
(KD)

+ Plant
Input

Error
Input

Demand +_

Actual Plant Output

A / D A / D

Figure 3. PID Loop
In its simplest form, a continuous ideal domain repre-

sentation, the output of the PID loop is the plant input. The
control system input is the difference between the input
demand, which is the desired plant state, and the plant’s
actual output and it is referred to as the error.

In a computer-based implementation of the PID loop,
the Input Demand (e.g. pilot stick position) and the Ac-
tual Plant Output (e.g. aircraft’s flap position) are usually
analogue signals. The computer performs the rest of the
processing in the digital domain. Converters (A/D) are
used to sample the analogue signals, e.g. to produce the
Error input, and then converted back to analogue values
at the output. Converting back to an analogue signal is
often referred to as digital to analogue conversion (D/A),
de-sampling or actuation. In order to give better control
over jitter, the functionality that needs to be performed in
software is normally split into three separate tasks - sam-
pling, calculation and actuation [2, 22]. The tasks can be
modelled as either periodics or sporadics.

5.3 Scheduling Properties
It is, of course, essential that the sampling, core func-

tions and de-sampling tasks are executed in that order.
Other work, e.g. [2], has shown how to specify and control
the precedence of functionality for a PID loop to ensure
that these requirements are met. Figure 4 presents prop-
erties for a typical transaction of a control loop that can
be controlled by the scheduler. As stated earlier, the three
tasks are sampling of sensor data, calculation and actua-
tion output. The Figure shows:

1. how each task has jitter comprising both release and
execution jitter as well as an invariant in its execu-
tion time,

2. there is jitter on both sensor capture (referred to
as sampling jitter) and actuation (referred to as de-
sampling jitter),

3. a task must be completed before the next task in the
transaction starts its execution so that the next task
can use fresh data,

4. the response time of a transaction is equal to the time
between the release of the first task and the comple-
tion of the last task (the worst-case response time for
a transaction must be less than its deadline), and

5. the period of a task is the time between two consec-
utive earliest releases.

release jitter
of sensor

task

execution
jitter of

sensor task

release jitter
of calculation

task

execution jitter
of calculation

task

release jitter
of actuator

task

execution jitter
of actuator

task
data data

transaction's response time

sensor task's periodsensor task's deadline

Earliest
release of
sensor task

Earliest start of
calculation

task's execution

Earliest
release of

sensor task

Completion
time of actuator

task

Invariant in
tasks'

execution

Figure 4. Scheduling Properties

5.4 Other Factors
Related to the application, there are other requirements

that emerge. The principal ones are for validating the cor-
rect operation of the system, often referred to as health
monitoring. The purpose of this is three fold:

1. Sensor - Ensure that potentially erroneous input
(sensor) data is not used and hence polluting the
calculated value. An advantage of the PID loop is
that any incorrect data has limited effect due to the
differentiation smoothing some of its effect away.
However there is the disadvantage that the feedback
will mean any effect lasts for more than one sample,
although with diminishing effects.

2. Actuation - Ensure that incorrect, and potentially
damaging, data is not output. An example of this
form of output is data that is out of range which
could lead to an actuator being driven beyond its
limits and result in mechanical wear or damage.

3. Calculation - Determine whether the appropriate
(sufficiently accurate) translations are being per-
formed from input to output.

It should be noted that the three requirements relate di-
rectly to the three phases of computation shown in section
5.2. These requirements are often handled through valida-
tion checks.

5.5 Requirements Placed on the Architecture
Based on the contents of this section, the following is

a summary of the application requirements on the under-
lying platform including RTOS. The text in italics shows
how the results of the RTOS failure analysis process, given
in Table 3, has helped identify potential failures in support-
ing each of the requirements. Hence traceable links be-
tween the analysis and derived requirements of the RTOS
and application are formed.

1. Req 1 - Tasks are released correctly. Periodic tasks
are released at the correct time and rate. Sporadic
tasks are released upon the appropriate event occur-
ring. The failure analysis uncovered a number of
potential causes of failures in task release, e.g. C1,
C2 and C6.



2. Req 2 - Tasks are released in the correct order. For
example in a priority driven scheduler, tasks are re-
leased in priority order. If the priorities are dynami-
cally calculated, then there is also a requirement for
this. Again a number of potential failures related to
priorities are identified e.g. C4 and C5.

3. Req 3 - Tasks do not suffer too much release jit-
ter. This places requirements on both the task re-
lease mechanism and the task attributes assigned.
There are multiple failures in the "late" section of
the analysis related to release jitter e.g. C6 and C7.
It should be noted that the full analysis would also
result in failures related to early release of tasks that
also affects jitter.

4. Req 4 - Tasks do not suffer too much execution jit-
ter. This places requirements on the processor (ex-
ecution times need to be predictable and within ac-
ceptable bounds), the task release mechanism and
the task attributes assigned. Again, there are multi-
ple failures related to this e.g. C6, C7 and C8.

5. Req 5 - Tasks complete by their deadline. This
places requirements on the processor (execution
times need to be predictable and within acceptable
bounds), the scheduling mechanism and the task at-
tributes assigned. A good example of a related fail-
ure is C8 where poor memory management could
lead to extended execution times.

6. Req 6 - Tasks have to be executed in the correct
order. This places requirements on the schedul-
ing mechanism and task attributes assigned. Many
of the omission/commission failures related to this
(e.g. C4 and C5)

7. Req 7 - Tasks have to receive correct data. This
places requirements on health monitoring and the
communications. Analysis of functions 1 and 4 in
table 2 uncovered many failures of concern to this
requirement. There is also a link to early and late
failures (e.g. C6, C7, and C8) as any continuous
signal that is sampled early and late will have dif-
ferent values to those expected [2, 22].

8. Req 8 - Tasks have to convert data appropriately.
This places requirements on the software design but
also on whether the source code intent is upheld.
Analysis of this requirement generally relates to en-
suring the application behaves as intended, however
analysis of function 5 in table 2 was revealing as
it concerned whether correct versions of tasks are
loaded and executed.

6 Generation and Use of Contracts
In section 5.5 we showed that failures relevant to ap-

plication development were found by the analysis process.
But in section 2.2 we stated that it was necessary not only

to uncover relevant failures but also to provide traceabil-
ity from these to system hazards. This section describes a
process developed to support traceability, and also provide
detailed evidence that derived requirements placed on the
RTOS have been addressed. The process revolves around
the production of a set of "safety assurance contracts"
which describe the conditions under which the RTOS’ DR
will be met.

6.1 Generating Safety Assurance Contracts
The use of contracts is a well-known approach to sup-

port software composition [14, 17]. In this approach each
software function has a set of pre and post conditions at its
interface which constrain the relationship between a client
piece of software calling a supplier function. The post-
conditions describe what the function will ensure if the
pre-conditions are met. This relationship is summarised in
Figure 5.

Composition is made more predictable since the as-
sumptions and provided behaviour of a component are ex-
plicitly stated. This method works well where the sup-
plier is purely a slave to the client. However, the vertical
relationships between applications, operating system and
hardware are more complex as each has a level of auton-
omy which is not usually controlled via an interface. For
example, an RTOS will decide when a thread can execute
based on a scheduling mechanism which may not be un-
der the control of the application layer. Therefore some
adaptations to the concept have been made.

Client Supplier

Client requirements -
Supplier

post-conditions

Supplier pre-conditions -
Client restrictions

Figure 5. Basic concept of a software con-
tract

6.2 Contracts on the RTOS
This section describes how the contracts are generated

for the RTOS. The contracts contain information on how
and if the RTOS supports the DR (the RTOS guarantees,
i.e. post-conditions). If it does support the DR it is im-
portant to identify under what conditions it provides the
support. These conditions are "pre-conditions" on the ap-
plications usage of the RTOS.

Deriving the content for a "safety assurance contract"
requires access to the RTOS source code. This is due to
the need to identify all relevant code fragments. For ex-
ample, code which manipulates access to memory is often
found in multiple sections of the RTOS. All these sections
must be examined for any behaviour relevant to a memory
DR. As a result either the RTOS developer must perform
this analysis, or an agreement must be entered into with
the RTOS provider to view the source code.

The contract generated is a template only, in that all that
is described is what the RTOS offers. The acceptability of



the contract, and its conditions, will need to be assessed on
a case by case basis once a specific application is known.
For example, the RTOS contract may detail the length of
time taken for a communications message to be sent given
a certain set of parameters. However, the acceptability of
this time can only be determined for a specific application.
The time can be verified both off-line and on-line. The on-
line options include performing checks within the RTOS
(requiring changes to the current RTOS), within a wrapper
interface around the RTOS or within the application.

The contract is formed by considering three key sets
of properties - process architecture, behaviour and perfor-
mance. Constraints upon these form the pre and post con-
ditions.

The following summarises the process for contract gen-
eration:

1. The analyser should familiarise themselves with the
code architecture of the RTOS and identify the loca-
tion of key software such as memory management
and scheduling.

2. The analyser should identify and produce a draft
list (which is finalised during the trade-off analysis
process) of architectural constraints and guarantees.

3. The analyser should identify and produce a draft list
of behavioural constraints and guarantees, examin-
ing both API calls and also scheduling mechanisms.

4. The analyser should identify and produce a draft list
of performance constraints and guarantees, examin-
ing execution times for API calls, context switches
and internal RTOS calls, list any known memory
constraints, and list any size limitations. These lists
are used as a basis for contract constraints.

5. Then for each DR placed on the RTOS the analyser
should:

(a) Identify constraints relevant to DR.

(b) Trade off and link constraints where relevant
for each of the constraint types. For example:

• performance versus architecture - e.g.
speed of communications may depend on
whether data is sent either to an indepen-
dent memory space on the same processor
or to a separate processor.

• behaviour versus performance - e.g. bit
parity checking on communications may
impact its speed but has the benefit that
it helps increase the system’s fault toler-
ance.

• behaviour versus architecture - e.g. one
thread cannot control the execution of an-
other thread unless it is its parent.

(c) Mark each resultant constraint as either Fixed
(i.e. the application must adhere to it) or
Choice (where two or more alternatives exist
or if there is a chance to alter the RTOS code
or configuration for a particular constraint).

(d) Store results as set of RTOS Guarantee vs Ap-
plication Constraints as shown in Table 1.

RTOS Guarantee Application
Constraint

Choice
/ Fixed

Each virtual address is
mapped directly to a
physical address ensuring
predictable access times -
Req8.

Tasks address
spaces must be
no greater than
256K in size.

Fixed

Table 1. Example contract for real-time ad-
dress space constraints

6.3 Contract Example
One requirement, DR8 in Table 3 was to use the real-

time address spaces to ensure threads have deterministic
execution times. Examination of the code revealed a re-
striction on the size of tasks created in real-time address
spaces. By using ring fenced memory areas fixed memory
access times are achieved. This leads to a limitation on
tasks’ addresses space of 256 kbytes. This means some of
the larger tasks may need to be split to work as expected
with the L4 kernel. With respect to the PID loop example,
the calculation task is the one that is likely to use more
memory - although 256 kbytes should be adequate in prac-
tice. This task could easily be split into four calculation
component parts - combination, proportional component,
integration and differentiation. However it is likely that it
is the health monitoring functionality associated with the
calculation that uses more address space so a more logical
split might be to have two tasks - calculation and health
monitoring. This split may increase the amount of data
flow (which is a performance disadvantage) but gives bet-
ter partitioning (which is a safety advantage).

An example contract showing the relationship between
application and RTOS is shown in table 1. The choice
/ fixed column refers to situations where there may be a
choice in the ways that the contract can be satisfied.

6.4 Trade-off Process
The final part of the RTOS analysis is to integrate the

results and instantiate the contracts as necessary. For this
the application developer has to revisit the failure tables
from the initial RTOS analysis and add an extra column for
listing the effect of the failure, and whether it is hazardous.
For reasons of space this is not shown in this paper.

Using the flight control PID loop example as described
in section 5.2. A failure leading to a thread complet-
ing later than required would clearly be hazardous for
flight control of aerodynamically unstable aircraft, there-
fore preventing these failures would be extremely impor-
tant. However for an engine control system a late value



may be less of a problem as the data is mainly used to
make adjustments to fuel flow to respond to pilot requests
or correct mechanical drift. That is, a late value will only
mean that the fuel flow rate is in error for a short period of
time and not potentially lead to the loss of the aircraft as
might be the case for flight control systems.

The DR contract for predictable memory access times
needs to be instantiated, by ensuring the constraint on task
sizes could be met for each of the three tasks. Where
the constraints is not easily met, then there are a num-
ber of trade-offs that can be made. The options include;
splitting tasks so that off-line analysis can ensure the con-
straint is not broken, using exception handlers to identify
on-line when the constraint is broken and taking an appro-
priate action, or even changing / re-designing the RTOS.
Each of the options has implications. For instance, split-
ting tasks will mean the system has more tasks and hence
greater overheads in general. Employing exception han-
dlers would add complexity to the design and safety analy-
sis of the system. However it would not affect the system’s
overheads in the general case (only in overload conditions
which may be infrequent or justified to be improbable) and
it would mean the logical design of the software is not af-
fected by the choice of the RTOS.

By linking generic failures of the initial analysis to spe-
cific events and then instantiating related contracts, im-
proved traceability from failures to hazards and then to
evidence is achieved.

7 Discussion
This section presents discussion on some of the issues

raised by our research and experience gained through its
application by industry.

7.1 Scalability
A potential problem with any contract-based approach

is scalability. The RTOS and applications examined in this
paper are relatively small, but have still generated large ta-
bles of data. However not all of this data is relevant to a
particular application as analysis of all RTOS calls is per-
formed as the results are intended to be used for multiple
applications. Whilst scalability is a concern, with judi-
cious application of the method in certain key areas of the
system, e.g. to the RTOS / application interface, ’real’ ben-
efit can be provided. In addition work is on-going on meth-
ods to cut down the amount of data generated by looking
for patterns and identifying cut-sets. The drawbacks are
more than compensated by the provision of support for
incremental certification rather than having whole system
change as currently performed in a mid-life update. Cur-
rently industry are using the method and the results will be
reported in later work.

7.2 New Safety Standards
Another potential issue is that our technique is not com-

patible with certification practices. However, Issue 3 of

Def-Stan 00-56 [16], has been written with a much more
flexible approach, allowing the applicant to use new meth-
ods of analysis as long as they provide adequate evidence
that the system is acceptably safe. In addition the new
civil aviation standard for modular avionics systems [23],
which at time of writing is undergoing final editing, sug-
gests using "tiers of integration" for staged analysis and
development which is also compatible with our approach.

7.3 Managing Change
In section 2.1 simplifying maintenance as well as de-

veloping software in a modular way was discussed. The-
oretically if the RTOS or applications are altered, as long
as the software still conforms to the safety assurance con-
tract conditions, then the change has no impact on system
safety. In practice, however, the large number of depen-
dencies between the constraints means this is difficult to
achieve. However difficult it is to achieve, the method has
the considerable benefit of providing an understanding of
the impact of change. This should help contain changes
and help reduce regression testing. A related benefit is that
the method gives a significant step forward in the ability to
support parallel development and manage emergent prop-
erties that occur when components are combined.

7.4 Completeness
A final issue is that of completeness. Whilst the RTOS

analysis technique has been developed to attempt to max-
imise coverage of both failure conditions and usage sce-
narios, actually demonstrating that every potential failure
has been uncovered is impossible since each application
will be different. This criticism could be levelled at every
form of requirements capture though.

8 Conclusions
This paper has presented an approach for the indepen-

dent safety analysis of an RTOS and shown how the re-
sults can be used as part of a modular safety process, us-
ing a simple microkernel as an exemplar. Further research
is being undertaken to improve our technique, in particular
looking at scalability and how the derived requirements on
the applications and hardware can be enforced.

References
[1] A.S. Tanenbaum. Modern Operating Systems. Prentice

Hall, 2nd edition, 2001.
[2] I. Bate and A. Burns. An integrated approach to schedul-

ing in safety-critical embedded control systems. Real-Time
Systems Journal, 25(1):5–37, Jul 2003.

[3] I. Bate and T. Kelly. Architectural considerations in the
certification of modular systems. Reliability Engineering
and System Safety, 81:303–324, 2003.

[4] M. D. Bennett and N. C. Audsley. Developing a real-
time microkernel design process. Proceedings Work in
Progress, Real-Time Systems Symposium, 2001.

[5] CENELEC. IEC 61508 Functional Safety of electri-
cal/electronic/programmable electronic safety-related sys-
tems. 2001.



[6] P. Conmy, J. McDermid, and M. Nicholson. Safety as-
surance contracts for integrated modular avionics. In 8th
Australian Workshop on Industrial Experience with Safety
Critical Systems and Software, October 2003.

[7] R. A. Edwards. ASAAC phase I harmonized concept sum-
mary. In Proceedings ERA Avionics Conference and Exhi-
bition, London, UK, 1994.

[8] G. Reeves and Mars Pathfinder Flight Software Cognizant
Engineer. What really happened on Mars ? - Authori-
tative Account. URL:http://research.microsoft.com/ mb-
j/Mars_Pathfinder/Authoritative_Account.html, December
1997.

[9] Greenhills. FAA Certifies INTEGRITY RTOS for
DO-178B Level A Use In Sikorsky S-92 Helicopter.
http://www.ghs.com/news/230210r.html, 2003.

[10] V. Halwan and J. Krodel. Study of Commercial Off the
Shelf (COTS) Real-Time Operating Systems (RTOS) in
Aviation Applications. Technical Report DOT/FAA/AR-
02/118, Federal Aviation Authority, December 2002.

[11] G. Heiser. Inside L4/MIPS, Anatomy of a High-
Performance Microkernel. Number UNSW Technical Re-
port. 2001.

[12] J. Laprie, J. Arlat, C. Beounes, K. Kanoun, and
C. Hourtelle. Hardware and software fault-tolerance: De-
finition and analysis of architectural solutions. 7th Annual
International Symposium Fault-Tolerant Computing, pages
116–121, 1987.

[13] N. G. Leveson. Safeware. Addison-Wesley, 1995.

[14] B. Meyer. Applying design by contract. In Computer,
pages 40–51, 1992.

[15] Ministry of Defence. Safety Management Requirements for
Defence Systems, DEF-STAN 00- 56, Issue 2. 1996.

[16] Ministry of Defence. Safety Management Requirements for
Defence Systems, DEF-STAN 00- 56, Draft Issue 3. 2004.

[17] Object Management Group. Response to the UML 2.0 OCL
RFP, Submission Ver 1.6. January 2003.

[18] J. Penix, W. Visser, E. Engstrom, A. Larson, and
N. Weininger. Verification of time partitioning in the
DEOS scheduler kernel. In International Conference on
Software Engineering, pages 488–497, 2000.

[19] R. Pierce, M. Nicholson, and A. Faulkner. Assessing oper-
ating systems for safety related applications. In Proceed-
ings of International Systems Safety Conference, Ottawa,
Canada, 2003.

[20] D. Pumfrey. The Principled Design of Computer System
Safety Analyses. PhD thesis, Department of Computer Sci-
ence, University of York, 2000.

[21] RTCA-EUROCAE. Software Considerations In Airborne
Systems and Equipment Certification DO-178B/ED-12B.
Technical report, RTCA and EUROCAE, 1992.

[22] M. Torngren. Fundamentals of implementing real-time
control applications in distributed computer systems. Real-
Time Systems, 14(3):219–250, May 1998.

[23] WG-60/SC200 Working Group. Modular Avionics.
http://www.rtca.org/comm/sc200.asp, 2004.

Function task_
new

thread_
switch

lthread_
ex_regs

lthread_
schedule

IPC id_
nearest

fpage_
unmap

Memory
Manage-
ment

Scheduling

1-Secure & timely communications X X X X X X X X X
2-Controlled access to processor X X X X X X X X
3-Secure data management X X X X
4-Health monitoring X X X X X X X X X
5-Consistent execution environment X X X X X X X X X
6-General access to processing X X X X X X

Table 2. Matrix matching low-level services (columns) to high-level functions (rows)

Guideword Failure Cause Derived Requirement

Omission
Thread does
not run when it
should have

C1 - thread_switch not called by appli-
cation

DR1 - Ensure thread scheduling calls are correct

C2 - thread_switch called but called
thread blocked

DR2 - Use IPC timeouts to prevent blocking where neces-
sary AND/OR interrupt used to notify of switch failure

C3 - Thread has been deleted DR3 - Ensure L4 does not delete threads and ensure appli-
cation does not delete threads AND/OR use backup lanes

C4 - lthread_schedule called with
wrong priority for process

DR4 - Ensure application calls with correct priority AND
ensure application threads cannot change priorities

C5 - Thread priority has been altered
due to data corruption

DR5 - Ensure random corruption is sufficiently low AND
ensure no corruption from application threads not allowed
to change priority

Late
Thread starts
execution late

C6 - Previous thread has overrun DR6 - Interrupts enforced for certain threads

Thread finishes
late

C7 - Thread has been interrupted during
execution

DR7 - Interrupts disabled for certain threads

C8 - Thread has taken longer than ex-
pected due to memory access times

DR8 - Use real-time address spaces

Table 3. Extract of Analysis of “Controlled Access to Processing Resources”


