
Incorporating Scenarios And Heuristics To Improve Flexibility In Real-Time
Embedded Systems

Iain Bate, Paul Emberson
Department of Computer Science

University of York
York, YO10 5DD

{iain.bate,paul.emberson}@cs.york.ac.uk∗

Abstract

Flexibility, the ability to adapt to change, is impor-
tant for real-time systems. As in any type of system,
changes arise from maintenance, enhancements and up-
grades. These changes are only feasible if timing require-
ments imposed by the real-time nature of the system can still
be met. A flexible design will allow tasks to be added with-
out impinging on other tasks, causing them to miss dead-
lines. The design space for these systems consists of many
configurations describing how tasks and messages are allo-
cated to hardware and scheduled on a hardware platform.

Heuristic search is a well recognised strategy for solv-
ing allocation and scheduling problems but most research is
limited to finding any valid solution for a current set of re-
quirements. The technique proposed here incorporates sce-
nario based analysis into heuristic search strategies where
the ability of a solution to meet a scenario is included as
another heuristic for the changeability of a system. This
allows future requirements to be taken into account when
choosing a solution so that future changes can be accom-
modated with minimal alterations to the existing system.

1 Introduction

It is widely acknowledged that obtaining a set of con-
sistent and stable requirements is difficult [16]. Therefore,
designing to cope with change has become increasingly im-
portant as complexity increases. Changes to a poorly de-
signed system are likely to lead to ripple effects where the
cost of the change is disproportionate to its size and may
even outweigh the benefits received from the change. Ide-
ally, both the size and cost of change should be comparable
to the resulting effect. Extreme examples of where a very
small change to the implementation of a system can result

∗This work has been funded by BAE Systems via the Dependable Com-
puting Systems Centre (DCSC).

in high costs are often found in the avionics domain. Other
than making the change, costs arise from testing, verifica-
tion and certification following the change. These activities
may require the involvement of different bodies and con-
tractors, hence increasing costs further through contractual
and administrative matters. This is also true in any industry
where sub-systems are developed separately by more than
one company. For instance, early in the design of automo-
tive systems, individual sub-systems such as braking, info-
tainment, etc. are contracted out to other companies. The
contract details often define the hardware available to each
supplier as well as details of access to shared communica-
tions networks such as message priorities. If changes to
these details are needed then a contract re-negotiation is
necessary which may have knock-on effects to other sup-
pliers. These matters increase not only the expense but also
the time required to make the change.

One approach to handling changes is to build in ample
spare capacity. However, this is prohibitively expensive due
to the cost of the extra hardware that might be needed. In
a production run of 2 million cars, adding one extra pro-
cessing resource at a unit cost of $10 would cost $20 mil-
lion before any additional costs for extra cabling, housings,
cooling, etc. are accounted for. Spare capacity in the system
does not necessarily mean it is usable. For example. it may
be physically separated from where it is eventually needed.

1.1 Designing For Change

A major difficulty in designing for change is being able
to predict the changes which will be required. However,
there are situations where this is feasible. It is common
for large systems to use a phased development program.
In this instance, future phases should be carefully planned
with documented future requirements. In reality, low level
changes for an anticipated future requirement, such as in-
creases to task execution times, cannot be fully known with-
out actually implementing the change. In this sense changes
are rarely 100% predictable but rather estimated to within

Requirement A Requirement B Requirement C

Solution A Solution B Solution C

Changes to be minimised

Baseline System Anticipated Change Future Requirements

Baseline Solution

Figure 1. Upgrade paths.

some degree of correctness. Clearly, the more accurately
changes can be predicted, the less impact they will have.

The method outlined in this paper uses anticipated
change scenarios to select a design for a system under de-
velopment that will allow the eventual upgrade described in
the scenario to be realised with fewer changes to the design
than if no scenarios were used. In addition, there is an in-
vestigation of how using scenarios for anticipated changes
increases system flexibility for unanticipated changes. The
chosen design for the current system requirements is re-
ferred to as the baseline design, shown as the baseline so-
lution in figure 1. In addition to creating a flexible baseline
design, metrics are used which measure the change between
two solutions which should correlate with the cost of an up-
grade to meet new requirements. This enables us to select
an upgrade that requires the fewest and cheapest changes. A
longer term aim is to consider how minimising the cost of
an upgrade trades off with the flexibility of the new baseline
being created.

The structure of the paper is as follows. The next section
describes the task allocation and scheduling problem, the
solution to which forms the basis of this work, and the re-
lated work that has previously addressed the problem. Sec-
tion 3 discusses how scenarios have previously been used
to promote flexibility within designs. As part of this sec-
tion the contributions of this paper, the first use of scenarios
as part of an automated search environment and improving
the flexibility of task allocations and schedules, are justi-
fied. Then, the design of the framework is explained and
justified in section 4. Section 5 presents the evaluation that
demonstrates the approach and shows that the use of scenar-
ios as part of an automated search environment can in fact
improve the flexibility of systems both when the changes
are close to those anticipated but also when they are unan-
ticipated. Finally the conclusions are given.

2 Architecture Selection Problem

The problem of selecting an architecture that will with-
stand the requirements placed upon the system through its
lifetime challenges all system designers. Methods exist to
analyse the quality of an architecture from a model [8, 2].
Flexibility is often considered in terms of other metrics such
as maintainability or module dependencies [10]. Whilst it

P1 P2 P3 P4

N1N2

Figure 2. An example hardware platform of
processors and networks.

is possible to efficiently assess the quality of a given archi-
tecture, producing an architecture to meet particular quality
requirements is difficult.

This work will limit architecture selection for real-time
systems to the problem of how to distribute tasks between
hardware resources and how to schedule the tasks once al-
located. Both allocation and scheduling are known to be
NP-hard [17]. The architecture model used is as follows.
Software applications are assumed to consist of chains of
communicating tasks, called transactions. Both the tasks
and messages sent between tasks must be allocated to a
hardware platform. Tasks are assigned to processors and
messages are assigned to networks.

The example platform in figure 2 shows it is not nec-
essary for all processors to be directly connected to each
other so the availability of networks for message alloca-
tion is dependent upon where the sending and receiving
are allocated. It is assumed that each processor also has a
means of passing messages between a pair of communicat-
ing tasks both allocated to that processor. Once allocated,
all messages and tasks must be scheduled according to some
scheme. Most scheduling algorithms assign some value to
each object which influences the order in which tasks are
run. All the investigation and evaluation performed here is
based upon distributed fixed priority pre-emptive schedul-
ing [5, 12]. In this model, each task and message is as-
signed a unique priority and at any time the highest priority
task that is ready to or already running is the one that it is
executing. A priority and allocation pair for an object is the
configuration of that object. The configuration of all objects
taken together is the configuration of the system.

Each task or message also has a set of timing properties
and timing requirements. For a task, these are:

• Worst case execution time (WCET) - the maximum
time a task will take to execute.

• Best case execution time (BCET) - the minimum time
a task will take to execute.

• Period - the time between each arrival of a task. (Ape-
riodic and sporadic tasks are not considered).

• Deadline - the time by which a task must complete
since its arrival.

User Input Generated Input
Task WCET Period Deadline Alloc. Priority
τ1 C1 T1 D1 A1 P1

...
...

...
...

...
...

τn Cn Tn Dn An Pn

Table 1. Input data required to perform dis-
tributed scheduling analysis.

For a message, the timing properties and requirements are:

• Maximum size - the maximum size of a message. The
worst case communication time (WCCT) of a message
is derived from this depending on the speed of the net-
work the message is allocated to.

• Minimum size - the minimum size of a message. This
is used to calculate the best case communication time
(BCCT) of a message.

• Deadline - the time by which the message must reach
its destination.

The period of a message is inherited from the sending task.
In addition to timing properties, the sending and receiving
task must also be specified for each message.

This information for a task or message can be used
along with its configuration to perform scheduling analysis
which will ascertain whether all deadlines will be met. The
scheduling analysis used is the dynamic offset approach de-
scribed in [12]. To handle transactions efficiently an event
triggered model is used so that a message is sent as soon
as possible after the sending task completes and a task ex-
ecutes as soon as possible after a message arrives. When a
task or message must wait for an incoming event, the delay
is modeled through the use of jitter. The results from the
scheduling analysis give the values for release jitter along
with worst case response times for each task and message.
If all response times are less than the deadline for the cor-
responding object, then the timing requirements for the sys-
tem have been met.

The basis of the task allocation and scheduling problem
is therefore to generate a configuration for each task (and
message) so that all timing requirements are met. This is
summarised in table 1. The columns to the left of the table
are the timing requirements. The right hand two columns
make up the configuration data which forms the solution to
the requirements.

While a solution to this problem has been looked at by
many authors [13, 17, 3, 1, 19, 18], little work has been done
on considering the flexibility of a system based upon the re-
sults of scheduling analysis. For example, if a processor has
particularly low utilisation, it suggests that there is scope to
add more tasks to the system on that processor. The scala-
bility of a task refers to its ability to increase its execution

time (or size for a message) without breaking any timing
requirements. This concept has been considered previously
by Regehr [15]. Attempting to make certain tasks scalable
which are thought to be susceptible to change will give one
solution preference over another. This work is complemen-
tary to [15] in that it considers how to select which tasks to
make scalable and how to make use of more flexible exe-
cution environments by considering more precise potential
changes.

3 Scenarios

A scenario is a textual description of a possible require-
ment for a system. They may be qualitative as in “how
secure is the system against a particular type of attack” or
quantitative as in “how much will response times increase
if the number of expected users increases by a factor of 10”.
For this to be most useful it is necessary to quantify the
non-functional attributes from an architectural model. This
is easier for some qualities, such as timing and memory us-
age, than for more subjective ones such as security.

Correctly predicting scenarios allows design to have
flexibility built into the appropriate parts of the system. A
problem arises when a subsystem that was predicted to be
relatively stable requires a large change. Without infinite
resource, scalability must be traded off between subsystems
hence a subsystem incorrectly determined to be stable may
be difficult to change. This leads to the general problem
of how to generate realistic scenarios for a system and how
they should be prioritised [8].

There are well established techniques such as SAAM [7]
and ATAM [8, 6] which are manual processes for creating
and using scenarios. However, they only allow for a very
small number of iterations of the architecture due to the time
taken for the process. For more details on a wide range of
scenario-based techniques proposed, refer to [4]. Many of
these methods consider multiple quality attributes of which
flexibility is just one. It must be recognised that one qual-
ity cannot be considered in isolation. Increasing flexibility
may reduce performance. A common example is adding
additional layers in a layered architecture.

Based on the available literature surveyed in this section
and the previous one, it is believed that our work is the first
to consider

1. the use of scenarios as part of an automated design
framework

2. the use of scenarios to build flexibility into the sched-
ules of systems

4 Architecture Selection Framework

Heuristic search methods are used to find good approx-
imations to optimisation problems with exponentially large

Ω = {ω0, . . . , ωN} /* Solution space */
f : Ω → [0, 1] /* Cost function */
η : Ω → Γ where Γ ⊂ Ω /* Neighbourhood */
ψ ∈ Ω /* Initial configuration */
ω∗ = ψ /* Best configuration */
ω = ψ /* Current configuration */
t = t0 /* Set initial temperature */
α = 0.99 /* Cooling factor */
do
i = 0
do

select new ω′ s.t. ω′ ∈ η(ω)
δ = f(ω′) − f(ω)
R = random value ∈ [0, 1]

if (R < e−
δ
t) then ω = ω′ endif

if (f(ω) ≤ f(ω∗)) then ω∗ = ω endif
i = i+ 1

until (i = M or (stopping condition))
t = αt

until (stopping condition)

Figure 3. Simulated annealing

search spaces. They take steps with the aim of optimising an
objective function. In this instance, the objective function is
a measure of the quality of architecture candidates. All such
search methods must make a trade-off between converging
quickly to a local optima and allowing local optima to be
escaped in order to move towards a global optima. Whilst
there are a number of such strategies, the tool referred to
in this paper and used in the evaluation uses simulated an-
nealing [9]. This has been shown to effective at solving
allocation style problems [17, 14, 11].

Simulated annealing starts at some point in the design
space and uses a cost function to direct itself towards valid
solutions. Solutions with lower costs are said to be bet-
ter than those with a higher cost. The starting point may
be chosen at random or in the case of searching for a con-
figuration to perform an upgrade may start at the baseline
configuration. The algorithm for simulated annealing in re-
lation to finding a configuration is given in figure 3.

The algorithm tries to minimise a cost function which as-
sesses the quality of solutions. The temperature parameter
governs the likelihood of accepting a higher cost solution
and is reduced as the search progresses. The temperature
is decreased by multiplying it by a cooling factor every M
moves. The initial temperature value will be related to the
nature of the problem. More difficult problems will typ-
ically require a higher starting temperature. For the task
allocation and scheduling problem, we have found an ini-
tial temperature of 0.01 to be suitable for creating baseline
configurations when starting with a random initial solution.
Typically the cooling factor would be set to 0.99 and re-
duced every 3000 moves.

An important part of the simulated annealing algorithm

r = random value ∈ {0, 1}
if (r = 0) then
object type = task

else
object type = message

endif
obj = random object of type object type
r = random value ∈ {0, 1, 2}
if (r = 0) then /* do priority swap */
swap obj = random object with

same allocation as obj
tmp = obj.priority
obj.priority = swap obj.priority
swap obj.priority = tmp

else /* do allocation change */
if (object type = task)
scheduler = random processor

other than allocation of obj
else
scheduler = random network

other than allocation of obj
endif
change allocation of obj to scheduler

endif

Figure 4. Neighbourhood function

is the neighbourhood function, η. The neighbourhood of a
solution is the set of moves that it is possible to move to
in a single step. The algorithm for making a move is given
in algorithm 4. The algorithm randomly selects between
changing the allocation or changing the priority of an ob-
ject. Allocation changes are preferred over priority changes
in the ratio 2:1. This ratio does not change the neighbour-
hood of solutions but makes some solutions more likely to
be chosen. Geometrically, this can be pictured as moving in
a random direction to reach a neighbour where some neigh-
bours cover a larger area than others.

4.1 Cost Function

The cost function f in figure 3 is calculated from the
results of the scheduling analysis. It is calculated from the
scalar product of a vector of cost function components and
a weightings vector.

g = (g1, . . . , gn)T (1)

w = (w1, . . . , wn)T where wi ∈ R ∀ i (2)

f =
g · w∑n

1 wi
(3)

The range of all cost components, gi, is designed to be
[0, 1] so that when weightings are set, two components with
equal weightings have an equal contribution to the overall
cost. There are three classes of component functions. There
are some which ensure a solution meets all timing require-

ments, some which try to give the solution additional desir-
able properties and finally, components which help in guid-
ing the search towards a solution. Many components are
multi-purpose, falling into more than category.

The first components assess the number of unschedula-
ble tasks and messages.

g1 =
#{unschedulable tasks}

#TASKS
(4)

g2 =
#{unschedulable messages}

#MESSAGES
(5)

where #X is the number of elements in the set X , TASKS
is the set of all tasks and MESSAGES is the set of all mes-
sages.

When tasks have dependencies and not all processors are
interconnected, some allocations are likely to be invalid.
For example, a task needs to receive a message but the mes-
sage has been allocated to a network not connected to the
processor on which the task resides. These components are
typically associated with a high weighting.

g3 =
#{invalid input allocations}
#TASKS + #MESSAGES

(6)

g4 =
#{invalid output allocations}
#TASKS + #MESSAGES

(7)

The concept of invalid allocations is divided into two com-
ponents. The first counts how many allocations are such
that a task cannot receive a message or a message cannot be
sent by a task. The second is the converse. It counts how
many tasks cannot send a message and how many messages
cannot reach their destination.

A task or message can be unschedulable for more rea-
sons other than breaking its deadline. If a preceding task is
not schedulable and does not have an accurate worst case
response time, the release jitter for the current task cannot
be calculated. Similarly if any higher priority tasks cannot
be scheduled for this reason, lower priority tasks which are
affected by jitter of higher priority tasks cannot be sched-
uled. This situation often occurs when tasks or messages
are arranged in such a way that there is a circular depen-
dency.

g5 =
#{invalid arrangements}

#TASKS + #MESSAGES
(8)

This metric is useful in penalising tasks that cannot have a
worst case response time calculated more heavily than tasks
which have a response time greater than the deadline.

When a system is completely schedulable, all essential
requirements have been met so it is desirable to create a
local optima around this point. Some have used separate
bonus functions for this purpose [11] but here it is preferred
to include such a function as an additional component as

it can be included without complicating the framework fur-
ther.

g6 = #{unschedulable systems} (9)

Obviously, this functions results in a value of 0 or 1.
Sensitivity analysis is one measure of flexibility of a set

of tasks or messages. The calculation is based upon by how
much worst case execution times can increase before the
system becomes unschedulable. With complex dependen-
cies, increasing the execution time of a single task can have
far reaching effects to tasks on other processors. In the con-
text of searching, sensitivity analysis can be viewed slightly
differently to provide guidance to the search. Instead of ask-
ing by how much execution times can increase, it is prefer-
able to ask what are the maximum possible execution times
that can be used for the system to be schedulable. When
the system is schedulable under the current configuration,
these questions amount to the same thing. However, when
the system is unschedulable, the latter question quantifies
by how much the system is unschedulable.

Sensitivity values are calculated by multiplying all tasks
or messages in the set of objects to be studied by a scaling
factor to find the highest possible scaling factor with which
the system is schedulable. This is implemented with a bi-
nary search. For each evaluation, a complete rerun of the
scheduling analysis is required making this metric compu-
tationally intensive. For this reason, it is currently only used
on the set of objects which includes every task and message
in the system. Applying it to individual tasks or small sets
of tasks may produce a higher quality solution but this is
currently infeasible for moderately sized systems.

Sensitivity is calculated as follows for a set of objects S
which may include tasks, messages or a combination.

g7 =
∑

i∈S SENSi

#S
(10)

where SENSi is the sensitivity of each object i calculated
using

SENSi = e−λSCALi (11)

where SCALi the largest value of a factor s ∈ R such that
the system is schedulable when the worst case execution
time of task i, Ci, is set to �sCi�. The parameter λ can be
used to vary the range of scalability values over which the
value of the cost component varies most. If the value of s
reaches 0 then the system may still be unschedulable if not
all objects are included in the set S.

Another function used to help a search move from an
unschedulable solution to a schedulable solution is the load
balancing function. This is based upon the variance of the
utilisations of processors. It could also be applied to net-
work utilisation but is not currently used for this purpose.
The basis of this component is as follows.

b =
∑

i∈PROCS(Ui − µ)2

#PROCSµ2
(12)

where PROCS is the set of all processors, Ui is the utili-
sation of processor i, and µ is the mean utilisation. The
value b is in the range [0, 1] and could be used for the load
balance component. However, we do not rate a perfectly
balanced system to be that much better than a slightly un-
balanced one. This is particularly the case, as will be seen
later, when the system design requires more flexibility in
some parts of the system than others. The spare capacity
should be targeted in the right places, not necessarily spread
evenly through the system. Therefore the metric used is

g8 = ek(b−1) (13)

where k is a positive constant. If the system is extremely
unbalanced, it is likely that some processors are more than
100% utilised and the metric will have the effect of moving
tasks to less utilised processors. This has proved extremely
effective in moving towards a schedulable solution and is
much more efficient to compute than sensitivity. As the sys-
tem gets more balanced, this component has much less in-
fluence on the overall cost. k is set to 10 in our framework.

The final four components of the cost function are all
concerned with minimising the number of changes that need
to be made when moving from a baseline configuration to a
new configuration for new requirements with changes from
which the baseline configuration was intended. Since there
are currently two elements to a configuration, namely al-
location and priority, a component is needed to measure
changes to each of these. These two components are split
into separate components for tasks and messages. This
allows separate weightings to be used if minimising task
changes is preferred over minimising message changes or
vice-versa.

Since only changes to the baseline configuration are of
interest, new objects in the new requirements version are
ignored. Similarly, any objects that have been removed in
the new configuration are also ignored. If it is required an
object is removed, it will be true of all new configurations
and is not a change that can be minimised.

The components to measure the changes in allocations
for tasks and message are as follows.

g9 =
#{i ∈ CT : Ai �= A′

i}
#CT

(14)

g10 =
#{i ∈ CM : Ai �= A′

i}
#CM

(15)

where Ai is the current allocation of the object and A′
i is

the allocation in the baseline configuration. CT is the set of
tasks which are common to both the old and new require-
ments. CM is the equivalent set for messages.

The components for priorities are more complex than
that for allocations. It would be possible to simply count
priority differences. However, this is overly pessimistic as it

is the priority ordering relative to other tasks and messages
that is important rather than the specific identifier. In reality,
flexible design should allow for new tasks to be inserted be-
tween existing tasks without modifying any priorities. This
could be achieved by initially assigning priority values in
multiples of 10 allowing new tasks to be inserted in be-
tween. We also want to consider two sets of tasks with the
same priority order but with different numbering schemes
to be considered equivalent.

For these reasons, the priority difference metric is based
on Spearman’s rank correlation coefficient. This requires
the two sets of objects for the old and new configurations to
be ranked in priority order. RANK(i) is the rank of object
i in the current configuration and RANK(i)′ is the rank of
the same object in the baseline configuration.

n = #CT (16)

g11 =
3

n(n2 − 1)

∑

i∈CT

(RANK(i) − RANK(i)′)2 (17)

m = #CM (18)

g12 =
3

m(m2 − 1)

∑

i∈CM

(RANK(i) − RANK(i)′)2 (19)

These last four components all pull the solution back to-
wards the original baseline configuration. This may be in
conflict with making the system schedulable. In practice,
this pull was in fact found to be too strong when major
changes needed to be made to make a system schedula-
ble. For this reason, components g9, g10, g11 and g12 are all
currently set to 0 when the current configuration does not
achieve a schedulable system. They are only used for the
search to decide between schedulable solutions. This has
achieved acceptable results. However, allowing the influ-
ence of these components to vary, depending on how close
to being schedulable a current solution is, would allow the
search to always be guided to some extent towards solutions
with fewer changes. This may allow better solutions to be
found more quickly.

4.2 Use Of Scenarios In Evaluating Con-
figuration Quality

A problem with sensitivity analysis alone as a change-
ability heuristic is that it does not focus on any specific parts
of the system. In general, it is impossible to make all of a
system changeable. An alternative suggestion is to apply a
number of scenarios and calculate the proportion of scenar-
ios where requirements are met to those that are not met for
a particular configuration. However, some issues have been
identified with this method. Firstly, if a scenario incorpo-
rates new tasks, there will be no configuration information
for those tasks so a question arises of how to allocate and
schedule the new tasks alongside existing tasks. To truly

evaluate whether a scenario could be met would require per-
forming a search within the search over the space of config-
urations for the new tasks. This soon becomes computa-
tionally infeasible and certainly would not scale to looking
at more than one level of future requirements.

Another issue is that purely counting whether a scenario
is met or not does not give an accurate view of the system.
Future scenarios are inexact in nature and hence it is desir-
able to evaluate how close a configuration is to meeting a
future scenario. It may be impossible to meet a future sce-
nario given the available hardware but some configurations
will come closer to meeting requirements than others. Sim-
ilarly, many configurations may be able to accommodate a
future scenario but some may do it in a more flexible way
than others allowing for a second tier of upgrades. Flexi-
bility measures need to be applied to scenarios as well as
the current system. This leads to the conclusion that the
cost function presented in equation (3) should be applied to
scenarios also.

The method chosen to incorporate scenarios into the
search environment is to search for a global configuration
that will simultaneously meet requirements of several sys-
tems, one of which is the current baseline system and the
others are future scenarios. If different systems contain dif-
ferent tasks and messages, only relevant parts of the global
configuration are applied to that system. A new cost value
incorporating scenarios can then be calculated using

F =
W0f(ω) + W1f(σ1) + · · · + WNf(σN)

∑N
i=0 Wi

(20)

where f is the cost function defined in equation (3) and
N is the number of scenarios. ω represents the current
system requirements with the global configuration applied.
σ1, . . . , σN represent each scenario with the same configu-
ration applied. The weightings W0, . . . , WN are associated
with the importance of each scenario. W0 should always
have the highest weight. The weight for different scenarios
may depend on the probability of particular system require-
ments becoming a reality.

To clarify the method, consider the following example.
The baseline requirements for a system contains 30 tasks.
Two future scenarios are to be considered when selecting
a baseline configuration for these requirements. The first
scenario only increases worst case execution times of some
of the thirty tasks. The second scenario requires an addi-
tional two tasks as well as modifying some execution times.
The global configuration will contain information for all 32
tasks. To evaluate the cost of using a particular configura-
tion for the baseline requirements and first scenario, infor-
mation for the appropriate subset of 30 tasks will be selected
from the configuration. To evaluate the cost of the second
scenario, all of the configuration will be used.

Say, at a particular point in the search, the cost of using a

configuration on the baseline is 0.05, the first scenario has a
cost of 0.08 and the second scenario has a cost of 0.14. The
new cost function F is calculated as

F =
W0f(ω) + W1f(σ1) + W2f(σ2)

W0 + W1 + W2

=
10 ∗ 0.05 + 4 ∗ 0.08 + 3 ∗ 0.14

17
= 0.073

This method elegantly allows tasks and messages not
present in the current system to be configured using the
existing heuristic search without requiring a nested search.
The number of cost function evaluations which includes
scheduling and scalability calculations increases linearly
with the number of systems.

The method may also be used in association with the cost
components in equations (14), (15), (17) and (19) which
measure the degree of change between current and previ-
ous configurations. This would be the case when it was
desirable to both stay near the current solution but allow
for flexibility in upgrading to future scenarios when select-
ing a configuration. This balancing act has not yet been
attempted. Currently, either the number of changes from a
previous configuration is minimised or the ability to meet
future scenarios is maximised. In the latter situation, the
components mentioned above are unused since there is no
baseline configuration to measure the change from.

5 Evaluation

The evaluation performed in this section sets out to test
the hypothesis given in the introduction. That is, whether
the method described in the previous section successfully
reduces the number of alterations when performing an an-
ticipated upgrade. Also, it is hoped that using scenarios will
improve flexibility for some changes which haven’t been
anticipated.

The problem used for the evaluation is taken from that
used in [19] which describes a mapping problem from the
automotive domain. The set of tasks, shown in table 2, are
based on the cruise controller application described in [19].
In this table, C, T and D represent the worst case execution
time, period and deadline of each tasks respectively. Figure
5 shows the dependencies between tasks. Where a message
is passed between tasks its worst case communication time
(WCCT) depends on how it is allocated. If it is allocated to
a bus on the processor rather than a network, the time is as-
sumed to be negligible and has a WCCT of 0. However, its
resulting worst case response time may be non-zero due to
jitter from preceding items in the transaction. If a message
travels between processors, the connection rate and size of
the message results in a WCCT of 2ms. The size of mes-
sages is fixed so this is true of all messages.

Task C T D Task C T D
τ1 0 150 150 τ18 6 150 150
τ2 12 150 150 τ19 13 150 150
τ3 7 150 150 τ20 5 150 150
τ4 10 150 150 τ21 20 150 150
τ5 5 150 150 τ22 17 150 150
τ6 18 150 150 τ23 9 150 150
τ7 14 150 150 τ24 5 150 150
τ8 8 150 150 τ25 6 150 150
τ9 5 150 150 τ26 5 150 150
τ10 10 150 150 τ27 5 150 150
τ11 6 150 150 τ28 12 150 150
τ12 7 150 150 τ29 10 150 150
τ13 11 150 150 τ30 7 150 150
τ14 5 150 150 τ31 6 150 150
τ15 8 150 150 τ32 0 150 150
τ16 11 150 150 τ33 0 150 150
τ17 15 150 150

Table 2. System timing requirements

33

1

2

3

4

5

6

7

8

9

10

11

28

29

30

31
17

18

19

20

21

24

25

26

22

23

12

13

14

15

16

27

32

43

44

45

39

40

41

42

34

35

36

37

38

Figure 5. Task graph. Shaded tasks are used
in scenario S4.

Task C
τ2 14
τ3 9
τ4 12
τ5 7

Table 3. Scenario S1

Task C
τ21 22
τ22 22
τ23 12
τ24 7
τ25 9

Table 4. Scenario S2

Task C
τ21 22
τ22 22
τ23 12
τ24 7
τ25 9
τ28 15
τ29 12
τ30 10

Table 5. Scenario S3

Task C T D
τ34 30 150 150
τ35 32 150 150
τ36 24 150 150
τ37 18 150 150
τ38 15 150 150
τ39 10 150 150
τ40 8 150 150
τ41 12 150 150
τ42 6 150 150
τ43 8 150 150
τ44 10 150 150
τ45 10 150 150

Table 6. Scenario S4

The hardware platform for the system consisted of 4 pro-
cessors and 3 networks. The first network allows all proces-
sors to communicate. However, like a processor, the ability
to schedule messages on a single network is limited so the
other two networks are needed but only connect pairs of
processors. One connects processor 1 to processor 2 and
the other connects processor 3 to processor 4. Therefore,
there is less capacity for communicating between each pair.
This is based on the platform in [19].

Four change scenarios were created. The scenarios were
purposely created to introduce changes of different sizes
and for some scenarios to be similar to others. This is so
that the ability to handle situations where all changes are an-
ticipated, most changes are anticipated and the case where
changes are incorrectly predicted are evaluated. Scenarios
S1 and S2 both increase worst case execution times for a
selected group of tasks. The tasks that are modified and the
new execution times are shown in tables 3 and 4.

Scenario 3, whose details are in table 5, is an extension
of scenario 2. It makes the same modifications as that of
scenario 2 as well as increasing the execution times of some
additional tasks.

Scenario 4 makes far larger changes. The existing tasks
were not changed but several new tasks, shown as the
shaded tasks in figure 5 and listed in table 6, were added.
It is not possible to schedule all of these tasks on the cur-
rent platform as at least one processor would have a utilli-
sation above 100%. Therefore scenario S4 allows for the
addition of an extra processor. The processor is connected

Upgrade
scenario

Scenarios
used for
baseline

g9 g10 g11 g12

S1 NONE 0.2727 0.3333 0.2167 0.0968
S1 S1 0.0000 0.0000 0.0000 0.0000
S1 S1, S2 0.0000 0.0000 0.0000 0.0000
S1 S2 0.1515 0.2778 0.1068 0.1318
S1 S3 0.0000 0.0000 0.0000 0.0000
S1 S4 0.1515 0.1944 0.0699 0.0875

S2 NONE 0.3030 0.5278 0.1681 0.1683
S2 S1 0.0909 0.1111 0.0563 0.1000
S2 S1, S2 0.0000 0.0000 0.0000 0.0000
S2 S2 0.0000 0.0000 0.0000 0.0000
S2 S3 0.0000 0.0000 0.0000 0.0000
S2 S4 0.2121 0.4444 0.0904 0.1559

S3 NONE 0.1212 0.1944 0.1678 0.0752
S3 S1 0.2424 0.3889 0.1158 0.1931
S3 S1, S2 0.0000 0.0000 0.0000 0.0063
S3 S2 0.0000 0.0000 0.0000 0.0000
S3 S3 0.0000 0.0000 0.0000 0.0000
S3 S4 0.3636 0.3611 0.0847 0.1607

S4 NONE 0.3636 0.3611 0.1629 0.1040
S4 S1 0.3333 0.3333 0.1103 0.1611
S4 S1, S2 0.2727 0.2222 0.1730 0.0937
S4 S2 0.3030 0.3056 0.1367 0.1095
S4 S3 0.2424 0.2778 0.2081 0.1420
S4 S4 0.0000 0.0000 0.0000 0.0000

Table 7. Results

to the broadcast network connecting all processors and the
network also connecting processors 3 and 4.

A number of baseline configurations were created to
meet the requirements in table 2. The baselines differed
in the scenarios they were created to anticipate. A base-
line was created with no changes anticipated. Rather than
just selecting the first solution that met all requirements the
search environment was allowed to improve the solution
based on the load balance and sensitivity components. The
other baselines were created for certain scenarios with so-
lutions being assessed using the function in equation (20).
In each case the weighting W0 as described in equation
(20) was set to 10 with the weighting for any scenarios set
to 4. Once the baselines were created, an upgrade to the
new requirements as set out in each scenario was attempted
from each of the baselines. Situations where the scenar-
ios the baseline was prepared for match the actual upgrade
scenario is equivalent to all changes being correctly antici-
pated. When upgrading from baselines prepared with sce-
nario 2 to meet the requirements in scenario 3 some but
not all changes were anticipated. In other cases, either no
changes were anticipated or a differing set of changes was
anticipated.

The results of these experiments are presented in table
7. The success or failure of the baseline flexibility was
judged on the number of changes required to meet the up-

Weightings
Component Function Weight
Unschedulable Tasks g1 1200 1200
Unschedulable Messages g2 1200 1200
Unconnected Inputs g3 4500 4500
Unconnected Outputs g4 4500 4500
Invalid Arrangements g5 1500 1500
Unschedulable System g6 500 500
Sensitivity Analysis g7 50 50
Load Balancing g8 150 150
Task Allocation Change g9 0 200
Message Allocation Change g10 0 200
Task Priority Change g11 0 175
Message Priority Change g12 0 175

Search Parameters
Parameter Value
Initial temperature 0.01 0.004
Inner loop iterations (M in figure 3) 3000 4000

Table 8. Search parameters. The left hand
column values are for creating baselines. The
right hand values are for upgrades.

grade scenario. This was calculated from the change related
cost components formulated in equations (14) to (19). Re-
counting these equations, with reference to table 7, g9 and
g10 measure the task allocation changes and message allo-
cation changes respectively, while g11 and g12 measure task
priority changes and message priority changes.

In all cases where the changes were correctly anticipated,
no, or in the case of scenario 4, very few, changes were re-
quired to meet the requirements of the upgrade scenario.
In all but two cases, baselines created with scenarios per-
formed better than those without. Both of these cases oc-
curred when attempting to upgrade to scenario 3 but dif-
ferent changes had been anticipated. It is interesting to
note that preparation with scenario 1 alone performed badly,
while using both scenarios 1 and 2 to create the baseline re-
quired no changes to meet scenario 3 and also no changes
to meet scenario 1. In the converse case, preparation with
scenario 3 and then upgrading to scenario 1 also required
no additional changes.

The two counter cases, support the unsurprising fact that
the method performed better when the anticipated changes
matched or were similar to the actual changes. However, in
general, baselines which anticipated some form of change
were more flexible than those which didn’t, even if the
wrong changes were anticipated. This implies that doing
some form of change assessment and using this informa-
tion to create scenarios for establishing a baseline solution
is likely to be beneficial.

The parameters used for the evaluation are shown in ta-
ble 8. Of particular note is that the initial temperature used
when performing an upgrade is lower than that used when

creating baselines. Also, the number of iterations at each
temperature is increased hence slowing the rate of cooling
for the upgrade situation.

When performing an upgrade, since the existing solu-
tion is used as a starting point, the initial solution is closer
to meeting requirements than when creating a baseline in
which case the initial solution is chosen at random. A
slower rate of cooling and lower temperature result in a
more intense search around the starting configuration. This
is desirable for upgrading to new requirements. If a higher
temperature is used the search has more energy and is more
likely to find solutions further from the initial starting point.
This produces better results for an initial baseline since
more of the search space will be covered.

6 Conclusion

This work has set out a case for why the flexibility of an
architecture should be considered early in the design pro-
cess and argued that if change is predicted to some extent,
then future upgrades and modifications will have less im-
pact and can be achieved at a lower cost.

Using an architecture model restricted to task allocation
and scheduling, a framework has been described which can
make use of such change predictions. It is acknowledged
that changes cannot be predicted precisely and therefore the
framework should also improve how unanticipated changes
are handled, particularly when they do not differ signifi-
cantly from the actual changes.

A method has been outlined which builds on previ-
ous work solving allocation and scheduling problems with
heuristics. The additional contribution is that change sce-
narios are introduced into the framework so that solutions
not only meet all essential timing requirements but also are
flexible to changes suggested by the scenario.

An evaluation was performed using an example based
on a cruise controller application taken from the automo-
tive domain. It was demonstrated that using scenarios to
create solutions for a baseline set of requirements improved
the flexibility of that solution when it was subjected to an
upgrade using the same or similar changes described by the
scenario. In the majority of cases, the flexibility with re-
spect to unanticipated changes also improved.

References

[1] J. Axelsson. Three search strategies for architecture synthe-
sis and partitioning of real-time systems. Technical Report
R-96-32, Department of Computer and Information Science,
Linkoping University Sweden, 1996.

[2] J. Daniels, P. W. Werner, and A. T. Bahill. Quantita-
tive methods for tradeoff analyses. Systems Engineering,
4(3):190–212, 2001.

[3] R. P. Dick and N. K. Jha. MOCSYN: multiobjective core-
based single-chip system synthesis. In DATE ’99: Proceed-
ings of the conference on Design, automation and test in
Europe, page 55, 1999.

[4] L. Dobrica and E. Niemelä. A survey on software archi-
tecture analysis methods. IEEE Transactions on Software
Engineering, 28(7):638–653, 2002.

[5] J. Gutierrez, J. Garcia, and M. Harbour. On the schedulabil-
ity analysis for distributed real-time systems. In Proceedings
of the 9th Euromicro Workshop on Real-Time Systems, pages
136–143, June 1997.

[6] R. Kazman, M. Barbacci, M. Klein, S. J. Carrière, and S. G.
Woods. Experience with performing architecture tradeoff
analysis. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 54–63, 1999.

[7] R. Kazman, L. J. Bass, M. Webb, and G. D. Abowd. SAAM:
A method for analyzing the properties of software architec-
tures. In International Conference on Software Engineering,
pages 81–90, 1994.

[8] R. Kazman, M. Klein, and P. Clements. Evaluating software
architectures for real-time systems. Annals of Software En-
gineering, 7(1-4):71–93, 1999.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, 1983.

[10] B. S. Mitchell and S. Mancoridis. Modeling the search land-
scape of metaheuristic software clustering algorithms. In
GECCO, pages 2499–2510, 2003.

[11] M. Nicholson. Selecting a Topology for Safety-Critical Real-
Time Control Systems. PhD thesis, Department of Computer
Science, University of York, 1998. DPhil Thesis.

[12] J. C. Palencia and M. G. Harbour. Schedulability analysis
for tasks with static and dynamic offsets. In RTSS ’98: Pro-
ceedings of the IEEE Real-Time Systems Symposium, pages
26–37, 1998.

[13] C. C. Price. Task allocation in distributed systems: A survey
of practical strategies. In ACM 82: Proceedings of the ACM
’82 conference, pages 176–181, 1982.

[14] C. Reeves, editor. Modern Heuristic Techniques for Combi-
natorial Problems. Blackwell Scientific Publishing, Oxford,
England, 1993.

[15] J. Regehr. Scheduling tasks with mixed preemption relations
for robustness to timing faults. In RTSS ’02: Proceedings
of the 23rd IEEE Real-Time Systems Symposium (RTSS’02),
pages 315–326, 2002.

[16] I. Sommerville. Software Engineering. Pearson Addison
Wesley, seventh edition, 2004.

[17] K. Tindell, A. Burns, and A. Wellings. Allocating hard real-
time tasks: An NP-hard problem made easy. Real-Time Sys-
tems, 4(2):145–165, June 1992.

[18] S. Wang, J. R. Merrick, and K. G. Shin. Component allo-
cation with multiple resource constraints for embedded real-
time software design. In Proceedings of the 10th IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS 2004), pages 219–228, 2004.

[19] A. Yadav. Semi automatic mapping of automotive electronic
functionality. Master’s thesis, Volvo Technology Corpora-
tion, 2004.

