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Abstract— Most software engineering methods require some the overall WCET. In [8] it is shown how machine learning
form of model populated with appropriate information. Real-  could be used to model the program flow characteristics of
time systems are no exception. A significant issue is that the qotrvare Specifically loop bounds are learned

information needed is not always freely available and derigd B h dicti Vi hich i t of the | | |
it using manual methods is costly in terms of time and money. ranch prediction analysis, which IS part ot the low-leve

Previous work showed how machine leaming information de- analysis, represents an extremely challenging probleimain t
rived during software testing can be used to derive loop bouds it requires two models to be obtained and then integrated.

as part of the Worst-Case Execution Time analysis problem.  The first model is how the branch predictor itself works. It
this paper we build on this work by investigating the issue of s hnted a full reverse engineering is not needed. Instelyd on
branch prediction. the relevant information is obtained, i.e. the basic deaisi
I. INTRODUCTION logic for deciding whether the branch is taken or not. Then,
a second model is needed which contains knowledge of how
N recent years there has been a move towardfe pranch predictor affects the execution of the software.
measurement-based approaches for timing analysis afle two models are used with information from the program
more specifically for Worst-Case Execution Time (WCET) oy, analysis, e.g. loop characteristics, to determine thg-m
analysis problem [5]. The reasons for this move are thhm number of branch predictions that can occur as part of
the hardware available for embedded real-time systems jig integration phase of the WCET analysis. To demonstrate
becoming increasingly complex to model and consequentiie potential of the approach relatively simple predicames
analysis is proving difficult. _ analysed. These are chosen as they have reasonable levels of
Early work on measurement-based techniques used seargfmpjexity but not that complex that the principles canret b
based test case generation approaches. Genetic algorittyafonstrated in the space available. Also in our experience
(GAs) were used to generate test data that made the softwa{g&y inat of others [6], more complex branch predictors have
execute its longest path [13]. However the work also showeg negative effect on the WCET and its analysis.
that a purely black box approach to the problem did not Thg strycture of the paper is as follows. Section Il presents
scale and could not deal with the complexity of moderpackground material on branch prediction analysis and our
processors. Other work looked to adopt probabilistic m@$ho ,ravious work on learning program flow characteristics.
[2]. However this work also acknowledged the limitations o hen, section IIl surveys the previous work on branch pre-

black box approaches and the need for hybrid approachggion analysis and machine learning. Section IV explores

combining static and measurement-based analysis, i thgqy pranch prediction analysis can be derived using machine
are significant benefits of having models of the system to hel@arning and considers potential solutions. An evaluaison

drive the measurement-based analysis. For example, Wegeggen in section V. Finally, section VI presents a summary.
recognises his work would benefit from white box knowledge

and multiple objectives such that the genetic algorithm-max 1. BACKGROUND
imised objectives other than WCET, e.g. the number of times Tq purpose of this section is to present our previous work

round a particular loop [21]. We are currently working on & pranch prediction analysis and loop bound determination
project that uses a two pronged approach where techniqugsyrder to set the context for the work within this paper.
from the artificial community, primarily machine learning,

are used to establish models that then support more targefedBranch Prediction Analysis

test case generation. N The purpose of this section is to present our previous

Typically the WCET problem can be split into three parts york on branch prediction analysis. This knowledge is later
program flow analysis, low level analysis and the integratioysed as part of the integration phase of the WCET analy-
/ caleulation phase. Program flow analysis concentrates @ Modern microprocessors combine the approach of out-
understanding the structural characteristics of the SWBW of.order execution withbranch predictionand speculative
e.g. loop bounds. The low-level analysis considers howcbasixecutionto try to alleviate the problem of disrupting the
blocks execute on the target processor. A basic block h@struction flow into the pipeline due to branches. A simple,
a single entry and exit point, and no jump instructions argyt commonly used, dynamic branch prediction technique is
takes the results from the other two phases to determlﬂeagn_entry branch history table (BHT), which is indexed

_ o , by then lower bits of the address of the branch instruction.
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n is mis-predicted, is where the branch alternates between
t its taken and not-takendirections. In the table, the two
cases corresponding to this worst-case predictor sceaegio
highlighted in bold. The last four rows represent the branch
behaviour of a loop typically generated by a compiler for
j = 3 andj > 3 iterations, respectively. There are many
other alternatives to branch prediction including zerq(ibét.
n effectively no prediction), one bit prediction and the geathe
N-bit predictors.

n B. Using Machine Learning for Determining Loops

In [8] a framework was presented based on typical restric-
tions of real-time systems proposed by Chapman [3] to make
the problem of analysing the bounds for both flat and nested

| Bits | State | Predlctlon| Key | loops manageable. The following restrictions were chosen
00 | strongly not-taken n SN by Chapman as they fall within the subset defined by the
01 | weakly not-taken n WN Presburger arithmetic subset which helps make the problem
10 | weakly taken t wT decidable. These are: integer constants; variables tleat ar
11 | strongly taken t ST constant integers; +, - operators; multiplication by adetr
Fig. 1. Two-bit prediction scheme constant; and variables that are a loop index for an endosin
for loop. It is considered the restrictions are representative
Initial Predictor State typical coding standards for real-time systems. Other work
Pattern Class| SN | WN | WT [ ST [10], [16] adopted more stringent restrictions on the loop
s T 2 1 0 0 bounds to be supported in order for the problem to be
= 2 decidable
(nt)? A 7 7 i 7 There are three key parts to the analysis framework. Firstly
I~ Ty, j=3 N i i 144 | 3+1 the software under test should be examined in order to
(1) j>3] N i i 144|247 provide information on which variables are within scope and
(t]j”)l’ j=31 T |3+i |14 ! : monitored to indicate how many times each block of the
7 tn)", 5 >3 T 244 | 1414 i i . . . .
ABLE | software is exercised. This can be carried out as a separate

testing activity or to save effort as part of testing already
carried out, e.g. structural or functional testing.

Secondly, there are test cases used to exercise the saoftware
These should be sufficient to identify:

1) whether a flat loop or the outer loop has constant loop
counter of a bimodal branch predictor can be represented bounds or they are dependent on variable(s) that are

NUMBER OF BRANCH MIS-PREDICTIONS

by adeterministic finite automato(DFA),whose states and constant within the scope of the loop

transitions are depicted in Figure 4. indicates a branch 2) where the loop bound is constant the value needs to be
is not-takenand ¢ that the branch igaken For example, determined

the pattern(t*~1n)’ represents the behaviour of a branch 3) where the loop bound is dependent on constant vari-
associated with a loop construct that iterateSmes and ables, which variables are featured and how they are
is repeated itselfj times. A feature of a loop construct related with respect to the allowed arithmetic operators.

is that the conditional test of the loop index resolves to Finally, the information from testing is used to learn the
true, ¢ — 1 times, andf al se once (on loop exit). The characteristics of the software in order to determine tleshc
scheme provides some degree of hysteresis and thus is Iggsp bounds or where this is not possible the relationship th
affected by occasional changes in branch direction. The stajefines it. Where inner loop(s) of a nested loop potentially
of the counter is updated after the branch outcome has beas a variable loop bound (i.e. it is dependent on the number
resolved. of times an outer loop iterates) then only the case resditing

Table I, summarised from [1], details the maximum numthe worst case execution time is represented in the training
ber of branch mis-predictions that can be expected fatata. That is, the case in which the maximum number of
various branch patterns being repeatetimes, depending iterations of the inner loop occurs given the number of times
on the initial state of the predictor. The second column ithe outer loops executes. An Inductive Logic Programming
this table defines for each branch pattern the classificatidgarner is provided with background knowledge in the form
of the associated branch instruction irteken-biasedT), of algebraic operators which in this case relates to the
not-taken-biasedN), and alternating (A). The worst-case operations allowed by the Presburger subset. Furtherlgletai
number of mis-predictions, i.e. each instance of a branaf the method and evaluations can be found in [8].



[1l. RELATED WORK the complexity of the hypothesis language and that of the
ﬁsulting representation of the data.
The area of ML focusing on the search for quantitative
laws, expressed as equations, is known as equation digcover
A. Branch Prediction Analysis When an initial draft of the equation is provided, the praces
Several static analysis techniques for obtaining WCEJ:1s k”OVY” as equation revision [19]. In this case, initialubp
estimates of real-time programs have emerged over the ||sstrequwed from experts, but the changes carried out by the

two decades. The first work on execution time analysis f%‘gggner can be non-trivial, and result in large improversent

microprocessors using dynamic branch prediction tectasiqu . . . .
to model the branch target buffer (BTB) of a Intel Pentiu Olt?]dg;g/ea:j]ggﬁ]cygé?ﬁézglsm:(g g)lz;)r)isefgrm :‘)i];s'\t/”;:élztrarligic
microprocessor is presented by Colin and Puaut [4]. Disa _5]. The great advantage of ILP is in its ability to vary its

vantages of their approach include it is based on source;co L nguage bias through the usebzickground knowledgéhe

rather than object-code, which ignores additional braach . .
introduced by the compiler, and it does not integrate thgnly set of predicates that can be used to describe the target
’ ypothesis. For instance, the predicatar ent/2 and

results with other parts of WCET analysis. Mitra et al. [12 s
present a framework for modelling the effects of global- rlfle/ 1 ca;]n betuseq tlor:earr;hthe definition foat her / 2. it
history branch prediction schemes on WCET analysis. Th}é/ lie such categorial Nypolneses are more common, |

only considers single bit predictors, however it does degl w IS possible to define operators and standard f_unctlons as
global history predictions. All the techniques require aiba background knowledge, and search for the equation that best

knowledge of how the branch predictor works. models the data.

This section presents related work for two areas: brand
prediction analysis and machine learning.

B. Machine Learning IV. LEARNING BRANCH PREDICTION

Machine Learning (ML) aims at describing the properties The purpose of this section is to explore the issues in
of a set of observations from a given source, and/or maki§arning branch prediction characteristics. This is dbscr
predictions about the nature of future observations froff the following subsections that describe how test cases
the same source. Both goals are achieved by changing $@0 be generated which are then be used within a learning
representation of available data as expressed in its atigirffamework to determine how the branch predictor affects the
form (or object languagpinto another representation (using€Xecution of software.
another formalism, known dsypothesis languageThe new
representation copies closely the information encoded
the original data, but is usually more general, and allows An output of the test case generator is the set of branch
statements to be made about yet unseen cases. ML canpbediction results for each individual branch which can
seen as the search for a mapping from a set of inputs to #ren be amalgamated by the learner to gain the desired
output; this mapping is often a function; when it is Booleanmesult. Each output forms a tuple consisting aturrent
(i.e., apredicatd, it could be seen as defininganceptas address, branch prediction, actual brancffhese represent
a subseC of its domain (oruniversg U. In the context of an identifier ¢urrent addresp for the branch being con-
loop bound determination, this means relationships batwesidered, whether the branch is correctly predicted or not
the software variables and the loop bound can be determin€dranch predictiof), and whether the branch was taken or not

No ML algorithm can make predictions unless it employgactual brancf). From this tuple all the information needed
a bias In the case of concept learning, this means not ai$ available to determine the set of states, and associated
possible subsets of the universe U are expressible in ttransitions, within a branch predictor assuming there are a
hypothesis language (see [11] for details of the argumengppropriate set of test cases.

In general, the bias will restrict the range of possible func To learn the characteristics of a branch prediction unit

tions (models, hypotheses) that can be described by thequires each of the possible state transitions to be cdvere
hypothesis language. For instance, the set of data poirtg the test cases independent of its initial state. Clearly
{(0,0), (m,0),(27,0)} can be modelled by the functionsgiven knowledge of the particular branch predictor then

y =0,y =cosz or y=ux(x—m)(x— 2r), depending a sufficient and necessary (i.e. minimal) set of test cases
on the bias, which may restrict the hypothesis to a lineacan be generated. In the case of the two-bit predictor in
trigonometric or polynomial function. Figure 1 there are eight state transitions. However without

Such a bias is also calleldnguage biasto distinguish this knowledge the only option is to perform comprehensive
it from the preference bias allowing a choice between testing or to use search-base testing techniques. Thdisitua
alternative models with equal coverage of the availabla.datis eased due to the following characteristics of the datagei
Here some simple, but general principles (heuristics) atearned from.
often employed. For instance, Occam’s razor [11] favoues th 1) The data may however be complex, yet it contains no
simplest hypothesis language, while the Minimal Descrip- noise, a major issue in almost any other ML application
tion Length (MDL) bias [17] suggests a trade-off between  area.

lﬁ' Test Case Generator for Branch Prediction



. . . % tt p(Casel D, Nunber Of M spredi cti ons,
2) The control variable range is discrete, and often capg p(Nunbe,O«pr edicti onﬁ,\,ade),

be sensibly restricted to an interval. One can make %t p(Case, | ndex, BranchPredi cti on, BranchTaken) .
simplifying assumption and treat such data as measurg)(gCase 1s:
on a nominal scale. As a result, even the simplest ILE§0 Quter Loop has bound 2, Inner Loop has a
algorithms can be applied without any adaptations. % bound 3, 2 x 3 = 6 predictions to make,

3) Implementing equation discovery with ILP means on°‘; iy 2' GSt ate is Strongly Taken.
has to deal with “positive only” learning: the data P(15.2.8).

consists of examples (instantiations) of the equatiomp(15,1,t,t).
but no counter-examples are provided. ILP, where bo (ig g ol g
are usually needed, overcomes the issue by generatifig 15 4 ¢ tn):
random examples, and assuming that the substantial(15,5,t,t).
majority of those are counter-examples. Choosing gp(15,6,t,n).

sufficiently large range for the control/input variables
will guarantee this assumption, while their discrete Fig. 3. Example Output from Test Case
nature makes it easier to choose a sensible sampling
strategy (already available in off-the-shelf ILP tools
such as Progol [14]).

4) As long as the analysed software is not part of

bounds) for any given loop is equal to the number of branch
redictions that must be made. The target predi¢athas

control loop involving external hardware (including the'® following mformqﬂon _(|n the order shown) - test case
“ohysical system”), the cost of obtaining data is Ver)pumber, overall loop iteration number, branch predictiod a
low, which means one can test any hypothesis at W”E\ctual branch. Fo_r exa}mpb@(15, 3,t,1n) refe_rs.to test case
e.g., to meet the requirements of a statistical test. Sin<',:]é”‘nber 15’_ loop iteration 3, a branch prc_edlctlon spectgatin
the input variable domains can be very large, one catne bran_ch is taken whereas the branch is actually_not taken.
employ active learningto let the learner select the BY using the test case generator suggested with both a
examples, for instance, to minimise uncertainty in th aximum inner loop bourjd and a maximum outer loop
model [7]. The whole process of learning and testin ound of 12, branch predictors of order up to 12 can be
can be automated in elosed loop machine learning earned as the te_st case gugrantee_s all states transitns a
style [9]. cqvered. In practice it is unlikely thl_s number of test cases
ill be needed due to the complexity of branch predictors
at are used. However this high number will serve to
emonstrate that significant numbers of test cases can e use
ithin a reasonable amount of computation time. Clearly
fiae number of test cases can easily be increased, as they
are automatically generated, if the learner can not make a

conclusion prediction.

The most important of these characteristics is the fact
have positive only learning means the results only get bett
with more data. Hence there is no harm in there being to
much data other than an increase in computation time,
long as the solution remains tractable. Figure 2 shows t
set of test cases used whegeis a variable representing the
initial state of the predictor.

B. Branch Predictor Learner

for (IS € initial _states)

for (i=1; i < 12; i++) The task of identifying the type of branch predictor used
for (j=1;j < 12; j++) begir_1$ with describing the behaviour (_)f theT three types of
simulate loop bias (IS, t, i, j); predictor contemplated. A branch predictor is an automaton
in which each state is associated with a predictiakenor
Fig. 2. Test case generator not taken that will be made when a request is received;

transitions between states are triggered (and labelled) by
The purpose of the procedustmulate loop biasis to the subsequent notification of the actual outcome of the
provide output target predicates in the correct format witbranching action predicted (which, again, is eittedtenor
an appropriate initial state and bias. It produces outpuot takef. Such an automaton can be conveniently described
based on executing a nested loop with eitheF'@en(t) as alist of 4-tuples. The first three elements of the 4-tugle |
or NotTaken(n) bias. The parameters passed to it 48 the current state, transition label, and new state. Thettiour
initial state;bias- ¢ or n; i - loop count for the outer loop; argument makes explicit the prediction associated witth eac
andj - loop count for the inner loop state. So, for example, the two-bit predictor from Figure 1
An example output from the test case is given in Figurées represented by the predicéataoBi t Predi ct or/ 4 in
3. It shows the target predicates for an outer loop bourfigure 4.
of 2, an inner loop bound of 3 and an initial statqd". The first two arguments are taken as input, and the latter
In this example the target predicatéy has the following two produced as output, but there is an important notion of
information associated with it - test case number, outdime that is not obvious from this mode description: only the
loop bound and overall loop count which are 6, 2 and 8rst argument (current state) is used to make the prediction
respectively. It is noted that the loop count (or differeiite (argument 4), which is given by the current state alone; then



the actual branch taken, provided as input (argument 2), listed in argument 3 ot p/4: t, t, t, t, t, t Only 4 of
used to determine the next state of the automaton (arguméinése 6 predictions have been successful, as can be seen
3). For instance, a two-bit predictor gtrongly taker(st) state from argument 4 of the same predicate, showing the actual
will predict the branch to be taken, and if this is not the ¢as@rogram behaviourt, t, n, t, t, n Predicatet opTwoBP/ 3

i.e., the branch is not taken, its state will changenveakly will try each of the four possible initial states:, wn, wt, st
taken(wt) (see line 7 oft woBi t Pr edi ct or/ 4). One-bit in turn, and make the six consecutive predictions that a two-
and zero-bit predictors can be described in the same way, thié predictor with this initial state would prescribe. Fdret
only difference being the reduced number of states, whigiredicate to succeed, the two-bit predictor has to re@iaat
means there is no more hysteresis in the one-bit predicteach step the prediction listed in argument 3 pf 4, while
behaviour — it reverses the prediction it makes after thé firsising argument 4 of the same predicate to update its state.
mis-prediction. The zero-bit predictor has only one statdn the case of success, the total number of mis-predictions
hence one prediction, which we have arbitrarily setatken  is computed and output in argument 2tadp TwoBP/ 3.

The maximum range of states for all three predictors isdiste  The predicates opOneBP/ 3 and t opZer oBP/ 3 are

in predicatest at e/ 1. defined in a similar way. When presented with the data in the
form of t t p/ 3 andt p/ 4 predicates, Progol can now learn
% t woBi t Predi ctor: rules of type ttp(A B, C :- topTwoBP(A B, O,
Zf; {” 1”+ dol ta tO“+ dol ta ?“ where the predicate on the right hand side (in the body
% (Current Stat e, BranchTaken, Next St at e, Pr edi cti on) of the clause) can be one of the three described. As all
_ _ examples in a data set are generated by the same predictor,
twoBi t Predi ctor(sn,n, sn, n). we expect that Progol would learn a single rule that would
twoBi t Predi ctor(sn,t,wn,n). . L
t woBi t Pr edi ct or (wn, n, sn, n). cover (account for) the entire data set. This is indeed the
twoBi t Predictor(wn,t,w,n). case, as our experiments, that are described in the folgpwin
twoBi t Predi ctor(wt, n,wn,t). ;
twoBitPredictor(wt,t,st,t). section, show. - . .
t woBi t Predi ctor (st,n, w,t). Some of the Progol code is listed in Figure 5. The
twoBi t Predictor(st,t,st,t). set/ 2 definitions specify constraints pruning the search
% oneBi t Pr edi ct of - of the hypothes_ls_space, s_ettlng_aspects of the preference
% (Current Stat e, BranchTaken, Next St at e, Predi cti on) bias, and specifying learning with no counter-examples.
_ _ The mode declarations list the predicates that can appear
oneBi t Predi ctor(sn,n, sn, n). in the head and body of a clause (RHS and LHS of
oneBitPredictor(sn,t,st,n). . . .
oneBi t Predi ctor (st,n,sn,t). a rule) learned;type declarations introduce user-defined
oneBitPredictor(st,t,st,t). types. The background knowledge shown contains the
. . : , full definition of t opTwoBP/ 3; those oft opOneBP/ 3
% zer oBi t Predi ctor: . . .
% (Current St at e, BranchTaken, Next St at e, Predi cti on) and t opZer oBP/ 3 differ only in two lines of code,
_ _ replacing the two calls totwoBitPredictor/4
zeroBit Predictor(st,n,st,t). with calls to oneBitPredictor/4, respectively

zeroBitPredictor(st,t,st,t). er oBi t Predi ctor/ 4
Z | | .

% maxi mum range of states

state(sn). V. EVALUATION

state(wn). Th f thi ion i h h the b h

state(w). € purpose o this .se.ct|op is to show 10w the branc

state(st). predictor learner can distinguish between different types
hardware.

Fig. 4. Logic programming representation of predictors
A. Evaluating the Ability to Learn Different Hardware Ar-

The ILP learner Progol4.4 is given a choice of thre€hitectures
background predicatesppZer oBP/ 3,t opOneBP/ 3, and In section 1V-B the method of learning different types of
t opTwoBP/ 3 that can be used to “explain” the observationdranch prediction mechanisms was described. Here an eval-
listed int t p/ 3, that is, the number of mis-predictions for auation is presented that illustrates their ability to digtiish
given training case. Each of the three predicates has the sabetween the different types of mechanisms using the test
three argumentase Number of mis-predictiongandTotal cases given in section IV-A.
number of predictions madg@vhich, in turn, are the same Test cases were produced based on the nested loop code
as the arguments dft p/ 3). The predicated opTwoBP/ 3  example given in section IV-A for three configurations of
is defined in such a way, so that it only succeeds if fohardware — zero bit, one bit and two-bit predictors. The
a given caseA, there is an initial statd.S, such that a results of these executions were then fed into the learning
two-bit predictor would replicate exactly the behaviour ofengine that was to identify whether the test data was a
the predictor recorded i p/ 4. To use the example of positive match for one of the known predictor types.
case 15 in Figure 3, the predictor whose model we try to For each of the test cases the type of branch predictor was
unveil, has generated the following sequence of predistioncorrectly learned. The results are summarised in Tablehé. T



W L R L L LR

% sear ch paraneters

W L L L L L L LR L)

:-set(posonly)? :- set(c,1)?

:- set(h,10000)? :-set(r,100000)?
c-set(inflate,101)? :- set(nodes, 1000)?

9888888/088088888880888

% node decl arations
9888888/088088888880888
modeh(1,ttp(+int,+int,+int))?
nodeb( 1, t opTwoBP( +i nt, +int, +int))?
nmodeb( 1, t opOneBP(+int, +int, +int))?
nmodeb( 1, t opZeroBP(+int,+int,+int))?

9888888088088880880888

% type decl arations

988888608808886888888

state(sn). state(wn). state(wt). state(st).

9888088880880888

% BK Know edge

988888860880808880

% t opTwoBP( Case, NoM spr edi cti ons, Max| ndex)

t opTwoBP( Case, NoM spredi cti ons, Maxl ndex) : -
t woBP( Case, 0, NoM spr edi cti ons, Max| ndex) .

% t woBP( Case, M spr edi cti onsSoFar,
Tot al NoM spr edi cti ons, Max| ndex)

t woBP( Case, M spr edi cti onsSoFar,
Tot al NoM spredi cti ons, Maxlndex) :-
state(lnitState),twoBPhel p(InitState,
Case, 1, Maxl ndex, M spr edi cti onsSoFar,
Tot al NoM spr edi ctions).

% I'N I'N I'N I'N I'N

% I'N

% t woBPhel p( Curr St at e, Case, Count er, | ndex, Predi ct,
Br anchTaken)

t woBPhel p( Current St at e, Case, Max| ndex,
Max| ndex, M spr edi cti onsSoFar,
Tot al NoM spredictions) :-
twoBi t Predi ctor (Current St at e,
Act ual BranchTaken, _, Predi ction),
t p( Case, MaxI ndex, Predi cti on,
Act ual BranchTaken), count M spredi ctions
(M spredictionsSoFar, Prediction,
Act ual BranchTaken, NewNoM spredictions),
Tot al NoM spredi cti ons = NewNoM spredi ctions.

t woBPhel p( Current St at e, Case, Count er, Max| ndex,
M spredi cti onsSoFar, Tot al NoM spredi ctions) : -
twoBi t Predi ctor (Current St at e, Act ual BranchTaken,
Next St at e, Predi cti on),
t p(Case, Count er, Predi ction, Act ual BranchTaken),
I ncrenent edCounter is Counter + 1,
count M spredi ctions(M spredictionsSoFar,
Predi cti on, Act ual BranchTaken,
NewNoM spr edi ctions), !, twoBPhel p
(Next St at e, Case, | ncr ement edCount er,
Max!| ndex, NewNoM spr edi cti ons,
Tot al NoM spredi ctions).

count M spredi ctions(M spredi cti onsSoFar,
Pr edSaneAsBr anchTaken, Pr edSameAsBr anchTaken,
M spredi cti onsSoFar) .
count M spredi ctions(M spredi ctionsSoFar,
Predi cti on, Act ual BranchTaken,
NewNoM spredictions) :- \+ Prediction =
Act ual BranchTaken,
% '\+ stands for 'not’
NewNoM spredictions is MspredictionsSoFar + 1.

Fig. 5. Logic programming representation of the two-bitdictor automa-
ton

table features three columns. The first column is the tet cas
which is being evaluated. The second column is the number
of instances of the target predicaté p/ 3 from which a

rule was learned. The final column is the total execution
time. Since there are more combinations of an automaton’s
initial state and loop bounds, the number of examples to
learn from is proportional to the number of internal states
of the automation at hand. The results show that more time
is taken to learn lower-order predictors. The learning time
is influenced by non-logical aspects of the program, such as
the order in which the examples and thedeb declarations

are listed; both have implications on the order in which the
hypothesis space is searched. The exact effect of these is
difficult to predict but the results here show that a number
of examples sufficient to determine the branch predictoe typ
can be processed in tens of seconds, an acceptable time for
this type of task. The results also show that the number
of instances needed is relatively small showing the current
test technique is sufficient. Future work could also look to
optimise the way in which the learner is set.

Predictor | Number of instances | Time (s)

Two Bit 576 16.23

One Bit 288 21.69

Zero Bit 144 31.80
TABLE Il

RESULTS FORLEARNING BRANCH PREDICTORTYPE

B. Evaluating the Ability to Learn Overall Worst-Case Mis-
predictions

The next stage of the evaluation is to show how the
different components of our solution can be used as part of
the overall WCET analysis problem. For this purpose a sort
routine is used as it is a simple example to explain and yet
has some interesting characteristics - principally the mem
of loop iterations and hence number of mis-predictions is a
function of both the inner and outer loop guards. The sort
routine is illustrated by the pseudo-code in Figure 6.

for i = 1 to A loop
for j = 1 to A-i loop
if afj] < a[j+1] then

end loop
end loop

Fig. 6. Sort routine

The first piece of information to be learned is the number
of loop iterations for the inner loop. The method for deter-
mining this is detailed in our previous work [8] with a brief
summary provided in section 1I-B. The desired result is in
equation (1).

A-(A-1)

- ®

lcsort =



We used equation (1) to generate the data to learn from ir8) Inner Loop- Thefor statement, with loop index variable

the shape of pairs of numbers representing the upper bound n, conforms to the pattertt’~—1n)’. As the value ofj
A and the corresponding number of times the inner loop associated with the inner loop is continually changing
body is executedB (see Table lll). The variable range was then a safe assumption must be made,ii.e. A and
set toA € {1,...,30}. The simulated data used in the sort  j = A.
routine example represents the maximum number of stepsUsing the contents of Table | and the information learned
needed to sort a list of certain length. This is equivalent teo far, the results in Table V can be established for each of
preprocessing the data, so that of all permutations of iligtut the branches considered, wheéte= [A-(A—1)/4]. Clearly
elements, only the one resulting in the WCET is representathere no knowledge of the initial state is available then the
in the training data. worst-case assumptions have to be made. For example-if

10, the total worst-case predictions would be: Main Body

TABLE NI equal to 45, Outer Loop equal to 4, and Inner Loop equal
SORT ROUTINE DATA SET to 13. This makes a total of 62 mis-predictions. If the safe
assumption related to tHener Loopwas addressed then at

%tp(A B) where B= A+ (A- 1) / 2 most the cost of one branch mis-prediction would be saved.
This corresponds to the biggest difference in the number of

: EE ;z (1)3 : mis-predictions between the last two rows in Table V. Future

tp(3,3). work could investigate further additions to the learning to

tp(4,6). address this error. It should be noted that without any fokrm o
tp(5, 10). learning then mis-predictions would have to be assumed each

time a branch is executed. The Inner Loop and Main Body
) are executed0? times, and the Outer Loop0 times. This
Usingsumandpr oduct as background knowledge, thategyts in 210 mis-predictions which is significantly worse

is, looking for an equation tying up the data argumentgan the figure gained using the method presented in this
through these two operators, Progol4.4 found a one-ru per.

model in less than four seconds (Table IV). Note C and

are intermediate variables introduced by the learner. Initial Predictor State
Branch SN | WN [ WT ST
TABLE IV Main Body E E 2. FE | E
PROGOL OUTPUT FOR THE SORT ROUTINE Outer LoopA =3 4 2 1 1
Outer LoopA > 3 3 2 1 1
. Inner LoopA = 3 3+A [ 14+ A A A
tp(A B) :- product(C A A,
P ) P sun((D B Ag Inner LoopA >3 || 2+ A | 1+ A A A
sum(C, B, D). TABLE V

NUMBER OF MIS-PREDICTIONS
This translates to a system of three equations shown below.

C = AxA @)
D = A+B 3) VI. CONCLUSIONS
¢ = B+D (4) This paper has shown how machine learning can be used to

L identify the branch predictor used by a particular processo
Note the division operator was not part of the backgroungl,iq information was then combined with knowledge gained

knowledge, nor was Progol allowed to use constants i,y hrogram flow analysis and static analysis of branch
its hypothe_ses. Nevertheless, the result_ IS _correct, talb?t‘lis—predictions. The resulting worst-case number of mis-
expressed in a somewhat unusual way as it can be reduceqﬁgdictions is a lot better than those found if computationa

be identical to the_ fo””‘_”a in equation (1). We then assun.\F‘ltelligence techniques, i.e. machine learning, was netdus
the methodology in section 4 has been followed, and that the

result identified a two-bit predictor has been used. Firthiéy ACKNOWLEDGEMENT
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