
New Directions in Worst-Case Execution Time Analysis

Iain Bate and Dimitar Kazakov

Abstract— Most software engineering methods require some
form of model populated with appropriate information. Real-
time systems are no exception. A significant issue is that the
information needed is not always freely available and derived
it using manual methods is costly in terms of time and money.
Previous work showed how machine learning information de-
rived during software testing can be used to derive loop bounds
as part of the Worst-Case Execution Time analysis problem. In
this paper we build on this work by investigating the issue of
branch prediction.

I. I NTRODUCTION

I N recent years there has been a move towards
measurement-based approaches for timing analysis and

more specifically for Worst-Case Execution Time (WCET)
analysis problem [5]. The reasons for this move are that
the hardware available for embedded real-time systems is
becoming increasingly complex to model and consequently
analysis is proving difficult.

Early work on measurement-based techniques used search-
based test case generation approaches. Genetic algorithms
(GAs) were used to generate test data that made the software
execute its longest path [13]. However the work also showed
that a purely black box approach to the problem did not
scale and could not deal with the complexity of modern
processors. Other work looked to adopt probabilistic methods
[2]. However this work also acknowledged the limitations of
black box approaches and the need for hybrid approaches
combining static and measurement-based analysis, i.e. there
are significant benefits of having models of the system to help
drive the measurement-based analysis. For example, Wegener
recognises his work would benefit from white box knowledge
and multiple objectives such that the genetic algorithm max-
imised objectives other than WCET, e.g. the number of times
round a particular loop [21]. We are currently working on a
project that uses a two pronged approach where techniques
from the artificial community, primarily machine learning,
are used to establish models that then support more targeted
test case generation.

Typically the WCET problem can be split into three parts -
program flow analysis, low level analysis and the integration
/ calculation phase. Program flow analysis concentrates on
understanding the structural characteristics of the software,
e.g. loop bounds. The low-level analysis considers how basic
blocks execute on the target processor. A basic block has
a single entry and exit point, and no jump instructions are
contained within it. Finally the integration / calculationphase
takes the results from the other two phases to determine

Iain Bate and Dimitar Kazakov are with the Department of Computer
Science, University of York, York, YO10 5DD, United Kingdom(email:
{iain.bate,dimitar.kazakov}@cs.york.ac.uk).

the overall WCET. In [8] it is shown how machine learning
could be used to model the program flow characteristics of
software. Specifically loop bounds are learned.

Branch prediction analysis, which is part of the low-level
analysis, represents an extremely challenging problem in that
it requires two models to be obtained and then integrated.
The first model is how the branch predictor itself works. It
is noted a full reverse engineering is not needed. Instead only
the relevant information is obtained, i.e. the basic decision
logic for deciding whether the branch is taken or not. Then,
a second model is needed which contains knowledge of how
the branch predictor affects the execution of the software.
The two models are used with information from the program
flow analysis, e.g. loop characteristics, to determine the max-
imum number of branch predictions that can occur as part of
the integration phase of the WCET analysis. To demonstrate
the potential of the approach relatively simple predictorsare
analysed. These are chosen as they have reasonable levels of
complexity but not that complex that the principles cannot be
demonstrated in the space available. Also in our experience,
and that of others [6], more complex branch predictors have
a negative effect on the WCET and its analysis.

The structure of the paper is as follows. Section II presents
background material on branch prediction analysis and our
previous work on learning program flow characteristics.
Then, section III surveys the previous work on branch pre-
diction analysis and machine learning. Section IV explores
how branch prediction analysis can be derived using machine
learning and considers potential solutions. An evaluationis
given in section V. Finally, section VI presents a summary.

II. BACKGROUND

The purpose of this section is to present our previous work
on branch prediction analysis and loop bound determination
in order to set the context for the work within this paper.

A. Branch Prediction Analysis

The purpose of this section is to present our previous
work on branch prediction analysis. This knowledge is later
used as part of the integration phase of the WCET analy-
sis. Modern microprocessors combine the approach of out-
of-order execution withbranch predictionand speculative
executionto try to alleviate the problem of disrupting the
instruction flow into the pipeline due to branches. A simple,
but commonly used, dynamic branch prediction technique is
a bimodal branch predictor[18] that stores branch history
in a 2n-entry branch history table (BHT), which is indexed
by then lower bits of the address of the branch instruction.

A sequence of executed branches can be interpreted as a
string over the alphabetΣ = {n, t} and the two-bit saturating

11 10

01 00

t

n
n

n

n

t

t

t

Bits State Prediction Key

00 strongly not-taken n SN
01 weakly not-taken n WN
10 weakly taken t WT
11 strongly taken t ST

Fig. 1. Two-bit prediction scheme

Initial Predictor State
Pattern Class SN WN WT ST

ti T 2 1 0 0
ni N 0 0 1 2

(tn)i A i 2i i i

(nt)i A i i 2i i

(nj−1t)i, j = 3 N i i 1 + i 3 + i

(nj−1t)i, j > 3 N i i 1 + i 2 + i

(tj−1n)i, j = 3 T 3 + i 1 + i i i

(tj−1n)i, j > 3 T 2 + i 1 + i i i

TABLE I

NUMBER OF BRANCH MIS-PREDICTIONS

counter of a bimodal branch predictor can be represented
by a deterministic finite automaton(DFA),whose states and
transitions are depicted in Figure 1.n indicates a branch
is not-takenand t that the branch istaken. For example,
the pattern(ti−1n)j represents the behaviour of a branch
associated with a loop construct that iteratesi times and
is repeated itselfj times. A feature of a loop construct
is that the conditional test of the loop index resolves to
true, i − 1 times, andfalse once (on loop exit). The
scheme provides some degree of hysteresis and thus is less
affected by occasional changes in branch direction. The state
of the counter is updated after the branch outcome has been
resolved.

Table I, summarised from [1], details the maximum num-
ber of branch mis-predictions that can be expected for
various branch patterns being repeatedi times, depending
on the initial state of the predictor. The second column in
this table defines for each branch pattern the classification
of the associated branch instruction intotaken-biased(T),
not-taken-biased(N), and alternating (A). The worst-case
number of mis-predictions, i.e. each instance of a branch

is mis-predicted, is where the branch alternates between
its taken and not-taken directions. In the table, the two
cases corresponding to this worst-case predictor scenarioare
highlighted in bold. The last four rows represent the branch
behaviour of a loop typically generated by a compiler for
j = 3 and j > 3 iterations, respectively. There are many
other alternatives to branch prediction including zero bit(i.e.
effectively no prediction), one bit prediction and the general
N-bit predictors.

B. Using Machine Learning for Determining Loops

In [8] a framework was presented based on typical restric-
tions of real-time systems proposed by Chapman [3] to make
the problem of analysing the bounds for both flat and nested
loops manageable. The following restrictions were chosen
by Chapman as they fall within the subset defined by the
Presburger arithmetic subset which helps make the problem
decidable. These are: integer constants; variables that are
constant integers; +, - operators; multiplication by an integer
constant; and variables that are a loop index for an enclosing
for loop. It is considered the restrictions are representativeof
typical coding standards for real-time systems. Other work
[10], [16] adopted more stringent restrictions on the loop
bounds to be supported in order for the problem to be
decidable.

There are three key parts to the analysis framework. Firstly,
the software under test should be examined in order to
provide information on which variables are within scope and
monitored to indicate how many times each block of the
software is exercised. This can be carried out as a separate
testing activity or to save effort as part of testing already
carried out, e.g. structural or functional testing.

Secondly, there are test cases used to exercise the software.
These should be sufficient to identify:

1) whether a flat loop or the outer loop has constant loop
bounds or they are dependent on variable(s) that are
constant within the scope of the loop

2) where the loop bound is constant the value needs to be
determined

3) where the loop bound is dependent on constant vari-
ables, which variables are featured and how they are
related with respect to the allowed arithmetic operators.

Finally, the information from testing is used to learn the
characteristics of the software in order to determine the actual
loop bounds or where this is not possible the relationship that
defines it. Where inner loop(s) of a nested loop potentially
has a variable loop bound (i.e. it is dependent on the number
of times an outer loop iterates) then only the case resultingin
the worst case execution time is represented in the training
data. That is, the case in which the maximum number of
iterations of the inner loop occurs given the number of times
the outer loops executes. An Inductive Logic Programming
learner is provided with background knowledge in the form
of algebraic operators which in this case relates to the
operations allowed by the Presburger subset. Further details
of the method and evaluations can be found in [8].

III. R ELATED WORK

This section presents related work for two areas: branch
prediction analysis and machine learning.

A. Branch Prediction Analysis

Several static analysis techniques for obtaining WCET
estimates of real-time programs have emerged over the last
two decades. The first work on execution time analysis for
microprocessors using dynamic branch prediction techniques
to model the branch target buffer (BTB) of a Intel Pentium
microprocessor is presented by Colin and Puaut [4]. Disad-
vantages of their approach include it is based on source-code,
rather than object-code, which ignores additional branches
introduced by the compiler, and it does not integrate the
results with other parts of WCET analysis. Mitra et al. [12]
present a framework for modelling the effects of global-
history branch prediction schemes on WCET analysis. This
only considers single bit predictors, however it does deal with
global history predictions. All the techniques require a basic
knowledge of how the branch predictor works.

B. Machine Learning

Machine Learning (ML) aims at describing the properties
of a set of observations from a given source, and/or making
predictions about the nature of future observations from
the same source. Both goals are achieved by changing the
representation of available data as expressed in its original
form (or object language) into another representation (using
another formalism, known ashypothesis language). The new
representation copies closely the information encoded in
the original data, but is usually more general, and allows
statements to be made about yet unseen cases. ML can be
seen as the search for a mapping from a set of inputs to an
output; this mapping is often a function; when it is Boolean
(i.e., apredicate), it could be seen as defining aconceptas
a subsetC of its domain (oruniverse) U. In the context of
loop bound determination, this means relationships between
the software variables and the loop bound can be determined.

No ML algorithm can make predictions unless it employs
a bias. In the case of concept learning, this means not all
possible subsets of the universe U are expressible in the
hypothesis language (see [11] for details of the argument).
In general, the bias will restrict the range of possible func-
tions (models, hypotheses) that can be described by the
hypothesis language. For instance, the set of data points
{(0, 0), (π, 0), (2π, 0)} can be modelled by the functions
y = 0, y = cosx or y = x(x − π)(x − 2π), depending
on the bias, which may restrict the hypothesis to a linear,
trigonometric or polynomial function.

Such a bias is also calledlanguage biasto distinguish
it from the preference bias, allowing a choice between
alternative models with equal coverage of the available data.
Here some simple, but general principles (heuristics) are
often employed. For instance, Occam’s razor [11] favours the
simplest hypothesis language, while the Minimal Descrip-
tion Length (MDL) bias [17] suggests a trade-off between

the complexity of the hypothesis language and that of the
resulting representation of the data.

The area of ML focusing on the search for quantitative
laws, expressed as equations, is known as equation discovery.
When an initial draft of the equation is provided, the process
is known as equation revision [19]. In this case, initial input
is required from experts, but the changes carried out by the
learner can be non-trivial, and result in large improvements
[20].

Inductive Logic Programming (ILP)is a form of ML where
both data and hypotheses are expressed in first order logic
[15]. The great advantage of ILP is in its ability to vary its
language bias through the use ofbackground knowledge, the
only set of predicates that can be used to describe the target
hypothesis. For instance, the predicatesparent/2 and
male/1 can be used to learn the definition offather/2.
While such categorial hypotheses are more common, it
is possible to define operators and standard functions as
background knowledge, and search for the equation that best
models the data.

IV. L EARNING BRANCH PREDICTION

The purpose of this section is to explore the issues in
learning branch prediction characteristics. This is described
in the following subsections that describe how test cases
can be generated which are then be used within a learning
framework to determine how the branch predictor affects the
execution of software.

A. Test Case Generator for Branch Prediction

An output of the test case generator is the set of branch
prediction results for each individual branch which can
then be amalgamated by the learner to gain the desired
result. Each output forms a tuple consisting of<current
address, branch prediction, actual branch>. These represent
an identifier (current address) for the branch being con-
sidered, whether the branch is correctly predicted or not
(branch prediction), and whether the branch was taken or not
(actual branch). From this tuple all the information needed
is available to determine the set of states, and associated
transitions, within a branch predictor assuming there are an
appropriate set of test cases.

To learn the characteristics of a branch prediction unit
requires each of the possible state transitions to be covered
by the test cases independent of its initial state. Clearly
given knowledge of the particular branch predictor then
a sufficient and necessary (i.e. minimal) set of test cases
can be generated. In the case of the two-bit predictor in
Figure 1 there are eight state transitions. However without
this knowledge the only option is to perform comprehensive
testing or to use search-base testing techniques. The situation
is eased due to the following characteristics of the data being
learned from.

1) The data may however be complex, yet it contains no
noise, a major issue in almost any other ML application
area.

2) The control variable range is discrete, and often can
be sensibly restricted to an interval. One can make a
simplifying assumption and treat such data as measured
on a nominal scale. As a result, even the simplest ILP
algorithms can be applied without any adaptations.

3) Implementing equation discovery with ILP means one
has to deal with “positive only” learning: the data
consists of examples (instantiations) of the equation,
but no counter-examples are provided. ILP, where both
are usually needed, overcomes the issue by generating
random examples, and assuming that the substantial
majority of those are counter-examples. Choosing a
sufficiently large range for the control/input variables
will guarantee this assumption, while their discrete
nature makes it easier to choose a sensible sampling
strategy (already available in off-the-shelf ILP tools,
such as Progol [14]).

4) As long as the analysed software is not part of a
control loop involving external hardware (including the
“physical system”), the cost of obtaining data is very
low, which means one can test any hypothesis at will,
e.g., to meet the requirements of a statistical test. Since
the input variable domains can be very large, one can
employ active learning to let the learner select the
examples, for instance, to minimise uncertainty in the
model [7]. The whole process of learning and testing
can be automated in aclosed loop machine learning
style [9].

The most important of these characteristics is the fact we
have positive only learning means the results only get better
with more data. Hence there is no harm in there being too
much data other than an increase in computation time, as
long as the solution remains tractable. Figure 2 shows the
set of test cases used whereIS is a variable representing the
initial state of the predictor.

for (IS ∈ initial states)
for (i=1; i ≤ 12; i++)

for (j=1; j ≤ 12; j++)
simulate loop bias (IS, t, i, j);

Fig. 2. Test case generator

The purpose of the proceduresimulate loop biasis to
provide output target predicates in the correct format with
an appropriate initial state and bias. It produces output
based on executing a nested loop with either aTaken(t)
or NotTaken(n) bias. The parameters passed to it are:IS -
initial state;bias - t or n; i - loop count for the outer loop;
and j - loop count for the inner loop

An example output from the test case is given in Figure
3. It shows the target predicates for an outer loop bound
of 2, an inner loop bound of 3 and an initial stateST .
In this example the target predicatettp has the following
information associated with it - test case number, outer
loop bound and overall loop count which are 6, 2 and 3
respectively. It is noted that the loop count (or differencein

% ttp(CaseID,NumberOfMispredictions,
% NumberOfPredictionsMade).
% tp(Case,Index,BranchPrediction,BranchTaken).

% Case 15:
% Outer Loop has bound 2, Inner Loop has a
% bound 3, 2 x 3 = 6 predictions to make,
% Initial State is Strongly Taken.
ttp(15,2,6).

tp(15,1,t,t).
tp(15,2,t,t).
tp(15,3,t,n).
tp(15,4,t,t).
tp(15,5,t,t).
tp(15,6,t,n).

Fig. 3. Example Output from Test Case

bounds) for any given loop is equal to the number of branch
predictions that must be made. The target predicatetp has
the following information (in the order shown) - test case
number, overall loop iteration number, branch prediction and
actual branch. For exampletp(15, 3, t, n) refers to test case
number 15, loop iteration 3, a branch prediction speculating
the branch is taken whereas the branch is actually not taken.

By using the test case generator suggested with both a
maximum inner loop bound and a maximum outer loop
bound of 12, branch predictors of order up to 12 can be
learned as the test case guarantees all states transitions are
covered. In practice it is unlikely this number of test cases
will be needed due to the complexity of branch predictors
that are used. However this high number will serve to
demonstrate that significant numbers of test cases can be used
within a reasonable amount of computation time. Clearly
the number of test cases can easily be increased, as they
are automatically generated, if the learner can not make a
conclusion prediction.

B. Branch Predictor Learner

The task of identifying the type of branch predictor used
begins with describing the behaviour of the three types of
predictor contemplated. A branch predictor is an automaton
in which each state is associated with a prediction,takenor
not taken, that will be made when a request is received;
transitions between states are triggered (and labelled) by
the subsequent notification of the actual outcome of the
branching action predicted (which, again, is eithertakenor
not taken). Such an automaton can be conveniently described
as a list of 4-tuples. The first three elements of the 4-tuple list
the current state, transition label, and new state. The fourth
argument makes explicit the prediction associated with each
state. So, for example, the two-bit predictor from Figure 1
is represented by the predicatetwoBitPredictor/4 in
Figure 4.

The first two arguments are taken as input, and the latter
two produced as output, but there is an important notion of
time that is not obvious from this mode description: only the
first argument (current state) is used to make the prediction
(argument 4), which is given by the current state alone; then

the actual branch taken, provided as input (argument 2), is
used to determine the next state of the automaton (argument
3). For instance, a two-bit predictor instrongly taken(st) state
will predict the branch to be taken, and if this is not the case,
i.e., the branch is not taken, its state will change toweakly
taken(wt) (see line 7 oftwoBitPredictor/4). One-bit
and zero-bit predictors can be described in the same way, the
only difference being the reduced number of states, which
means there is no more hysteresis in the one-bit predictor
behaviour – it reverses the prediction it makes after the first
mis-prediction. The zero-bit predictor has only one state,
hence one prediction, which we have arbitrarily set totaken.
The maximum range of states for all three predictors is listed
in predicatestate/1.

% twoBitPredictor:
% In In Out Out
% t t + delta t + delta t
% (CurrentState,BranchTaken,NextState,Prediction)

twoBitPredictor(sn,n,sn,n).
twoBitPredictor(sn,t,wn,n).
twoBitPredictor(wn,n,sn,n).
twoBitPredictor(wn,t,wt,n).
twoBitPredictor(wt,n,wn,t).
twoBitPredictor(wt,t,st,t).
twoBitPredictor(st,n,wt,t).
twoBitPredictor(st,t,st,t).

% oneBitPredictor:
% (CurrentState,BranchTaken,NextState,Prediction)

oneBitPredictor(sn,n,sn,n).
oneBitPredictor(sn,t,st,n).
oneBitPredictor(st,n,sn,t).
oneBitPredictor(st,t,st,t).

% zeroBitPredictor:
% (CurrentState,BranchTaken,NextState,Prediction)

zeroBitPredictor(st,n,st,t).
zeroBitPredictor(st,t,st,t).

% maximum range of states
state(sn).
state(wn).
state(wt).
state(st).

Fig. 4. Logic programming representation of predictors

The ILP learner Progol4.4 is given a choice of three
background predicates,topZeroBP/3, topOneBP/3, and
topTwoBP/3 that can be used to “explain” the observations
listed inttp/3, that is, the number of mis-predictions for a
given training case. Each of the three predicates has the same
three arguments:Case, Number of mis-predictions, andTotal
number of predictions made(which, in turn, are the same
as the arguments ofttp/3). The predicatetopTwoBP/3
is defined in such a way, so that it only succeeds if for
a given caseA, there is an initial stateIS, such that a
two-bit predictor would replicate exactly the behaviour of
the predictor recorded intp/4. To use the example of
case 15 in Figure 3, the predictor whose model we try to
unveil, has generated the following sequence of predictions,

listed in argument 3 oftp/4: t, t, t, t, t, t. Only 4 of
these 6 predictions have been successful, as can be seen
from argument 4 of the same predicate, showing the actual
program behaviour:t, t, n, t, t, n. PredicatetopTwoBP/3
will try each of the four possible initial statessn, wn, wt, st
in turn, and make the six consecutive predictions that a two-
bit predictor with this initial state would prescribe. For the
predicate to succeed, the two-bit predictor has to replicate in
each step the prediction listed in argument 3 oftp/4, while
using argument 4 of the same predicate to update its state.
In the case of success, the total number of mis-predictions
is computed and output in argument 2 oftopTwoBP/3.

The predicatestopOneBP/3 and topZeroBP/3 are
defined in a similar way. When presented with the data in the
form of ttp/3 andtp/4 predicates, Progol can now learn
rules of type ttp(A,B,C) :- topTwoBP(A,B,C),
where the predicate on the right hand side (in the body
of the clause) can be one of the three described. As all
examples in a data set are generated by the same predictor,
we expect that Progol would learn a single rule that would
cover (account for) the entire data set. This is indeed the
case, as our experiments, that are described in the following
section, show.

Some of the Progol code is listed in Figure 5. The
set/2 definitions specify constraints pruning the search
of the hypothesis space, setting aspects of the preference
bias, and specifying learning with no counter-examples.
The mode declarations list the predicates that can appear
in the head and body of a clause (RHS and LHS of
a rule) learned;type declarations introduce user-defined
types. The background knowledge shown contains the
full definition of topTwoBP/3; those of topOneBP/3
and topZeroBP/3 differ only in two lines of code,
replacing the two calls to twoBitPredictor/4
with calls to oneBitPredictor/4, respectively
zeroBitPredictor/4.

V. EVALUATION

The purpose of this section is to show how the branch
predictor learner can distinguish between different typesof
hardware.

A. Evaluating the Ability to Learn Different Hardware Ar-
chitectures

In section IV-B the method of learning different types of
branch prediction mechanisms was described. Here an eval-
uation is presented that illustrates their ability to distinguish
between the different types of mechanisms using the test
cases given in section IV-A.

Test cases were produced based on the nested loop code
example given in section IV-A for three configurations of
hardware – zero bit, one bit and two-bit predictors. The
results of these executions were then fed into the learning
engine that was to identify whether the test data was a
positive match for one of the known predictor types.

For each of the test cases the type of branch predictor was
correctly learned. The results are summarised in Table II. The

%%%%%%%%%%%%%%%%%%%%
% search parameters
%%%%%%%%%%%%%%%%%%%%
:-set(posonly)? :- set(c,1)?
:- set(h,10000)? :-set(r,100000)?
:-set(inflate,101)? :- set(nodes,1000)?

%%%%%%%%%%%%%%%%%%%%
% mode declarations
%%%%%%%%%%%%%%%%%%%%
modeh(1,ttp(+int,+int,+int))?
modeb(1,topTwoBP(+int,+int,+int))?
modeb(1,topOneBP(+int,+int,+int))?
modeb(1,topZeroBP(+int,+int,+int))?

%%%%%%%%%%%%%%%%%%%%
% type declarations
%%%%%%%%%%%%%%%%%%%%
state(sn). state(wn). state(wt). state(st).

%%%%%%%%%%%%%%%
% BK Knowledge
%%%%%%%%%%%%%%%
% topTwoBP(Case,NoMispredictions,MaxIndex)
topTwoBP(Case,NoMispredictions,MaxIndex) :-

twoBP(Case,0,NoMispredictions,MaxIndex).

% twoBP(Case,MispredictionsSoFar,
TotalNoMispredictions,MaxIndex)

twoBP(Case,MispredictionsSoFar,
TotalNoMispredictions, MaxIndex) :-
state(InitState),twoBPhelp(InitState,
Case,1,MaxIndex,MispredictionsSoFar,
TotalNoMispredictions).

% IN IN IN IN IN
% IN
% twoBPhelp(CurrState,Case,Counter,Index,Predict,

BranchTaken)

twoBPhelp(CurrentState,Case,MaxIndex,
MaxIndex,MispredictionsSoFar,
TotalNoMispredictions) :-
twoBitPredictor(CurrentState,
ActualBranchTaken,_,Prediction),
tp(Case,MaxIndex,Prediction,
ActualBranchTaken),countMispredictions
(MispredictionsSoFar,Prediction,
ActualBranchTaken, NewNoMispredictions),
TotalNoMispredictions = NewNoMispredictions.

twoBPhelp(CurrentState,Case,Counter,MaxIndex,
MispredictionsSoFar,TotalNoMispredictions) :-
twoBitPredictor(CurrentState,ActualBranchTaken,
NextState,Prediction),
tp(Case,Counter,Prediction,ActualBranchTaken),
IncrementedCounter is Counter + 1,
countMispredictions(MispredictionsSoFar,
Prediction,ActualBranchTaken,
NewNoMispredictions),!,twoBPhelp
(NextState,Case,IncrementedCounter,
MaxIndex,NewNoMispredictions,
TotalNoMispredictions).

countMispredictions(MispredictionsSoFar,
PredSameAsBranchTaken,PredSameAsBranchTaken,
MispredictionsSoFar).

countMispredictions(MispredictionsSoFar,
Prediction,ActualBranchTaken,
NewNoMispredictions) :- \+ Prediction =
ActualBranchTaken,
% ’\+’ stands for ’not’
NewNoMispredictions is MispredictionsSoFar + 1.

Fig. 5. Logic programming representation of the two-bit predictor automa-
ton

table features three columns. The first column is the test case
which is being evaluated. The second column is the number
of instances of the target predicatettp/3 from which a
rule was learned. The final column is the total execution
time. Since there are more combinations of an automaton’s
initial state and loop bounds, the number of examples to
learn from is proportional to the number of internal states
of the automation at hand. The results show that more time
is taken to learn lower-order predictors. The learning time
is influenced by non-logical aspects of the program, such as
the order in which the examples and themodeb declarations
are listed; both have implications on the order in which the
hypothesis space is searched. The exact effect of these is
difficult to predict but the results here show that a number
of examples sufficient to determine the branch predictor type
can be processed in tens of seconds, an acceptable time for
this type of task. The results also show that the number
of instances needed is relatively small showing the current
test technique is sufficient. Future work could also look to
optimise the way in which the learner is set.

Predictor Number of instances Time (s)
Two Bit 576 16.23
One Bit 288 21.69
Zero Bit 144 31.80

TABLE II

RESULTS FORLEARNING BRANCH PREDICTORTYPE

B. Evaluating the Ability to Learn Overall Worst-Case Mis-
predictions

The next stage of the evaluation is to show how the
different components of our solution can be used as part of
the overall WCET analysis problem. For this purpose a sort
routine is used as it is a simple example to explain and yet
has some interesting characteristics - principally the number
of loop iterations and hence number of mis-predictions is a
function of both the inner and outer loop guards. The sort
routine is illustrated by the pseudo-code in Figure 6.

for i = 1 to A loop
for j = 1 to A-i loop

if a[j] < a[j+1] then
· · ·

end loop
end loop

Fig. 6. Sort routine

The first piece of information to be learned is the number
of loop iterations for the inner loop. The method for deter-
mining this is detailed in our previous work [8] with a brief
summary provided in section II-B. The desired result is in
equation (1).

lcsort =
A · (A − 1)

2
(1)

We used equation (1) to generate the data to learn from in
the shape of pairs of numbers representing the upper bound
A and the corresponding number of times the inner loop
body is executed,B (see Table III). The variable range was
set toA ∈ {1, . . . , 30}. The simulated data used in the sort
routine example represents the maximum number of steps
needed to sort a list of certain length. This is equivalent to
preprocessing the data, so that of all permutations of inputlist
elements, only the one resulting in the WCET is represented
in the training data.

TABLE III

SORT ROUTINE DATA SET

% tp(A,B) where B = A * (A - 1) / 2

tp(1,0).
tp(2,1).
tp(3,3).
tp(4,6).
tp(5,10).
...

Usingsum andproduct as background knowledge, that
is, looking for an equation tying up the data arguments
through these two operators, Progol4.4 found a one-rule
model in less than four seconds (Table IV). Note C and D
are intermediate variables introduced by the learner.

TABLE IV

PROGOL OUTPUT FOR THE SORT ROUTINE

tp(A,B) :- product(C,A,A),
sum(D,B,A),
sum(C,B,D).

This translates to a system of three equations shown below.

C = A ∗ A (2)

D = A + B (3)

C = B + D (4)

Note the division operator was not part of the background
knowledge, nor was Progol allowed to use constants in
its hypotheses. Nevertheless, the result is correct, albeit
expressed in a somewhat unusual way as it can be reduced to
be identical to the formula in equation (1). We then assume
the methodology in section 4 has been followed, and that the
result identified a two-bit predictor has been used. Finallythe
results from all the stages can be combined. There are three
branches to be considered which are as follows:

1) Main Body - The if statement is executed
dA · (A − 1)/2e times. Without knowledge of the
data the worst case situation has to be considered
which is an alternating case(tn)i where i is equal to
dA · (A − 1)/4e.

2) Outer Loop- The for statement, with loop index vari-
ablem, conforms to the pattern(tj−1n)i wherei = 1
andj = A.

3) Inner Loop- Thefor statement, with loop index variable
n, conforms to the pattern(tj−1n)i. As the value ofj
associated with the inner loop is continually changing
then a safe assumption must be made, i.e.i = A and
j = A.

Using the contents of Table I and the information learned
so far, the results in Table V can be established for each of
the branches considered, whereE = dA ·(A−1)/4e. Clearly
where no knowledge of the initial state is available then the
worst-case assumptions have to be made. For example ifA =
10, the total worst-case predictions would be: Main Body
equal to 45, Outer Loop equal to 4, and Inner Loop equal
to 13. This makes a total of 62 mis-predictions. If the safe
assumption related to theInner Loopwas addressed then at
most the cost of one branch mis-prediction would be saved.
This corresponds to the biggest difference in the number of
mis-predictions between the last two rows in Table V. Future
work could investigate further additions to the learning to
address this error. It should be noted that without any form of
learning then mis-predictions would have to be assumed each
time a branch is executed. The Inner Loop and Main Body
are executed102 times, and the Outer Loop10 times. This
results in 210 mis-predictions which is significantly worse
than the figure gained using the method presented in this
paper.

Initial Predictor State
Branch SN WN WT ST

Main Body E E 2 · E E

Outer Loop;A = 3 4 2 1 1
Outer Loop;A > 3 3 2 1 1
Inner Loop;A = 3 3 + A 1 + A A A

Inner Loop;A > 3 2 + A 1 + A A A

TABLE V

NUMBER OF MIS-PREDICTIONS

VI. CONCLUSIONS

This paper has shown how machine learning can be used to
identify the branch predictor used by a particular processor.
This information was then combined with knowledge gained
from program flow analysis and static analysis of branch
mis-predictions. The resulting worst-case number of mis-
predictions is a lot better than those found if computational
intelligence techniques, i.e. machine learning, was not used.

ACKNOWLEDGEMENT

We thank Ralf Reutemann for the examples used.

REFERENCES

[1] I. Bate and R. Reutemann. Efficient integration of bimodal branch
prediction and pipeline analysis. InProceedings of the 11th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 39–44, 2005.

[2] G. Bernat, A. Colin, and S. Petters. WCET analysis of probabilistic
hard real-time systems. InProceedings of the 23rd Real-Time Systems
Symposium, pages 279–288, 2002.

[3] R. Chapman.Static Timing Analysis and Program Proof. PhD thesis,
Department of Computer Science, University of York, March 1995.

[4] A. Colin and I. Puaut. Worst Case Execution Time Analysisfor
a Processor with Branch Prediction.Real-Time Systems Journal,
18(2/3):249–274, 2000.

[5] L. David and I. Puaut. Static determination of probabilistic execution
times. InProceedings of the 16th Euromicro Conference on Real-Time
Systems, pages 223–230, 2004.

[6] J. Engblom. Analysis of the execution time unpredictability caused
by dynamic branch prediction. InProceedings of the 9th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages
152–159, 2003.

[7] Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling
using the query by committee algorithm.Machine Learning, 28(2–
3):133–168, 1997.

[8] D. Kazakov and I. Bate. Towards new methods for developing real-
time systems: Automatically deriving loop bounds using machine
learning. InProceedings of the 11th IEEE International Conference
on Emerging Technologies and Factory Automation, 2006.

[9] R. King, K. Whelan, F. Jones, P. Reiser, C. Bryant, S. Muggleton,
D. Kell, and S. Olivier. Functional genomic hypothesis generation
and experimentation by a robot scientist.Nature, 427(6971):247–252,
2004.

[10] E. Kligerman and A. Stoyenko. Real-time Euclid: a language for reli-
able real-time systems.IEEE Transactions on Software Engineering,
12(9):941–9, 1986. IEEE Transactions on Software Engineering.

[11] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[12] T. Mitra, A. Roychoudhury, and X. Li. Timing Analysis ofEmbedded

Software for Speculative Processors. InProceedings of the 15th
International Symposium on System Synthesis, 2002.

[13] F. Mueller and J. Wegener. A comparision of static analysis and
evolutionary testing for the verification of timing constraints. In Real-
Time Technology and Applications Symposium, pages 144–154. IEEE,
1998.

[14] S. Muggleton. Inverse entailment and Progol.New Generation
Computing, 13:245–286, 1995.

[15] S. Muggleton and L. De Raedt. Inductive logic programming: Theory
and methods.Journal of Logic Programming, 19/20:629–679, 1994.

[16] P. Puschner and C. Koza. Calculating the maximum time ofreal-time
programs.Real-Time Systems, 1(2):159–176, 1989.

[17] J. Rissanen. Modeling by shortest data description.Automatica,
14:465–471, 1978.

[18] J. Smith. A Study of Branch Prediction Strategies. InProceedings
of the 8th International Symposium on Computer Architecture, pages
135–148, Minneapolis, Minnesota, USA, 1981.

[19] L. Todorovski and S. Džeroski. Theory revision in equation discovery.
Lecture Notes in Computer Science, 2226:389+, 2001.

[20] L. Todorovski, S. Džeroski, P. Langley, and C. Potter.Using equation
discovery to revise an earth ecosystem model of carbon net production.
Ecological Modelling, 170:141–154, 2003.

[21] J. Wegener, H. Sthamer, B. Jones, and D. Eyres. Testing real-time
systems using genetic algorithms.Software Quality Journal, 6(2):127–
135, 1997.

