
Tree-Based WCET Analysis on Instrumentation Point Graphs

Adam Betts∗and Guillem Bernat

Real-Time Systems Research Group
University of York

York YO10 5DD, UK
abetts@cs.york.ac.uk

Abstract

This paper presents a framework for combining low-
level measurement data through high-level static analysis
techniques on instrumented programs in order to generate
WCET estimates, for which we introduce the instrumenta-
tion point graph(IPG). We present the notion of iteration
edges, which are the most important property of the IPG
from a timing analysis perspective since they allow more
path-based information to be integrated into tree-based cal-
culations on loops.

The main focus of this paper, however, is an algorithm
that performs a hierarchical decomposition of an IPG into
an Itree to permit tree-based WCET calculations. The Itree
representation supports a novel high-level structure, the
meta-loop, which enables iteration edges to be merged in
the calculation stage. The timing schema required for the
Itree is also presented. Finally, we outline some conclusions
and future areas of interest.

1 Introduction

In real-time systems, a guarantee of precise functionality
requires affirmation of both functional and temporal correct-
ness. This latter property is adhered to by breaking the sys-
tem up into a number of tasks and assigning a temporal order
to the task set according to a selected scheduling algorithm,
e.g. earliest deadline first (EDF). The feasibility of schedul-
ing a task set is ascertained through schedulability analysis
by analysing tasks’ temporal parameters relative to the avail-
able system resources. A central parameter in this analysis
is that of a task’sworst-case execution time(WCET), which
represents the maximum amount of CPU time a task requires
in order to complete executionon a particular architecture.

The field of WCET analysis is driven by two schools
of thought: static analysis(SA) and measurement-based
(MB) analysis. SA produces WCET estimates by building
models of both the program and the processor. Mueller
[14] has modelled the effects of instruction caches for
arbitrary levels of associativity. Similarly, Whiteet al. [22]
have proposed a method to bound worst-case data cache
performance. Bateet al. [5] have contemplated the effects
of dynamic branch predictors, whilst Liet al. [12] have
considered modelling out-of-order execution units. In spite
of this progress, correctly modelling the microprocessor
is handicapped by its stringent need forpredictability,

∗This research is sponsored, in part, by the EPSRC funded project,
DIRC.

which is compromised in the presence of such hardware
speed-up features. As a result, pessimistic assumptions are
formulated that lead to overestimation, but real-time hard-
ware architects are increasingly looking towards advanced
microproccesors [9]. These advancements provide the
motivation for MB techniques [8, 21], which are based on
testing the real system instead of building a model. An ev-
ident requirement of MB techniques is that test-generation
techniques must exercise the combination of input values
that leads to the actual WCET, which is not a trivial problem.

The approach we present in this paper is not an end-
to-end MB approach, but a hybrid method that attempts to
reduce the underestimation and overestimation incurred by
SA and MB techniques, respectively. This is achieved by
combining low-level MB data through high-level static tech-
niques that utilise knowledge of the program’s high-level
structure in the calculation stage. For these purposes, the
control flow graph (CFG) of the program under analysis is
instrumented, and a flow graph is derived from the paths
among instrumentation points, resulting in an instrumenta-
tion point graph (IPG). The IPG subsequently serves as a
basis for tree-based [7], path-based [20] and IPET [11] cal-
culation methods.

In this paper, we formally introduce the IPG and present
its two most significant properties from a timing analysis
perspective: instruction blocks and iteration edges. Us-
ing partial tracing mechanisms, instruction blocks contain
context-sensitive execution of basic blocks1, whilst iteration
edges permit several (sub-)paths to contribute to the WCET
of a corresponding CFG loop instead of the unique worst-
case path. Therefore, more path-based information can be
integrated into tree-based calculations on the IPG. However,
the main contribution of this paper is how to decompose an
IPG into a hierarchical form, the Itree, for the purposes of
tree-based calculations. The Itree representation supports a
novel construct, themeta-loop, which augments tree-based
calculations by combining iteration edges and their respec-
tive loop body in the calculation stage. We also give the
timing schema required for an Itree.

In the next section we outline some graph terminology
to be used in the remainder of the paper. In section 3,
we discuss a taxonomy of instrumentation profiles and how
these relate to calculation techniques performed on the IPG.
In section 4 we introduce the IPG and discuss instruction

1A basic block is a sequence of consecutive instructions suchthat flow
of control can only enter at the beginning and leave at the end[2]

blocks and iteration edges. In section 5, we give a detailed
description of the algorithm that decomposes an IPG into an
Itree. We also discuss the properties of the Itree, including
the meta-loop construct, and the timing schema. Finally, we
present some conclusions and future areas of work.

2 Graph Terminology and Notation
A graph G = (N,E) is a pair of finite setsN andE,

called nodes and edges respectively, whereE ⊆ N × N . A
directed edgex → y, x, y ∈ N , is written(x, y), wherex

andy are called thesourceand thedestinationof the edge,
respectively. Further,x is an immediate predecessorof y

andy is an immediate successorof x. The immediate pre-
decessors and successors of a noden ∈ N shall be denoted
pred(n) and succ(n), respectively. Abranch nodeb has
|succ(b)| > 1, whilst a mergenodec has|pred(c)| > 1.
A directed graph(digraph) H = (N,E) is a graph where
eache ∈ E is a directed edge. Apath of lengthm is a se-
quence of edges(x1 → x2 → . . . → xm+1), where each
xi → xi+1 ∈ E. The notationx1

∗
→ xn denotes a path of

length zero or more, whereasx1
+
→ xn denotes a path of

length one or more.
A graph isconnectedif there is a non-empty path be-

tween any distinct pair of nodes{x, y}. A digraph isweakly
connected if its underlying undirected graph is connected.
A control flow graph is a weakly connected, digraphC =
(N,E, start, exit), start, exit ∈ N , where we assume that
start has no predecessors,exit has no successors and that
start → exit ∈ E. Furthermore, it is assumed for every
n ∈ N there is a directed path fromstart to n and a di-
rected path fromn to exit, i.e. no dead code, without loss
of generality. Astrongly connected componentis a sub-
graphH = (N ′, E′) of a directed graphG = (N,E) such
that eachn ∈ N ′ is reachable from everym ∈ N ′ by a path
that uniquely consists of edges inE′, whereN ′ ⊆ N and
E′ ⊆ E. A directed acyclic graphis a digraph that contains
no directed cycles.

In a directed graphG a nodex pre-dominates(post-
dominates) a nodey if every directed path fromstart to
y (y to exit) passes throughx. A nodesx dominatesa
nodey if x pre-dominatesy or x post-dominatesy. The
pre-dominatorand post-dominatortrees of a graphG =
(N,E) represent the pre-dominance and post-dominance re-
lation, respectively, betweenN . The parentx of y in the
pre-dominator tree is its immediate pre-dominator, denoted
ipredom(y) = x; conversely, the parenty of x in the post-
dominator tree is its immediate post-dominator, denoted
ipostdom(x) = y. The least common ancestor(LCA) of
a pair of nodesx andy in a treeT is the ancestor ofu and
v in T that is located farthest from the root. The LCAl of a
set of nodesS ∈ T is the LCA of all unordered pairs ofS,
denotedlca(S) = l.

3 Taxonomy of Instrumentation
A fundamental issue when attempting to combine MB

data through static techniques is the placement of ipoints
with respect to the program under consideration. Evidently,
coarse-grained tracing mechanisms require greater support
from test-data generation methods, which consequently re-
quire assistance from coverage metrics, both of which re-
main open problems within the scope of timing analysis. We
propose a taxonomy of available tracing mechanisms (soft-

ware, compiler-generated, hardware, and CPU simulator)
with the aim of later classifying their effect on our analy-
sis. Following areinstrumentation profiles.

1. Full: An ipoint is placed at the beginning of each in-
struction, which is easily achieved when using CPU
simulators.

2. Block: An ipoint is placed at the beginning, the end, or
both the beginning and end, of each basic block.

3. Optimal: Optimal tracing mechanisms have been in-
troduced [4], which enable the entire traversed path
through a program to be reconstructed from a trace file
with the minimum number of ipoints.

4. Coverage: Code coverage analysis techniques often
place software probes at the beginning of basic blocks
that exhibit certain properties with respect to the dom-
inance relation. For example, Agrawal [1] utilises the
dominator graph data structure to find a minimal instru-
mentation placement with respect to block and branch
coverage metrics.

5. Branch: Nexus [15] is a hardware debug interface that
collects tracing data at program flow discontinuities,
i.e. at taken conditional branches and exceptions.

6. Structural: The CFG is (partially) instrumented such
that certain structural properties of the resultant IPG
hold, which are often necessitated to facilitate algo-
rithms operating on the IPG, e.g. reducibility. We fur-
ther elaborate on this profile during the course of the
paper.

7. Arbitrary: The number and placement of ipoints are
not restricted.

This taxonomy is important because it determines the
precision and resolution of further analysis. The full and
block profiles enables the WCET of each BB to be extracted,
thus it inheres with a myriad of static analysis techniques al-
ready outlined in the literature, which are based on BBs. The
optimal, coverage, and branch profiles normally constrain
the subsequent calculation to techniques that can handle ir-
reducible graphs. The structural profile is principally used
when tree-based calculations are required, since trees typi-
cally experience difficulties handling irreducible regions. It
is difficult to qualify the impact of an arbitrary profile, since
it might equate to another profile. However, in the worst
case, a program will only record time stamps at the begin-
ning and end of execution, which corresponds to current in-
dustrial practice of black box testing. We stress that how to
instrument a program for timing analysis purposes remains
an open question and is not the focus of this paper.

Note that ipoints do not have to correspond to extra code
physically positioned in the program. They can correspond
to notional points in the program where an observation takes
place: either intrusively by calls to a tracing library, or com-
pletely transparently by using hardware tracing mechanisms
or CPU simulators. Furthermore, in every profile, we as-
sume thatstart andend are ipoints of each function so that
the contribution of each function to the final WCET can be
gauged.

4 Instrumentation Point Graphs
The underlying data structure of our measurement-based

approach is the instrumentation point graph (IPG), which

arranges the transitions among ipoint pairs in the CFG into
structural form on an intra-procedural basis. The first step
in constructing the IPG is to re-structure the CFG into a
CFG* representation, which is a canonical form of the CFG
in which there are two types of nodes: the setÎ of ipoints
represent individual time stamp instructions; the setB̂ of ba-
sic sub-blocks represent sequences of functional program in-
structions2. The definition of an IPG follows naturally from
this construction:

Definition 1. An IPG is a connected, directed graph Γ =
(Î, E′, s, e) such that (i, j) ∈ E′ if and only if there exists a
path i → b1 → . . . → bn → j such that each bi ∈ B̂ and
n ≥ 0.

Figure 1(a) shows a CFG that has been augmented with a
set of ipoints{I1, I2, I3, I4}, which have been placed at the
beginning of BBs{b, c, d, e}. The resultant IPG generated
from these ipoints is shown in figure 1(b). Each edge has
been labelled with sequences of BBs executed between pairs
of ipoints in the CFG, which we describe next; instructions
thus reside on edges, whereas they reside in BBs in the CFG.

start

exit

I1

I2

I3

I4

a

b

c

d

e

f

g

h

i

(a) CFG probed with ipoints

start

exit

I1

I2

I3

I4

λ

a

b
c

d

ef
g

ch
gdf

g bi

(b) IPG generated from structural
profile

Figure 1. Example CFG and IPG

Instruction Blocks

A key aim in a hybrid MB WCET framework is the re-
duction of theprobe effect, in which ipoints collecting tim-
ing data affect the execution time of a program in an ad-
verse manner. A consequence of the reduction in ipoints
is the introduction of a new unit of computation, for cal-
culations based on the IPG, to the time observed between
ipoints, which we terminstruction blocks (IB). An IB con-
tains a subgraphH = (N ′, E′) of the CFG* that is traversed
between pairs of ipoints, although this might be intractable
to compute in an arbitrary instrumentation profile since arbi-
trary subgraphs might reside between pairs of ipoints. Sig-
nificantly, instructions of a unique BB can reside in several
IBs, thus it is not possible to extract the WCET of individual
BBs. This is exhibited in the IPG of figure 1(b):I2 → I1,
I3 → I1, andI4 → I1 all contain context-sensitive execu-
tion of BB g. However, this context-sensitivity also permits
tree-based calculations to become more path-aware since the
WCET of BBs are no longer considered in isolation, thus

2In the arbitrary instrumentation profile, software probes can reside in
any location inside a BB, thus a number of sub-nodes are spawned

resulting in more accurate WCET estimates given sufficient
testing and coverage. Note that the transitionstart → exit

containsλ, which signifies that no functional instructions
are executed whenever this edge is followed.

Iteration Edges and Reducibility

In control-flow analysis and global code optimisation
techniques, it is important to distinguish loops in the CFG.
This can be achieved by determining loop backedgesu → v

such thatv pre-dominatesu and thatv pre-dominates all
nodes contained in the loop body. Furthermore, the loop-
nesting level of a loop indicates the containment relation-
ship of that loop amongst a set of (nested) loops. However,
the straightforward loop identication process is inhibited by
mutliple-entry loops where a set of nodes collectively pre-
dominate the nodes in the loop [19]: such loops are termed
irreducible. In these cases it is often difficult to compute
the nodes that are contained in an irreducible loop body, the
nesting relationship among loops, and even the number of
loops.

Loop backedges of the IPG are a subset of a more gen-
eral class that we termiteration edges. We shall later ob-
serve that iteration edges permit the integration of more
path-based information into tree-based calculations, espe-
cially when the CFG has been sparsely instrumented. An it-
eration edgeu → v is one in whichu, v belong to the same
loop-nesting level and includes the traversal of a CFG* loop
backedge in its instruction block. However, identificationof
iteration edges is not straightforward unless the IPG is re-
ducible, which cannot be assumed to hold without careful
selection of ipoint positions with respect to the CFG. Al-
though techniques do exist that identify irreducible loops
[10, 19], there still remains incoherent definitions about
what constitutes a loop in an arbitrary graph [18]. Clearly,
misidentifying such edges can lead to the possibility of un-
derestimation in the calculation stage, since they should be
factored by an appropriate loop bound.

In essence, we want to instrument a CFG with a set of
loopsL = {L1, . . . , Ln} and be able to identify a set of
IPG loopsL = {L′

1, . . . , L
′
m}, m ≥ n, such that:

1. There is a functionf : Li → L̂, where L̂ =
{L′

1, . . . , L
′
k} with 1 ≤ k ≤ m,

2. EachL′
j ∈ L̂ is reducible and shares the same header.

It is easy to show that the first condition holds by placing
a non-empty set of ipoints into each loopLi, because there
is subsequently a strongly connected component of these
ipoints in the IPG. For an arbitrary CFG, a baseline optimal
instrumentation profile always satisfies this property due to
the fact that the entire traversed path can be re-constructed
from a trace file, i.e. each iteration of each loop in the CFG
must be observed. The second condition is only satisfied
by ensuring a unique ipoint in eachLi pre-dominates all
other ipoints inLi, which requires examination of the pre-
dominance relation between nodes and edges ofLi, depend-
ing on where ipoints are to be placed. This is stated more
precisely in the following theorem.

Theorem 1. Let L be a loop with a set of loop headers
H = {h1, h2, . . . , hn} in the CFG and L̂ the correspond-
ing loops in the IPG. Each L′

j ∈ L̂ is reducible and shares
the same header if and only if a non-empty subset M of L is

instrumented such that there exists a unique x ∈ M which
pre-dominates all nodes in M .

Proof. Omitted, see [6] for details.

This theorem is principally important since it permits a
reducible CFG to be instrumented so that each set of loops
in the resultant IPG can be distinguished using standard loop
identification techniques. That is, each iteration edge is also
a loop backedge, which is a property we exploit in the next
section. The question of whether instrumentation profiles
outlined above - particularly the optimal one - can be mod-
ified to comply with this theorem remains open. A further
outcome of this result is the conjecture that some irreducible
CFGs can be instrumented to ensure IPG reducibility, al-
though this would require well-defined notions of a loop
header and backedge in an irreducible CFG.

5 Tree-Based WCET Analysis
In the introduction we noted that our aim is to combine

data acquired during measurement with high-level SA tech-
niques in order to obtain a final WCET estimate. This issue
is now addressed by describing in detail an algorithm that
performs a hierarchical decomposition of the IPG into an
Itree, the properties of which are equally specified.

The requirement for a new tree representation is moti-
vated by the fact that current tree-based methods do not
pertain to the IPG whenever coarse-grained instrumenta-
tion profiles are used. Only the full instrumentation pro-
file results in basic blocks being the basic unit of com-
putation; therefore, instruction blocks, which incorporate
context-sensitive execution of basic blocks, are used instead.
The tree representation that we present thus permits instruc-
tion blocks to be combined without undue pessimism. A fur-
ther and more pertinent motivation arises from the problem
of modelling iteration edges with respect to a unique CFG
loop, since this regularly occurs using coarse-grained instru-
mentation profiles. For these cases, we introduce a new tree
construct, whilst noting that the approach outlined by Petters
et al. [17] has not addressed this fundamental issue.

During the description of the Itree representation and al-
gorithm, we refer to each loop of the IPG as a tuple(h, T), in
whichh is the header that pre-dominatesT , and eachti ∈ T

is a tail with a backedge toh. Moreover, we distinguish be-
tween: for/while loops in whichh is the immediate post-
dominator of eachti ∈ T , henceforth referred to as afor
loop; do-while loops in which noti ∈ T post-dominates
h, unless there is a uniquet ∈ T , in which caset post-
dominatesh.

5.1 Itree representation

The Itree representation that we propose has similar prop-
erties to those of an abstract syntax tree since it models
three high-level constructs: sequence, selection, and itera-
tion. In addition, we introduce a novel construct, themeta-
loop, which enables (sub-)paths through the CFG loop to be
combined in the calculation stage, especially when it is pos-
sible to show that no unique worst path is followed on each
iteration. In this pathological case, estimates are equally as
safe since the meta-loop structure enables the worst path to
be determined.

Theleaves of an Itree correspond to a transition among a
pair of inodes(Ii, Ij) since the basic unit of computation is
the instruction block. There are four kinds of interior nodes,
all of which are exemplified in figure 4:

• An alternativenode is a rootedn-ary tree; it either

models a selection of pathsIi
+
→ Ij from a branch

nodeIi to Ij = ipostdom(Ii); or, it models a selec-

tion of pathsT
+
→ lca(T) in ado-while loop construct,

whereT is a set of loop tails such that|T | > 1.
• A sequencenode is a rootedn-ary tree, which mod-

els the pathIb → Is
+
→ Ip, in which Ib is a branch

node or a loop header with an immediate successor
Is, and there is a non-empty path fromIs to Ip =
ipostdom(Ib).

• A loop node is a rooted binary tree that models the
paths in a loop with headerh and tailt. The right tree is
a leaf representing the loop iteration edget → h. The

left tree either represents the pathh
+
→ t whenh is the

destination of a unique tailt, or it represents the path

b
+
→ t in which t ∈ T , |T | > 1, andb is the nearest

branch node oft, which shall be explained shortly. In
the case of a self-loop, the left tree is always empty.

• A meta-loopis a rootedn-ary tree that models several
sub-loops with tails{t1, . . . , tn} such that eachti has
the same headerh and shares a pathp : h

∗
→ b in which

b is the nearest branch node to eachti: p is modelled as
then + 1th subtree of the meta-loop construct.

5.2 Itree construction algorithm

The construction of the Itree assumes that a CFG has
been instrumented using the result of theorem 1 so that each
loop in the resultant IPGΓ = (N ′, E′, start, exit) is re-
ducible. There are several further assumptions that con-
tribute to the notion of the structural profile, which are re-
quired for correctness. These all pertain to the structural
properties of each IPG loopL, and are summarised as fol-
lows:

1. Each backedgeti ∈ T → h traverses thesame, unique
CFG* backedge in its respective instruction block,

2. Eachti ∈ T is the source of a unique backedge,
3. Every n ∈ L − T − {h} is either post-dominated

by h (wheneverL is a for loop) or collectively post-
dominated by some subset ofT (wheneverL is a do-
while loop),

4. Any branch nodeb on a pathh
+
→ ti, which isnot post-

dominated byti, pre-dominatesti.

We motivate the first two assumptions by the fact that it
is often difficult to determine loop nesting levels whenever
a header is the destination of backedges that correspond to
different loops, or whenever tails have multiple edges to
different headers. Furthermore, these allow the subsequent
calculation to safely combine sub-loops contributing to
a unique CFG loop. The third assumption enables us to
determine that every exit fromL must be fromh in for
loops, or from one ofti ∈ T in do-while loops. The fourth
assumption is required in the construction of meta-loop
subtrees due to an auxiliary data structure that we utilise,
the compressed pre-dominator tree, which is explained
shortly. We envisage that some of these assumptions will

be relaxed in order to handle a more general class of IPG,
which is currently under investigation.

There are several preprocessing steps to the main algo-
rithm. First, the pre-dominator and post-dominator trees
of Γ are built using standard dominator tree algorithms [3].
Second, for each loopL in Γ, ordered(h, T) pairs are com-
puted, which can be achieved by identifying all backedges
u → v in which v pre-dominatesu as we assume that
all loops are reducible. During the backedge identification
process,Γ is transformed into a directed acyclic graphΓ′,
such that all backedges identified are removed. The con-
struction of the Itree requires thatstart → exit ∈ E′ to pre-
vent premature and incorrect termination of the algorithm.
Whenstart has a unique successor, namelyexit, the Itree
consists of a single instruction blockstart → exit; other-
wise, Itree construction is initiated by calling algorithm1
with parameterssource = start andtarget = exit, noting
that the entire algorithm operates onΓ′. There are several
sub-algorithms (c.f. algorithms 1, 2, 3, 4, 5) that contribute
to the overall construction of the Itree, thus we give indi-
vidual focus to each in turn. Figure 4 shows the Itree con-
structed from the IPG in figure 1(b).

BuildALTRoot (branch, target)

root = ALT
foreachsi ∈ succ(branch) do

if si == target then
root.ithTree = branch → si

else
seqRoot = SEQ; seqRoot.1stTree = branch → si

root.ithTree = BuildSEQRoot (seqRoot, si, target)

return root

Algorithm 1 : Build alternative subtree

BuildLOOPRoot (header, tail)

root = LOOP; root.rightTree = tail → header

if tail 6= header then
if header post-dominates tail then

header′ = ComputeDummyNode (header, tail)

else
header′ = header

root.leftTree = WhichSubTree (header′, tail)

return root

Algorithm 2 : Build loop subtree

Alternative subtree (Algorithm 1)

This algorithm builds an alternative subtree for a branch
nodeb with an immediate post-dominatorp. For each imme-
diate successorsi of b, the algorithm first resolves whether
si is p, in which caseb → si is inserted as theith tree of the
alternative root. If not, this implies that there is a sequence
of sub-paths fromsi to p, thus a sequence subtree is con-
structed as theith tree: its first tree isbranch → si, and all
remaining subtrees top are built through a call to algorithm
5.

Loop subtree (Algorithm 2)

This algorithm builds a loop subtree for a loopL with
a headerh and a unique tailt. In building the loop body
subtree, we first check thath is not a self-loop. When this
is not the case, the algorithm determines whether the loop is
a for or do-while structure by utilising the post-dominance
relation amongst the header and the tail outlined above.

In the case of afor loop, the problem occurs that a sub-
set of succ(h) lie outside the loop body sinceh is post-
dominated by somey 6∈ L; therefore, a dummy nodeh′ is
created in which eachs′ ∈ succ(h′) resides inL, noting that
eachs ∈ succ(h) that belongs toL must be post-dominated
by t. The loop body is thus constructed with a call to algo-
rithm 4 in whichh′ is the source andt the target. On the
other hand,do-while structures do not experience this prob-
lem since we assume that each node inL is post-dominated
either byh or by t; instead,h must be flagged as a non-
header to avoid infinite recursion before calling algorithm4
with h as the source andt the destination.

BuildMETARoot (header, T)

currentHeader = header
C = ComputeCompressedDominatorTree (header, T)

for levelC = height(C) downto 0 by −1 do

foreachx ∈ C with level(x) == levelC do
if x ∈ T then

root = LOOP
root.rightTree = n → currentHeader
retrieve dummy noded of parent(x)
if x 6= currentHeader then

root.leftTree = WhichSubTree (d, x)

tailRoots(x) = root

if x source of multiple compression edges then
root = META; k = 1

foreachy ∈ C with best(y) == x do
if y ∈ T then

root.kthTree = tailRoots(y); k = k + 1

if y source of multiple compression edges then
root.kthTree = metaRoots(y); k = k + 1

if x 6= currentHeader then
retrieve dummy noded of parent(x)

root.kthTree = WhichSubTree (d, x)

metaRoots(x) = root

root = metaRoots(currentHeader)
return root

Algorithm 3 : Build meta-loop subtree

Meta-loop subtree (Algorithm 3)

This algorithm builds a meta-loop subtree for a loopL

with a headerh and a set of loop tailsT ; currentHeader is
set toh, which is useful in algorithm 5. This algorithm de-
pends on the construction of an auxiliary data structure, the
compressed pre-dominator tree(CPT), which can be con-
structed (off-line) once all(h, T) tuples have been com-
puted. In essence, we want to construct the body of each
sub-loop forti from the nearest (predecessor) branch node
b thatti does not post-dominate;b is either another loop tail
tj or the node at which control flow diverges towardsti in
L. Therefore, the pathp : h

∗
→ b should not be included

in this body sincep can be followed whenever the body of
some other tailtj is executed.

The CPT thus provides a convenient way of extracting
the nearest branchb for each tail, and the nearest branchb′

for eachb. It is iteratively computed through a set of nodes
Q such that, initially,Q = T . For eachq ∈ Q, a backwards
traversal of the pre-dominator tree is performed until a node
q′ is found thatq does not post-dominate;q′ then becomes
the parent ofq in the CPT. Wheneverq′ is not a member
of the CPT, it is added to a setQ′, and at the end of each
iterationQ = Q′. This process continues untilQ contains a
unique memberq; if q is not the headerh, thenh becomes

the parent ofq since eachti clearly shares the pathh
+
→ q.

In a further step, we compress the paths of eachq in the
CPT, in whichparent(q) is a tail with aunique child, to its

first ancestora that either has multiple children or is not a
loop tail. The result is stored inbest(q), wherebybest(q)
is initially q. This is because the subtree of eachq with
this property should be a subtree of the meta-loop rooted at
a, and not the subtree rooted atparent(q). This is easily
achieved by a depth-first search on the CPT.

As an example of the construction of the CPT, we return
to the IPG of figure 1(b) in which the pre-dominator and
post-dominator trees are shown in figures 2(a) and 2(b), re-
spectively. Initially,Q = {I2, I3, I4}. Following the proce-
dure outlined above, at the end of the first iteration, we have
parent(I2) = I1, parent(I3) = I2, parent(I4) = I3,
andQ′ = {I1}, thus resulting in termination asQ = Q′

contains a unique element. We now have to compress paths
since the parents ofI3 andI4 are both tails with a unique
child in the CPT. Performing a depth-first search on the
CPT, best(I3) = parent(I2) sincebest(I2) == I2, and
best(I4) = best(I3) sincebest(I3) 6= I3. This results in
the CPT shown in figure 3 such that solid edges are tree
edges and dashed edges are path-compression edges.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
��� start

exitI1

I2

I3

I4

(a) Pre-dominator Tree

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

start

exit

I1

I2 I3 I4

(b) Post-dominator
Tree

Figure 2. Dominator trees of IPG in figure 1(b)

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Legend

Tree edge

Compression edge

I1

I2

I3

I4

Figure 3. Compressed pre-dominator tree
The meta-loop construct is subsequently built by visiting

the nodes of the CPT level by level in a bottom-up fashion.
Let X denote the nodes at leveli: two properties of each
x ∈ X are examined. First, wheneverx is a loop tail, a loop
subtree is built in which the loop body contains the subgraph
from the nearest branch ofx, i.e.parent(x) in the CPT, tox.
The loop subtree constructed is stored in an arraytailRoots

for subsequent retrieval, which is indexed byx.
Second, wheneverx has multiple children in the CPT,x

is a branch node inΓ′ such that a subset of tailsT ′ share the
pathp : h

∗
→ x3. Therefore, we want to build a meta-loop

subtree in which the loop subtree of eacht′ ∈ T ′ sharingp

is a child. The loop subtree of eacht′ with best(t′) == x

is thus retrieved by indexingtailRoots with t′, noting that
the bottom-up traversal of the CPT guarantees that the loop
subtree oft′ has already been constructed. Finally,p is built
for the meta-loop construct ofx by retrievingparent(x) in
the CPT; it is stored in an arraymetaRoots for analogous
reasons totailRoots, as the meta-loop construct ofx might
itself be a descendant of another meta-loop subtree that is
subsequently constructed.

Each timeparent(x) is fetched, adummy noded must be

created before building the subtreeparent(x)
+
→ x, which

3p is empty wheneverx == h and non-empty otherwise

is necessitated for one of two reasons. On the one hand,
parent(x) has several children in the CPT, in which case
there are successors ofparent(x) in Γ′ that do not converge
on x. On the other hand, all successors ofparent(x) in
Γ′ do converge onx, but the immediate post-dominator of
parent(x) is not a node post-dominated byx, thus the algo-
rithm will never reachx. For example, in figure 2(b), we see
that ipostdom(I2) == I1, and thatparent(I3) == I2,
thus the loop body ofI3 will not be correctly constructed.
The dummy noded overcomes both of these problems: a
successors of parent(x) in Γ′ is inserted intosucc(d) if
and only if s is post-dominated byx; furthermore, the im-
mediate post-dominator ofd is computed by taking the least
common ancestor ofsucc(d) whenever|succ(d)| > 1, or
the uniques ∈ succ(d); thus, construction of the subtree

d
+
→ x must always converge onx. For example, the dummy

noded created for the loop body ofI3 has successors{I3}
and since|succ(d)| == 1, ipostdom(d) = I3.

WhichSubTree (d, target)

if d is tail then
seqRoot = SEQ
seqRoot .1stTree = body: (currentHeader → d)
return BuildSEQRoot (seqRoot, d, target)

else ifipostdom(d) 6= target then
seqRoot = SEQ
if |succ(d)| > 1 then

seqRoot .1stTree = BuildALTRoot (d, ipostdom(d))

else
seqRoot .1stTree = d → ipostdom(d)

return BuildSEQRoot (seqRoot, ipostdom(d), target)

else
if |succ(d)| > 1 then

return BuildALTRoot (d, target)

else
return d → target

Algorithm 4 : Determine subtree construction call

Determine subtree construction (Algorithm 4)

This is a helper procedure used in combination with algo-
rithms 2 and 3. Specifically, it determines the type of subtree
to be built each time a dummy noded has been created.

When d is identified as a tail, this indicates that some
subtree in a meta-loop construct shares the loop body ofd.
We thus want to avoid the quadratic time complexity that

would arise by rebuilding the loop bodycurrentHeader
+
→

d for each node that is a descendant ofd in the CPT. For
example, in figure 3, we see thatI3 shares the loop body of
I2 and thatI4 shares the loop body ofI3 (and implicitly that
of I2), thus we want to avoid re-building these loop bodies.
This is achieved by inserting the first subtree of the sequence
root as a reference to the loop body that it shares, which is
currentHeader → d. The construction of the sequence
root is completed through a call to algorithm 5.

Otherwise, the complete pathp : d
+
→ target needs to

be built. When the immediate post-dominator ofd is not

target, this means that the concatenation of pathsq : d
+
→

ipostdom(d) andr : ipostdom(d)
+
→ target form p. That

is, a sequence subtree needs to built in which its first subtree
modelsq, and all subsequent subtrees modelr, asr itself
might be composed of several sub-paths. To construct the
first subtree, the number of successors ofd are examined.
A branch node invokes a call to algorithm 1; otherwise, the
transitiond → ipostdom(d) is inserted, sinceipostdom(d)

must be the unique successor ofd. Analogous to whend
is a loop tail, a call to algorithm 5 completes the sequence
subtree.

When the immediate post-dominator ofd is not target,

this indicates thatd
+
→ ipostdom(d) andp are equivalent,

thus a sequence subtree is not required. Ifd is a branch
node, an alternative subtree is returned, else the transition
d → target.

BuildSEQRoot (seqRoot, source, target)

y = source; k = 2

while y 6= target do
if y is header then

T = tails(y)
if |T | > 1 then

seqRoot.kthTree = BuildMETARoot (y, T)

else
seqRoot.kthTree = BuildLOOPRoot (y, t ∈ T)

k = k + 1

if y post-dominates T then
y = ComputeNonHeader (y)

else
// Details omitted
seqRoot.kthTree = BuildDoWhileExitRoot (T)
y = lca(T) in post-dominator tree;k = k + 1
if y == target then

return seqRoot

else
z = ipostdom(y)

if |succ(y)| > 1 then
seqRoot.kthTree = BuildALTRoot (y, z)

else
seqRoot.kthTree = y → z

y = z; k = k + 1

return seqRoot

Algorithm 5 : Build sequence subtree

Sequence subtree (Algorithm 5)

This algorithm completes the construction of a sequence
subtree, which is called from algorithms 1 and 4. Since the
first tree of the sequence subtree is already constructed be-
fore calling this algorithm, the subtree counterk is set to
two; these subtrees are then iteratively built from nodey

until target is reached. On each iteration, the algorithm de-
termines which property is pertinent toy.

If y is a loop header, a meta-loop or loop subtree is con-
structed as thekth tree, depending on the number of tails
with destination headerh, as described above. Next, we
determine from where the loop exits: in the case of afor
loop, it is fromh as we assume that all nodes inL are post-
dominated byh; in the case of ado-while loop, it is from the
set of loop tailsT as we assume that all nodes inL are post-
dominated by somet ∈ T . We require support from another
algorithm to build the exit subtree of ado-while loop with
multiple tails, but we have omitted the details due to space
restrictions; however, it adopts similar principles to that of
the meta-loop construction in the use of a compressedpost-
dominator tree, see [6] for details. Ify is not a loop header,
the immediate post-dominator ofy is retrieved and stored in
z. Eithery is a branch node, in which case algorithm 1 is
called withsource = y andtarget = z; or, y has a unique
successor and thus the transitiony → z is inserted. At the
end of each iteration,y is updated with the value ofz.

5.3 Calculations on Itrees

The timing schema rules to compute WCET estimates
on an Itree are the same as those introduced by Park and

SEQ

META

ALT

LOOP

SEQ

LOOPLOOP

SEQ

start → exit

start → I1 I1 → exit

I1 → I2

I2 → I3

I3 → I4

I2 → I1I3 → I1

I4 → I1

body:I1 → I2

body:I1 → I3

Figure 4. Itree constructed from figure 1(b)

Shaw [16] in the cases of sequence and alternative, except
that the units of computation are instruction blocks, and not
basic blocks. Following are the rules for loop and meta-loop
structures.

WCET (loop) = (WCET (body)

+ WCET (iteration edge)) ∗ k
(1)

WCET (meta) =
n∑

i=1

WCET (loopi)

+ WCET (p) ∗

n∑

i=1

ki

(2)

In equation (1),k denotes the maximumobserved bound
for each iteration edge, depending on the use of suitable cov-
erage criteria. It is possible to integrate information of loop
bounds derived from a suitable static analysis technique to
prevent underestimation, the details of which are considered
beyond the scope of the paper. Note that the WCET of an
IPG loop includes the sum of its bodyand the iteration edge
since instructions reside on edges in the IPG. In equation (2),
the WCET of a meta-loop is the sum of all sub-loops plus
the WCET of any pathp common to all sub-loops. Sincep
is always executed when any sub-loop is exercised, it can be
factored by the sum of the number of iterations of all sub-
loops. The valueki denotes the loop bound of eachloopi

that is extracted during measurement. As IPGs are gener-
ated on an intra-procedural basis, a bottom-up traversal ofa
call graph is required to derive WCET estimates for multi-
procedural programs. Note that empty Itrees are not per-
missible as we assume that each CFG has inodesstart and
exit.

6 Evaluation
In this section we demonstrate how tree-based calcula-

tions centred on IPGs become more path-aware and how
the meta-loop structure can contribute to tighter WCET es-
timates given sufficient coverage. The motivation of this pa-
per has centred around partially instrumented programs, and
not on a comparison between SA and MB techniques.

Reconsider the CFG of 1(a) and the IPG of 1(b): table
6 shows the WCET of each basic block (BB) and instruc-
tion block (IB), assuming these have been computed through
simulation or some MB technique. Note that the WCET of
an IB Î can never be greater than the sum of the WCETs of
each BB that is a member of̂I if the WCET of BBs have

been extracted from a SA technique, assuming the absence
of destructive interference that may occur through timing
anomalies [13].

BB WCET(BB) IB WCET(IB)
a 10 start → exit 0
b 15 start → I1 10
c 12 I1 → exit 20
d 8 I1 → I2 15
e 20 I2 → I1 40
f 16 I2 → I3 12
g 10 I3 → I1 32
h 25 I3 → I4 8
i 6 I4 → I1 40

Figure 5. WCET of units of computation of fig-
ures 1(a) and 1(b)

Let us assume that the maximum number of iterations of
the CFG loop consisting of backedgeg → b is 50. A sim-
ple tree-based approach would assume that the worst path
in the CFG loop is followed on each iteration, which is
b+c+MAX(h, d+e+f)+g = 15+12+MAX(25, 8+
20 + 16) + 10 = 81. This value is then factored by the
loop bound and subsequently added to the WCET of BBs
a and i since these are always executed; thus, the WCET
of the program is(50 ∗ 81) + 10 + 6 = 4066. The ap-
proach presented in this paper also permits the selection of
the longest path through the CFG loop on each iteration:
this is clearly the loop consisting of iteration edgeI4 → I1,
which equates to the pathbcdefg. The WCET of this loop
is ((15 + 12 + 8 + 40) ∗ 50) = 3750, and the final WCET
estimate - combining transitionsstart → I1 andI1 → exit

with this value - is3750 + 10 + 20 = 3780. An improve-
ment is in evidence (despite and because of partial instru-
mentation) since the worst path through the loop contains
context-sensitive execution of the worst path for each BBse,
f , andg. Thus, it is the underlying unit of computation, the
instruction block, that permits our tree-based calculations to
become more path-aware.

However, our approach also permits more path-based in-
formation pertaining to loops to be integrated into the cal-
culation stage using the meta-loop structure. For example,
let us now assume that during testing we have ascertained
that each IPG loop has the following maximum number of
iterations: loop with backedgeI2 → I1, 15 iterations; loop
with backedgeI3 → I1, 20 iterations; loop with backedge
I4 → I1, 15 iterations. In this case, the WCET of the meta-
loop as depicted in figure 4 is((15 + 40) ∗ 15) + ((15 +
12 + 32) ∗ 20) + ((15 + 12 + 8 + 40) ∗ 15) = 3130, and
the final WCET estimate is3130 + 10 + 20 = 3160. Nev-
ertheless, we emphasise that the applicability of this latter
calculation depends on suitable testing and coverage, both
of which remain open questions.

7 Conclusions and Future Work
In this paper, we have shown how to combine low-level

measurement-based data through a tree-based approach on
the instrumentation point graph (IPG). For these purposes,
we have meticulously described an algorithm that decom-
poses an IPG into a hierarchical form that supports a novel
structure, the meta-loop, which is able to combine several
IPG sub-loops that collectively contribute to the WCET of
a unique CFG loop. We presented the timing schema for
the Itree, and have also shown how the meta-loop structure
enables tight estimations but also how to err on the side of

caution in the absence of sufficient coverage.
The focus of our future work surrounds coverage criteria

for the various instrumentation profiles, especially the op-
timal profile as this permits the longest path to be derived.
Moreover, many instrumentation profiles lead to irreducible
IPGs, thus we are currently investigating a technique that
is able to handle these cases, since tree-based methods fail.
For this goal, we want to reshape path-based and IPET cal-
culation methods so that they pertain to the IPG.

References
[1] H. Agrawal, "Dominators, Super Blocks, and Program Coverage",In pro-

ceedings of the21st ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages, Jan. 1994.

[2] A.Aho, R.Sethi, and J. Ullman, "Compilers: Principle, Techniques and
Tools", Addison-Wesley, 1986.

[3] S. Alstrup, D. Harel, P.W. Lauridsen, and M. Thorup, "Dominators in Linear
Time", In SIAM Journal of Computing, 28(6): 2117-2132, Dec. 1999.

[4] T. Ball and J.R. Larus, "Optimally Profiling and Tracing Programs",In Pro-
ceedings of the19th ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages, Feb. 1992.

[5] I. Bate and R.Reutemann, "WCET Analysis for Dynamic Branch Predic-
tors", In Proceedings of the16th Euromicro Conference of Real-Time Sys-
tems (ECRTS’04), July 2004.

[6] A. Betts and G. Bernat, "Tree-Based WCET Analysis on Instrumentation
Point Graphs", Technical Report, University of York, York, Oct. 2005.

[7] A. Colin and I. Puaut, "A Modular & Retargetable Framework for Tree-
based WCET Analysis",In Proceedings of the13th Euromicro Conference
of Real-Time Systems (ECRTS’01), July 2001.

[8] A. Colin and S. Petters, "Experimental Evaluation of Code Properties for
WCET Analysis",In Proceedings of the24th Real-Time Systems Sympo-
sium (RTSS’03), Dec. 2003.

[9] G. Frantz, "Digital Signal Processor Trends",IEEE Micro, vol. 20, no. 6,
pages 52-59, Nov. 2000.

[10] P. Havlak, "Nesting of Reducible and Irreducible Loops",In ACM transac-
tions on Programming Languages and Systems, vol. 19, no. 4, pages 557-
567, July 1997.

[11] Y-T.S. Li and S. Malik, "Performance Analysis of Embedded Software Us-
ing Implicit Path Enumeration",In Proceedings of the ACM SIGPLAN
Worskshop on Languages, Compilers and Tools for Real-Time Systems
(LCT-RTS’95), Nov. 1995.

[12] X. Li, A. Roychoudhury and T. Mitra, "Modeling Out-of-Order Processors
for Software Timing Analysis",In Proceedings of the25th Real-Time Sys-
tems Symposium (RTSS’04), Dec. 2004.

[13] T. Lundqvist and P. Stenstrom, "An intergrated path and timing analysis
method based on cycle-level symbolic execution",In Proceedings of the
20th Real-Time Systems Symposium (RTSS’99), Dec. 1999.

[14] F. Mueller, "Timing Analysis for Instruction Caches",Real-Time Systems,
vol. 18, no. 2-3, pages 217-247, May 2000.

[15] The Nexus 5001 forum. At http://www.nexus5001.org, Oct. 2005.

[16] C.Y. Park and A.C. Shaw, "Experiments with a Program Timing Tool Based
on Source-Level Timing Schema",In IEEE Computer, 24(5):48-57, May
1991.

[17] S.M. Petters, A. Betts, and G. Bernat, "A New Timing Schema for WCET
Analysis", In Proceedings of4th International Workshop on Worst Case
Execution Time Analysis, June 2004.

[18] G. Ramalingam, "On Loops, Dominators, and Dominance Frontiers",In
ACM transactions on Programming Languages and Systems, vol. 24, no.
5, pages 455-490, Sep. 2002.

[19] V.C. Sreedhar, G.R. Gao, and Y-F Lee, "Identifying Loops Using DJ
Graphs",In ACM transactions on Programming Languages and Systems,
vol. 18, no. 6, pages 649-658, Nov. 1996.

[20] F. Stappert, A. Ermedahl, and J. Engblom, "Efficient longest executablepath
search for programs with complex flows and pipeline effects",In Proceed-
ings of the international conference on Compilers, architecture, and synthe-
sis for embedded systems, Nov. 2001.

[21] J. Wegener and F. Mueller, "A Comparison of Static Analysis and Evolu-
tionary Testing for the Verification of Timing Constraints",In Proceedings
of the4th Real-Time Technology and Applications Symposium (RTAS’98),
June 1998.

[22] R.T. White, F. Mueller, C. Healy, D. Whalley, and M. Harmon, "Timing
Analysis for Data and Wrap-Around Fill Caches",Real-Time Systems, vol.
17, no. 2-3, pages 209-233, Nov. 1999.

