
Extended Analysis With Reduced Pessimism For Systems With
Limited Paralellism

K. Bletsas and N. C. Audsley
Dept. of Computer Science, University of York, UK.

[bletsas, neil]@cs.york.ac.uk

Abstract

Under limited parallelism, processes compet-
ing for a single processor may issue at any time
operations on remote co-processors, during which
the processor is not idled but granted to other
ready processes instead. We reduce the pessimism
in existing Worst-case Response Time (WCRT)
analysis for such systems by examining temporal
patterns of local/remote execution. We extend
to multi-CPU variants of the model and offer a
WCRT-based feasibility test for Symmetric Multi-
processor (SMP) systems.

1. Introduction

In limited parallel systems [2, 3], processes
competing for a single processor may at any time
issue operations on remote co-processors. While
a process awaits completion of a remote opera-
tion, another ready process may execute on the
processor. Such parallelism is commonplace but
often overlooked. The established scheduling lit-
erature (summarised in [10]), by not considering
co-processors, is pessimistic if applied. Analy-
sis for the limited parallel model [2, 3] removes
some pessimism. That “macroscopic” analysis
considered the execution requirements of a process
locally (on the processor) and remotely (on co-
processors) as worst-case scalars, ignoring when
local or remote execution actually occured inside
the process activation. This more exact analysis
considers “microscopic” temporal patterns of lo-
cal/remote execution.

Application-specific co-processors may appear
as distinct devices on the system bus (Figure 1(a))
or as partitions of a single device operating in par-
allel (Figure 1(b)). They are often implemented
in reconfigurable logic using Field Programamble

Bus

CPU Memory

RL

Bus

CPU Memory

a b c d
RL

RL

configurable logic

8051 microcontroller
and peripherals

memory
(a)

(b)

(c)

Figure 1. Embedded Architectures

Gate Arrays (FPGAs) [1, 13]. Increasingly often,
reconfigurable co-processors share a package with
the processor core (as in the Triscend E5 [12] (Fig-
ure 1(c))) or even the core is implemented in re-
configurable logic.

We term a block what others call a task [11, 6]
or process and call a process what is often termed
a linear transaction [8] of processes/tasks. This
is consistent with codesign practice where (lo-
cal/remote) code blocks forming a transaction are
extracted from a single process. Local/remote
blocks are also termed LBs/gaps respectively.

2. Background

Redefining the WCET of a process C as the
sum of WCETs for local and remote execution
(X , G resp.), the WCRT equations familiar from
uniprocessor analysis [7] become:

Ri = (Xi + Gi) +
∑

j∈hp(i)

dRi/Tje(Xj + Gj)

As seen, remote execution (G) is treated as exert-
ing interference, while only local execution (X)
does. The analysis in [2] rectifies this, the respec-
tive equation being:

Ri = Xi + Gi +
∑

j∈hp(i)

d(Ri + Gj)/TjeXj (1)

1

Gj Xj Xj Gj Xj Gj

Tj

XjGj Xj Gj

-Gj 0 Xj Tj-Gj Tj+Xj 2Tj-Gj 2Tj+Xj
t

. . .

Tj-Gj

Tj

j

i

Figure 2. Worst-case Interference For
The Original Limited Parallel Model

(phasing a)

(phasing b)

(phasing c)

scenario A: interference=5 WORST CASE
scenario B: interference=5

scenario A: interference=3
scenario B: interference=7 WORST CASE

scenario A: interference=4
scenario B: interference=4

t

t

t

. . .

. . .

. . .

Figure 3. Candidate Phasings Tested

The term Gj expresses the worst-case scenario
under that analysis, which assumes block positions
may vary in subsequent activations of the same
process (perhaps due to control flow). This “intra-
activation jitter” is at most Gj . This worst case
is depicted in Figure 2: τi is released at t = 0;
this scenario maximizes interference exerted by
any higher-priority process τj . Note that the worst-
case scenario is not that of synchronous releases:
the release of each higher-priority process τj pre-
cedes by Gj the release of the process considered.

We explain why using a uniprocessor model in-
stead and treating remote execution as blocking on
an external event would be problematic: If the re-
spective blocking term is treated as exerting inter-
ference, this is pessimistic. If not, the variability in
the periodicity of local execution is not accounted
for, thus the analysis may be optimistic [5].

Some pessimism persists in the original limited
parallel analysis [2, 3] because the worst-case sce-
nario for that model treats any process as suffering
an initial preemption of at least the lengths of all
higher-priority LBs summed. However there are
cases where at most a fraction of the LBs of an in-
stance of a higher-priority process may be interfer-
ing. This observation motivates our approach. The

intuition behind it is described by this example:
In a two-process set {τi,τj}, the high-priority

process τj consists of interleaved local/remote
blocks; τi only executes locally. The relative re-
lease offsets of τj , τi are unknown. The worst case
according to [2, 3] would have τi be preempted for
the sum of length of the LBs of τj before ever get-
ting to execute. This is pessimistic because, what-
ever its release offset, τi cannot suffer contiguous
preemption longer than the longest LB of τj .

3. Block Sequence Examined

For the ensuing analysis we require invocations
of the same process exhibit the same sequence of
(local or remote) execution blocks. Block execu-
tion times have upper and lower bounds (derived
by WCET/BCET analysis). The execution pattern
of a process is an interleaved sequence of LBs and
gaps e.g. xgxgx or gxgx (x for LBs, g for gaps).

Consider a process with local-only execution.
It is trivial to show that in the worst-case scenario
for interference suffered, the release of the process
in consideration would have to be coincident with
the start of LBs from all higher-priority processes.
If the number of LBs in a process τ is given by
n(τ) the question then is which one of the n(τj)
blocks (or equivalently phasings) this is, for each
interfering process τj .

Consider an example: In a two-process system,
the high-priority process has an execution distribu-
tion pattern of xgxgx with (fixed) respective block
lengths of 2, 1, 3, 2, 4 and a period of 19 (yielding
7 time units between the termination and the next
release of the process). To identify the worst-case
phasing in terms of interference suffered by the
low-priority process we examine all 3 candidate
phasings for each of two scenarios: A) the low-
priority process having an execution requirement
of 2 or B) 3 respectively (see Figure 3). The exam-
ple shows that, in the general case, which phasing
yields the worst case depends on the execution re-
quirement of the process suffering the interference.
Moreover, for multiple higher-priority processes
n(τj) phasings from each higher-priority process
τj need to be considered in combination, which
might not be tractable.

3.1. Notation and Transformations

The execution pattern of a process τj is repre-
sented as: xj1gj1xj2gj2 ...xjn(τj)

gjn(τj)
. Xjk

, X̂jk

denote the maximum/minimum length of block

2

b c da e (notional)

b c d e + (notional) + a
i s n o r m a l i s e d t o

Figure 4. Distribution Normalisation

5 2 4 4-8 3 6

5 2 4 4-8 3 6 5 2-4

Ajt1=Tj-Aj
“tail” of previously

released invocation
......

synthetic pattern= 5-(2)-4-(4)-3-(6)

j

i

j

i

shift-rotated synthetic pattern
= 4-(4)-3-(6)-5-(2)

...

Aj(a)

(b)

Figure 5. Jitter-like Effects

xjk
. Gjk

, Ĝjk
denote the maximum/minimum

length of gap gjk
. With specific values assigned

to an execution pattern we obtain the exact distri-
bution for the respective process activation.

The above pattern starts with a LB and ends
with a gap, thus remote and local blocks are equal
in number. This is not always the case. For con-
venience, we append a notional gap to the end of
the distribution, of length Nj = Tj − Cj . This
corresponds to the minimum idle interval between
successive invocations of the process if the lat-
ter were executing without competition from other
processes for the processor. This transformation
does not affect the schedulability of lower-priority
processes as gaps exert no interference. As pro-
cesses are periodic, we also “normalise” the dis-
tribution (by shift-rotating left if required) to start
with a LB. Our approach covers the worst-case un-
der all possible release phasings for the process
set so this transformation is also valid. Adjacent
blocks mapped both local or remote then merge.
Then the number of LBs and gaps is the same, de-
noted n(τj) - this facilitates the analysis. An ex-
ample of normalisation transformation is shown in
Figure 4: letters denote block lengths; gaps appear
shaded. The concept of a notional gap allows us to
transform a given distribution by “shift-rotation”
of its constituent blocks, an operation our approach
depends on so as to find a bound on the worst case
that covers all possible relative release phasings.

We use the following notation: the function
big x(τj , m) gives the m-th of the LBs of the nor-
malised distribution of τj , if these are ordered

by decreasing maximum length. The function
small x(τj , m) gives the length of m-th of the
LBs of the normalised distribution of τj sorted by
increasing minimum length. Similarly with func-
tions big g(τj , m), small g(τj , m) for gaps.

3.2. Bounding The Worst Case

We introduce a tractable function that provides
an upper bound for interference suffered from
higher priority processes for all possible offsets
and phasings. It provides tighter bounds on the ex-
act worst case than the existing analysis [2, 3]. The
main idea is to transform process distributions by
reordering the constituent blocks so that there ex-
ists one phasing always providing worst-case in-
terference on lower-priority processes regardless
of their execution requirement. Worst-case inter-
ference under this synthetic distribution is shown
to be an upper bound for the worst-case under the
actual distribution.

Since processes are periodic, the sequence of
activation of their constituent blocks repeats itself
indefinitely. Thus LBs in a process distribution can
be treated as standalone periodic processes with
offset releases. In these terms, we can generalise
the notion of a release to refer to blocks also (lo-
cal or remote), rather than just processes: a block
is said to be released when it is ready to execute.
This depends on the completion time of the block
preceding it, which may vary for subsequent invo-
cations of the process. Thus block releases are not
strictly periodic. Only the starting block of each
process would be strictly periodic, like the process
itself while the k-th block of some process τj is
characterised by some jitter Jjk

.
In this context, for synchronous releases of τi,

τj , bounds on interference can be derived:

Ii=
X

j∈hp(i)

n(τj)
X

k=1

⌈

Ri−Ojk
+Jjk

Tj

⌉

u(Ri−Ojk
)Xjk

(2)
where Ri = Ci + Ii and u(t)=1∀t≥0; else

u(t)=0. The term u(Ri − Ojk
) describes offset

releases that exhibit worst-case jitter. (Releases of
the k-th block of τj at t = Ojk

, Tj + Ojk
− Jjk

,
2Tj + Ojk

− Jjk
, ...) The inner “

P

” sums up the
contributions from LBs of a given higher-priority
process; the outer one sums up the contributions
from all such processes. The equation is solved by
forming a recurrence relationship, as in uniproces-
sor analysis [4]. Variables Ojk

reflect the earliest

3

time that the release of the k-th LB of process τj

can be offset from the release of the process itself.
With this transformation the interference

can be computed from given execution distri-
butions and phasings. Yet the exact worst case
is not identified. We derive that using this theorem:

Theorem 1: For a process τi suffering in-
terference from a higher-priority process τj ,
an upper bound for the interference suffered
by τi due to instances of τj released after or
at the same time as τi is obtained if instead
of the actual execution distribution of τj the
following execution distribution is considered:
big x(τj , 1)small g(τj , 1)...big x(τj , n(τj))small g(τj , n(τj))

Proof: Consider the actual execution pattern of
τj , normalised (as described above) to start with
local execution (without loss of generality) and
augmented by the notional gap.
• Shifting right along the time axis (if necessary)
the release of τi to coincide with a release of a LB
of τj cannot decrease interference on τi.
• Then if all LBs acquire the respective maximum
length, interference cannot decrease.
• If all gaps acquire their respective minimum
lengths interference cannot decrease.
• Then if the first and the longest LB in each invo-
cation of τj swap lengths, interference cannot de-
crease. Similarly with the second and the longest
remaining LBs and so on, until we run out of LBs.
• Then if the first and the shortest gap exchange
lengths in each invocation of τj , interference can-
not decrease. Similarly then for the remaining
gaps, as with LBs.

We obtain the execution distribution
big x(τj , 1)small g(τj , 1)...big x(τj , n(τj))small g(τj , n(τj))

released at the same instant as τi. We term this the
synthetic worst-case execution distribution.

Assume that another distribution yields greater
interference. Transforming it as described cannot
decrease the interference. But the product of the
transformation would again be the synthetic worst-
case distribution (which is a contradiction).
�

If a process suffers interference only from in-
stances of higher priority processes released not
earlier than its own release, it is trivial to show
that interference is maximized under coincident
releases and higher-priority process invocations
characterised by the synthetic distribution. How-
ever, in the general case a process may also suffer
interference from instances of higher-priority pro-
cesses released earlier than it. Even if all invoca-
tions of a process maintain the same sequence of

blocks, the variability in the release times of LBs
(only the one coincident with the process release
is strictly periodic) allows for scenarios that yield
greater interference than coincident synthetic dis-
tributions. Observe this example (Figure 5):

A process τj is converted to its synthetic distri-
bution, which is 5−(2)−4−(4)−3−(6). (In this
notation the parentheses denote gaps.) Note that
even though this synthetic distribution bears the
notional gap at the end (of length Tj−Cj which
represents the minimum possible time interval be-
tween two activations of τj) there is a time in-
terval where τj is idle, between two invocations
(exclusive of that notional gap). In our example,
this is because the gap lengths prescribed by the
synthetic distribution are the respective minimum
values, while for process execution time to reach
a maximum (the worst-case) the respective max-
imum values are required. The upper bound for
this idle interval is Aj . (We stress that Aj does
not include the notional gap; the latter is treated,
for the purposes of considering the interference ex-
erted by τj as remote execution belonging to the
synthetic distribution, even though in fact it is idle
time). We can see that for our simple example
Aj = Tj − Xj − Ĝj − Nj = Tj − Xj − Ĝj −

(Tj − Xj − Gj) = Gj − Ĝj .

Figure 5(a) shows the synchronous release
scenario and the interference suffered by lower-
priority process τi. In Figure 5(b) the synthetic
distribution for τj is modified (by shift-rotating to
the left) to 4−(4)−3−(6)−5−(2). Also the re-
lease of τj is shifted to the right so that the “tail”
of a previous invocation of the same process gets
to interfere with τi. Allowing the two invocations
to run back-to-back (ie. with the minimum “spac-
ing” that the final gap of length 2 allows between
the last LB from the earlier invocation and the first
LB of the next one) has the effect of reducing the
interarrival time for the longest LB (that of length
5) to Tj − Aj from Tj that it was in the previ-
ous scenario. Choosing a suitable relative offset
for the release of τi (like the one shown in Fig-
ure 5(b)) observed interference increases (as dis-
played). The actual effect is equivalent to having
synchronous releases of τj (following the synthetic
distribution) but with a release jitter of Aj (which
equals the variability in the response time of τj).
Indeed Tj − Aj is the minimum interarrival time
that can be observed for releases of the same LB
in successive invocations of the process. Revis-
iting Equation 2: it becomes evident that an up-
per bound on the individual “release jitters” Jjk

4

of all LBs when the synthetic distribution holds
(being the worst-case for interference on lower-
priority processes exerted by a single instance of
τj) is Aj . Otherwise, consecutive invocations of
the same process τj would overlap in time, thus the
system would not be schedulable. Thus we have
identified an upper bound for interference suffered
for all possible offsets and phasings. Extrapolat-
ing from Equation 2 we then obtain for the inter-
ference Ij→i exerted on τi by τj :

Ij→i =

n(τj)
∑

k=1

⌈

Ri−Ojk
+Aj

Tj

⌉

u(Ri−Ojk
)Xjk

(3)

The indices correspond to the block order in
the synthetic distribution, without loss of gener-
ality. The cumulative interference on τi is again
Ii =

∑

j∈hp(i) Ij→i . For the equation to be usable
though, valid values for Ojk

, Aj are needed.
In our simple two-process example the offsets

Ojk
for the higher priority process are derived

simply by adding up the lengths of the preceding
blocks in the synthetic distribution (maximal local
blocks, minimal gaps). Also Aj = Gj − Ĝj . We
will show that even in the case of multiple higher-
priority processes we can use

Ojk
=

k−1
∑

m=1

(Xjk
+ Ĝjk

) and Aj = Gj − Ĝj

(k-indexes referring to block order as per the
synthetic distribution) and the worst case will still
be covered. We elaborate:

With multiple higher-priority processes, the
variability in release time of a block may be due
not only to variability in execution time of the pre-
ceding blocks but also due to preemption of pre-
ceding blocks by even-higher-priority processes.
Thus the release jitter for a block of τj may ap-
pear to exceed Gj − Ĝj (say by ∆Jj). However,
without loss of generality, we can take the release
in consideration to have occured earlier by ∆Jj .
This does not decrease (and in fact may increase)
interference, so the worst-case analysis is not com-
promised. At the same time we are able to bound
the variability in the release time of the block to
Gj − Ĝj . Meanwhile, acceptable values for Ojk

should be lower bounds on the release offset of the
k-th block of τj relative to the process itself (given
the synthetic distribution). Thus, with or without

interference on τj we can use

Ojk
=

k−1
∑

m=1

(Xjm
+ Ĝjm

)

3.3. Response Time Equations

The WCRT equations now take the form

Ri=Ci+
∑

j∈hp(i)

n(τj)
∑

k=1

⌈

Ri−Ojk
+Aj

Tj

⌉

u(Ri−Ojk
)Xjk

(4)
where Ojk

=
∑k−1

m=1(Xjm
+Ĝjm

), Aj=Gj−Ĝj .
We see reduced pessimism over the original lim-
ited parallel model (Equation 1) due to i) the “frag-
mentation” of local execution in many distinct
blocks (with gaps in between, during which lower-
priority processes may execute) as opposed to one
big block and ii) the reduction of the term acting
as jitter: Aj = Gj − Ĝj ≤ Gj .

We note that the term acting as jitter is the same
as in the Original Limited Parallel Model for the
specific case that gaps always precede any local
execution in the process activation [3]. Conversely
we observe that for the inverse pattern (local ex-
ecution preceding all remote execution) the term
Aj may be omitted altogether, as the single con-
tiguous LB is strictly periodic.

If one process is not amenable to the synthetic
analysis (eg. its activations are not consistently
characterised by the same sequence of blocks), the
interference it exerts on other proceses can still be
derived according to the worst case for the origi-
nal analysis for the limited parallel model [2]. The
complexity of the algorithm is discussed in [5].

3.4. Evaluation Of The Analysis

We evaluate the synthetic analysis against the
existing one for an arbitrary process set. Pro-
cess set attributes are presented in Table 1 whereas
the actual and derived synthetic distributions are
shown in Figure 6. WCRTs are compared in Ta-
ble 1 with those derived under the original analy-
sis [2, 3]. Improvements are input-dependent but
may be noticeable, as shown.

4. Multiprocessor Extension

We introduce a multiprocessor extension to the
limited parallel model. The general architecture
depicted in Figure 1(b) is augmented by addi-
tional instruction-set processors (where there was

5

4-5 20-25 9-10

4-7 4 12-15

1-5 18-20 4-8

50-80

+15 10 15 5

15 4 7

20 48

20

34

(not required)

+34

+43

idle

idle

idle

+370 idle

4

3

2

1

Figure 6. Actual → Synthetic

τ T X G C A Rsynth Rorig

τ4 55 15 25 40 5 40 40

τ3 60 22 4 26 0 41 56

τ2 160 20 13 33 8 117 159

τ1 450 80 0 80 0 402 414

Table 1. Process set and results

previously only one). All processors are iden-
tical, sharing the same address space. All sys-
tem resources are global (including the mem-
ory and the co-processors) and symmetrically ac-
cessed. Processes are not attached to specific pro-
cessors and can even migrate during execution.
By having process state be global and symmetri-
cally accessed we can assume negligible migra-
tion costs. Thus the N highest-priority processes
among those competing for the processor are exe-
cuting on any given instant. Our extension could
be termed “Symmetric Multiprocessor (SMP) with
co-processors”.

Regarding the control of access to the shared
system bus, we assume that is possible for mem-
ory accesses to be blocked on accessing the bus for
very short intervals. However we assume that bus
access arbitration is handled in a fair manner by
the communication controllers of the processors.
Its impact on latencies is an aspect of the system
implementation, accounted for in WCET analysis
(outside the scope of this paper).

4.1. Multiprocessor Analysis

Revisiting the previous analysis, the term “local
block” would, in the new context, mean “block lo-
cal to the processor array” or “software block”. In-
tuitively the existence of N > 1 processors would
increase availability and reduce interference suf-
fered by processes. We proceed to quantify this
effect and calculate bounds on WCRTs for such
systems. For the ensuing analysis we again require
that no resources be shared; this is waived later.

From release to termination of a process τi, an
upper bound on the time (in clock ticks) spent ex-

ecuting locally to the processor array (ie. in soft-
ware) by all higher-priority processes is:

Wi=
∑

j∈hp(i)

n(τj)
∑

k=1

⌈

Ri−Ojk
+Jjk

Tj

⌉

u(Ri−Ojk
)Xjk

For N=1 processors, Wi=Ii. But with N>1
processors, a process competing for a processor to
execute on can only be denied one (thus suffering
interference) on the following condition:

There are N or more higher-priority processes
also competing for a processor at the given instant
(thus the N processors are granted to those with
the N highest priorities among them).

An upper bound for the cumulative time that
this condition may hold true for a process τi over
a time window of length equal to its WCRT thus
is an upper bound for the worst-case interference
suffered by it. We show that such a bound is:

Ii =

{

0 if τi among the N highest-priority processes
¨

Wi

N

˝

otherwise

Proof: If τi is among the N highest-priority
processes then it may never be preempted by
another process. If not: Assume that the worst-
case interference for τi is Ĭi = Ii + a, a being
a positive integer. Then there could be at least
Ĭi instants from release to termination of τi

where all processors would be busy executing
higher-priority processes. Thus the cumulative
time spent executing higher-priority processes (in
ticks) for the whole array would have been at least

NĬi=N(Ii +a)=Na+NbWi

N
c>Na+N Wi

N
−N

= N(a − 1) + Wi ≥ Wi ⇒ NĬi > Wi

which is impossible (see the definition of W).
�

Thus, bounds on interferences derived by the
analysis are inversely proportional to the number
of processors in the array for a given process set.
A refined model is obtained by noting that the N
highest-priority processes may not suffer any in-
terference at all. Thus for a task τi belongs to that
group of processes: Ii = 0.

Substituting the above expression for Ii into the
equation Ri = Ci + Ii and solving the recurence
relation computes the WCRT for τi. Note that the
analysis also applies for pure symmetric multipro-
cessor (SMP) systems, without any hardware co-
processors, as a subcase. To the best of our knowl-
edge this is the first WCRT-based feasibility test

6

for FP-scheduled SMP systems. Existing analyses
(summarised in [10]) offer utilisation-based feasi-
bility tests only, which do not cover systems where
deadlines are less than the process periods.

WCRT is a decreasing function of process pri-
ority for a given relative priority ordering of re-
maining processes, ie. no anomalies exist.

4.2. Resource Management

The (uniprocessor) Priority Ceiling Proto-
col (PCP) [9] has been shown to ensure live-
ness, bound blocking times and prevent chained
blocking for limited parallel systems if the co-
processors themselves are treated as shared re-
sources [3]. Blocking terms are given by the same
equations. We show that the same protocol covers
the multiprocessor limited parallel model if lock
requests originating from processes on different
processors are serialised.

Rajkumar [9] modifies the PCP for multiple
processor systems with/without shared memory.
Local resources are accessed under uniprocessor
PCP on each processor and global resources under
the Distributed/Multiprocessor PCP respectively.
In either case, global critical sections reside on
dedicated synchronization processors, arbitrating
access requests by processes on other (application)
processors. With all global critical sections on
a single synchronisation processor (not allowing
parallel execution), their execution is serialised.

However, our model does not require the over-
head of a separate synchronisation processor. All
shared resources are global, accessible by any pro-
cess on any processor, allowing arbitrary process
migration (cf. [9] assumes processes statically as-
signed to processors). Uniprocessor PCP thus suf-
fices, an arbiter is only needed for race condition
avoidance with the execution of the global criti-
cal section occuring on the processor of the calling
process (not the synchronisation processor). This
greatly reduces blocking overheads: Many global
critical sections can be executed in parallel, by pro-
cesses on different processors, with only the access
requests themselves serialised by an arbiter. The
latter may be implemented in hardware [5], as a
specialised co-processor, accessed as a shared lo-
cation in the common address space. By imple-
menting lock/unlock requests as atomic single in-
struction read/write operations, accesses to the ar-
biter are in turn serialised by the bus itself [5].

For priority assignment in the presence of
blocking, an optimal algorithm is detailed in [5].

5. Conclusion

The analysis formulated provides tighter
bounds on process WCRTs than the existing
analysis for the the limited parallel model [2, 3].
Processes however must always be characterised
by the same sequence of code blocks in their
invocations so as to be able to be modelled in
this way. Derived WCRTs are upper bounds for
all possible process release offset combinations.
We then extend to a multiprocessor model and its
WCRT analysis. Our analysis is intended for use
in a hardware/software codesign environment.

References

[1] Altera Corporation. Altera Product Information :
http://www.altera.com/products, 2005.

[2] N. C. Audsley and K. Bletsas. Fixed Priority Tim-
ing Analysis of Real-Time Systems with Limited
Parallelism. In Proc. Euromicro Conference on
Real-Time Systems, 2004.

[3] N. C. Audsley and K. Bletsas. Realistic Analy-
sis of Limited Parallel Software / Hardware Imple-
mentations. In Proc. 10th Real Time Applications
Symposium, 2004.

[4] N. C. Audsley, A. Burns, M. F. Richardson, K. Tin-
dell, and A. J. Wellings. Applying New Scheduling
Theory to Static Priority Pre-emptive Scheduling.
Software Eng. J., 8(5):284–292, 1993.

[5] K. Bletsas. Extending the limited parallel model.
Technical report, Department of Computer Sci-
ence, University of York, 2005.

[6] J. C. P. Gutierrez, J. J. G. Garcia, and M. G. Har-
bour. On The Schedulability Analysis For Dis-
tributed Hard Real-Time Systems. In Proc. Eu-
romicro Conf. on Real-Time Systems, 1997.

[7] C. L. Liu and J. W. Layland. Scheduling Algo-
rithms for Multiprogramming in a Hard Real-Time
Environment. J. of the ACM, 20(1):40–61, 1973.

[8] R. Pelizzoni and G. Lipari. Improved schedulabil-
ity analysis of real-time transactions with earliest
deadline scheduling. In Proc. 11th Real Time Ap-
plications Symposium, 2005.

[9] R. Rajkumar. Synchronization In Real-Time Sys-
tems - A Priority Inheritance Approach. Kluwer,
1991.

[10] L. Sha, T. Abdelzaher, K. E. Arzen, A. Cervin,
T. Baker, A. Burns, G. Buttazzo, M. Caccamo,
J. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Journal of Real
Time Systems, 28(2/3):101–155, 2004.

[11] K. Tindell and J. Clark. Holistic Schedulability
Analysis for Distributed Hard Real-Time Systems.
Euromicro J., Nov.-Dec. 1993.

[12] Triscend Corporation. Triscend Products :
http://www.triscend.com/products, 2005.

[13] Xilinx Corporation. Xilinx Product Information :
http://www.xilinx.com/products, 2005.

7

