
Extending The Limited Parallel Model

K. Bletsas

Dept. of Computer Science, University of York, UK.

bletsas@cs.york.ac.uk

Abstract

In the limited parallel computational model for real-time systems, processes competing for

a single processor may issue at any time operations on remote co-processors. During such

operations, the processor is not idled but may instead be granted to other ready processes.

Such systems, though widespread, until recently had to be analysed with approaches intended

for other models, at the cost of pessimism. Noting that remote operations exert no interfer-

ence on locally executing processes, recent analysis for such systems provided tighter bounds

on Worst-Case Response Times (WCRTs) than the application of uniprocessor analysis (but

still pessimistic). Based on that work, this new approach further reduces the pessimism by

examining temporal patterns of local/remote execution and extends to handle multi-CPU vari-

ants of the model under Fixed Priority Scheduling (FPS). The same approach can serve as a

WCRT-based feasibility test for Symmetric Multiprocessor (SMP) systems.

1 Introduction

In limited parallel systems [3, 4], processes competing for a single processor may at any time

issue operations on remote co-processors. While a process awaits completion of a remote oper-

ation, another ready process may be scheduled on the processor. By ignoring this, uniprocessor

analysis [10] is too pessimistic if applied. Analysis considering the limited parallelism [3, 4],

removes much of that pessimism. That analysis was “macroscopic”: it only considered the

execution requirements of a process locally (on the processor) and remotely (on co-processors)

as worst-case scalar values, ignoring when local or remote execution actually occured inside

the process activation. Instead, the analysis presented here, considers “microscopic effects”

(the actual temporal pattern of local/remote execution of a process) so as to be more exact.

We focus on analysis tailored at systems with co-processors and limited parallelism because

such systems, though very widespread in engineering practice, traditionally are analysed in

ways that overlook their characteristics, hence the pessimism. Advances in manufacturing

make Field Programmable Gate Arrays (FPGAs) [1, 17] ideal for the implementation of limited

parallel systems.

1

Bus

CPU
 Memory

(a)

Bus

CPU
 Memory

(b)
 RL

Bus

CPU
 Memory

(c)
 a
 b
 c
 d

RL
RL

Figure 1: Architectures For Embedded Systems

configurable

logic

8051 processor

and peripherals

memory

Figure 2: The Triscend E5

Limited parallel architectures are derived from conventional processor-memory architec-

tures (Figure 1(a)) by the adddition of application-specific co-processors. The latter can be

implemented as distinct devices on the system bus (Figure 1(b)) or as partitions of a single

device that can operate in parallel with each other (Figure 1(c)). These co-processors are often

implemented in reconfigurable logic in the form of commercially available FPGAs [1, 17].

The tendency is for greater integration and Systems-On-a-Chip (SOCs) so the co-processors

often come in the same package as the processor core. Such an example is the Triscend E5

customizable microcontroller [16], depicted in Figure 2. Often, even the core itself is imple-

mented in reconfigurable logic. Current transistor budgets in FPGAs enable such levels of

integration. Still, as resource usage efficiency is important in embedded design, we aim to

reduce the pessimism in the existing timing analysis for such systems. Then over-engineering

will not be required for systems to qualify as meeting their timing constraints.

The established scheduling literature (summarised in [13]), addresses standard models of

computation, where hardware co-processors are not considered. To the best of our knowledge,

the analysis given in [3, 4] was the first to be directly applicable. Subsequently published

analysis[11] is applicable to a similar model under Earliest Deadline Scheduling (EDF). The

analysis in [3, 4] does provide tighter bounds on interference than the application of the

standard uniprocessor approach [10, 9]. However, it fails to utilise information about the

actual location of code blocks executing locally (termed local blocks or LBs) and remotely

(remote blocks or gaps) in a process activation, hence some pessimism.

Note that what we term a (local or remote) block in the context of this paper corresponds

to what others call a task [15, 8] or a process and what we call process is often refered to as a

linear transaction [11] of processes/tasks. This is because our analysis is primarily intended

for use in a codesign environment where the various code blocks (executing locally or remotely)

that form a linear transaction are extracted from the code of a single process.

2 Background

The limited parallel model allows for multiple processes executing at a given instant: at

most one locally, the rest remotely. A process switching to remote execution gives the next-

highest-priority process among those runnable an opportunity to advance in computation

when it would otherwise have remained preempted. This way, lower-priority processes suffer

2

G
j
 X
j
 X
j
 G
j
 X
j
 G
j

T
j

X
j
G
j
 X
j
 G
j

-G
j
 0
 X
j
 T
j
-G
j
 T
j
+X
j
 2T
j
-G
j
 2T
j
+X
j

t

. . .

T
j
-G
j

T
j

j

i

Figure 3: Worst-case Interference Under

The Original Limited Parallel Analysis

(phasing a)

(phasing b)

(phasing c)

scenario A: interference=5 WORST CASE

scenario B: interference=5

scenario A: interference=3

scenario B: interference=7 WORST CASE

scenario A: interference=4

scenario B: interference=4

t

t

t

. . .

. . .

. . .

Figure 4: Examining Candidate Phasings

less interference than that suggested if uniprocessor analysis [10] were applied. To cope with

these properties of the new model, the analysis introduced in [3, 4] redefines the worst-case

execution time of a process C as the sum of the WCETs for local and remote execution – X,

G respectively. The familar WCRT equations are then rewritten as:

Ri = (Xi + Gi) +
X

j∈hp(i)

‰

Ri

Tj

ı

(Xj + Gj)

This expression highlights the pessimism in applying that analysis, as both local (X) and

remote execution (G) are treated as exerting interference, while only local execution (X) does.

The existing analysis tailored at the limited parallel model [3] does however account for the

fact that remote execution exerts null interference on lower-priority processes, thus achieving

tighter bounds on interference suffered by them. The respective WCRT equations become:

Ri = Xi + Gi +
X

j∈hp(i)

‰

Ri + Gj

Tj

ı

Xj (1)

The term Gj inside the ceiling function expresses the worst-case scenario for interference

under that analysis, which assumes that the position of code blocks of local and remote

execution can vary for subsequent activations of the same process (perhaps due to different

control flows). The maximum such “intra-activation jitter” is bound to Gj . This worst-case is

depicted in Figure 3; τi is released at t = 0 and this is the scenario that maximizes interference

exerted by any higher-priority process τj . Note that this worst case scenario does not occur

for synchronous process releases as it requires the release of each higher-priority process τj to

precede by Gj the release of the process in consideration.

It can be argued that instead of the limited parallel model, a uniprocessor model may be

used with remote execution treated as blocking; we explain why that is problematic:

If remote execution is modelled as blocking on some external event (in this case the

completion of the remote operation) then it has to be introduced as a blocking term of length

Gi; then Ri = Xi + Ii + Gi. Then there are two approaches: i) to consider that blocking

(due to remote execution) contributes to interference on lower-priority processes, or ii) that

3

it doesn’t. The WCRT equations for those two approaches then respectively become:

Ri = Xi + Gi +
X

j∈hp(i)

‰

Ri

Tj

ı

(Xj + Gj),

Ri = Xi +
X

j∈hp(i)

‰

Ri

Tj

ı

Xj + Gi.

The first approach is clearly pessimistic, as gaps are treated as contributing to interference

even though they do not. As for the second one, it actually does not cover the worst case which

is captured by the limited parallel model and results from the variability in the placement of

local execution inside a process invocation. This worst-case placement, reflected in Equation 1

as a “jitter” of Gj in the periodicity of local execution, is depicted in Figure 3.

2.1 A remaining source of pessimism

Some pessimism persists in the original limited parallel analysis [3, 4] because the worst-case

scenario for that model treats any process as suffering an initial preemption of at least the

lengths of all higher-priority LBs summed. However there are cases where at most a fraction

of the LBs of an instance of a higher-priority process may be interfering. This observation

motivates our approach. The intuition behind it is best described by this example:

In a two-process set, the higher-priority process (τj) consists of a sequence of interleaved

LBs and gaps, while the other one (τi) only executes locally. We do not know the relative

offset of the releases of τj , τi but wish to find an upper bound for Ri. The worst-case as per

the original limited parallel analysis [3, 4] would have τi be preempted for the sum of length

of the LBs of τj before it ever gets to execute. This is pessimistic, as in reality, whatever the

release offset of the process, τi cannot suffer an initial preemption longer than the longest

individual LB of τj .

3 Process Structure Exploited

For the ensuing analysis we require invocations of the same process to be characterised by the

same sequence of (local or remote) execution blocks. Block execution times have upper and

lower bounds (derived by WCET/BCET analysis). The execution pattern of a process is an

interleaved sequence of local and remote blocks e.g. xgxgx or gxgx (x for LBs, g for gaps).

3.1 Considerations on the notion of a worst-case phasing

Consider a process with local-only execution. It is trivial to show that in the worst-case

scenario for interference suffered, the release of the process in consideration would have to be

coincident with the start of LBs from all higher-priority processes. If the number of LBs in a

process τ is given by n(τ) the question then is which one of the n(τj) blocks (or equivalently

phasings) this is, for each interfering process τj .

4

Consider the following example: In a two-process system, the higher-priority process has

an execution distribution pattern of xgxgx with (fixed) respective block lengths of 2, 1, 3, 2, 4

and a period of 19 (yielding an interval of length 7 between the termination of one invocation

of the process and the release of the next one). To identify the worst-case phasing in terms of

interference suffered by the lower-priority process we thus examine all 3 candidate phasings.

We do this for two scenaria: A) the lower-priority process having an execution requirement

of 2 or B) 3 respectively, as depicted in Figure 4.

The example shows that in the general case there is no phasing that always pro-

vides the worst-case; which phasing yields the worst-case depends on the execution re-

quirement of the process suffering the interference. Moreover for multiple higher-priority

processes, if n(τj) phasings from each higher-priority process τj would have to be considered

in combination for an exhaustive answer, this might not be tractable for large systems.

3.2 Notation and Transformations

If LBs (x) and gaps (g) are indexed by activation order, the execution pattern of a process τj

is represented as: xj1gj1xj2gj2 ...xjn(τj)
gjn(τj)

.

Xjk
, X̂jk

denote the maximum / minimum length of block xjk
. Gjk

, Ĝjk
denote the maximum

/ minimum length of gap gjk
. When specific values are assigned to this execution pattern we

obtain the exact distribution for the respective process activation.

The above pattern actually starts with a LB and ends with a gap, thus having an equal

number of remote and local blocks. This may not always be the case. For convenience in

analysis we append a notional gap to the end of the distribution, of length Nj = Tj − Cj .

This corresponds to the minimum idle interval between successive invocations of the process

if the latter were executing without competition from other processes for the processor. This

transformation does not affect the schedulability of lower-priority processes as gaps exert no

interference. As processes are periodic, we also “normalise” the distribution (by shift-rotating

to the left if required) to start with a LB. Since our approach covers the worst-case under

all possible release phasings for the process set, this is also a valid transformation. Adjacent

blocks mapped both local or remote are then merged. Then the number of both LBs and gaps

is the same, denoted n(τj) - this facilitates the analysis. An example of such a normalisation

transformation is shown in Figure 5: letters denote block lengths; gaps appear shaded.

The concept of a notional gap (as will become evident upon complete formulation of this

analysis) allows for transforming a given distribution by “shift-rotation” of its constituent

blocks, an operation used throughout our approach in order to derive a bound on the worst

case that covers all possible relative release phasings.

We introduce the following notation: the function big x(τj , m) gives the m-th of the LBs

of the normalised distribution of τj , if these are ordered by decreasing maximum length. The

function small x(τj , m) gives the length of m-th of the LBs of the normalised distribution of

τj sorted by increasing minimum length. Similarly with functions big g(τj , m), small g(τj , m)

5

b
 c
 d
a
 e
 (notional)

b
 c
 d
 e + (notional) + a

is normalised to

Figure 5: Distribution Normalisation

5
 2
 4
 4-8
 3
 6

5
 2
 4
 4-8
 3
 6
 5
 2-4

A
j
t
1
=T
j
-A
j

“tail” of previously

released invocation

...
...

synthetic pattern= 5-(2)-4-(4)-3-(6)

j

i

j

i

shift-rotated synthetic pattern

= 4-(4)-3-(6)-5-(2)

...

A
j
(a)

(b)

Figure 6: Jitter-like Effects

for gaps.

3.3 Bounding The Worst-Case

We introduce a tractable function that provides an upper bound for interference suffered from

higher priority processes for all possible offsets and phasings. This function provides tighter

bounds on the exact worst case than the existing analysis [3, 4].

The idea behind our approach is to transform process distributions by reordering the

constituent blocks so that there exists one phasing that always provides the worst-case in

terms of interference on lower-priority processes regardless of their execution requirement.

The worst-case interference under these synthetic distributions is shown to be an upper bound

for the worst-case under the actual distributions.

To come up with a tractable approach, we start off by expressing the problem in terms

of the established uniprocessor analysis [10, 9]. Since processes are periodic, the sequence

of activation of their constituent blocks repeats itself indefinitely. Thus LBs in a process

distribution can be treated as standalone periodic processes with offset releases. In these

terms, we can generalise the notion of a release to refer to blocks also (local or remote),

rather than just processes: a block is said to be released when it is ready to execute. This

depends on the completion time of the block preceding it, which may vary for subsequent

invocations of the process. Thus block releases are not strictly periodic. Only the starting

block of each process would be strictly periodic, like the process itself while the k-th block of

some process τj is characterised by some jitter Jjk
.

In this context, for synchronous releases of τi, τj , bounds on interference can be derived:

Ii =
X

j∈hp(i)

n(τj)
X

k=1

‰

Ri−Ojk
+Jjk

Tj

ı

u(Ri − Ojk
)Xjk

(2)

where Ri = Ci +Ii and u(•) is the unit step function (u(t)=1∀t≥0; else u(t)=0). The term

u(Ri − Ojk
) is added to the equation so as to describe offset releases that exhibit worst-case

jitter. (Releases of the k-th block of τj at t = Ojk
, Tj + Ojk

− Jjk
, 2Tj + Ojk

− Jjk
, ...)

6

The inner summation operator sums up the contributions from LBs of a given higher-priority

process; the outer one sums up the contributions from all such processes.

The equation is solved by forming a recurrence relationship, as in classic uniprocessor

analysis [5]. Variables Ojk
reflect the earliest time that the release of the k-th LB of process

τj can be offset from the release of the process itself.

This transformation allows for the computation of interference from given process execu-

tion distributions and phasings. However what is missing is the identification of the exact

worst-case. To derive that we rely on the following theorem:

Theorem 1: For a process τi suffering interference from a higher-priority process τj , an

upper bound for the interference suffered by τi due to instances of τj released after or at the

same time as τi is obtained if instead of the actual execution distribution of τj the following

execution distribution is considered: big x(τj , 1)small g(τj , 1)...big x(τj , n(τj))small g(τj , n(τj))

Proof: Consider the actual execution pattern of τj , normalised (as described above) to

start with local execution (without loss of generality) and augmented by the notional gap.

• Shifting right along the time axis (if necessary) the release of τi until it coincides with

a release of a LB of τj does not decrease the interference suffered.

• Then if all LBs acquire the respective maximum length, interference can only increase.

• If all gaps acquire their respective minimum lengths interference can only increase.

• Then if in each invocation of τj , the first LB exchanges length with the longest one, inter-

ference can only increase. Similarly then with the second LB and the longest remaining

LB and so on, until we run out of LBs.

• Then if in each invocation of τj , the first gap exchanges length with the shortest one,

interference can only increase. Similarly then for the remaining gaps, as with LBs.

We obtain the execution distribution big x(τj , 1)small g(τj , 1)...big x(τj , n(τj))small g(τj) re-

leased at the same instant as τi. We term this the synthetic worst-case execution distribution.

Suppose that there is another execution distribution that yields greater interference. By

subjecting it to the transformation just described, the interference can only increase. But the

product of the transformation would again be the synthetic worst-case distribution, which

contradicts the initial supposition. Thus the synthetic worst-case distribution gives an upper

bound for the actual worst-case interference.

�

If a process suffers interference only from instances of higher priority processes released not

earlier than its own release, it is trivial to show that interference is maximized if we consider

the releases to be coincident, with the higher-priority process invocations characterised by the

synthetic distribution. However in the general case, a process may also suffer interference from

instances of higher priority processes released earlier than it. Even if all invocations of the

same process are characterised by the same sequence of blocks, the variability in the release

7

times of LBs (only the one coincident with the process release is strictly periodic) allows for

scenarios that yield greater interference than coincident synthetic distributions. Observe this

example (Figure 6):

A process τj is converted to its synthetic distribution, which is 5−(2)−4−(4)−3−(6). (In

this notation the parentheses denote gaps.) Note that even though this synthetic distribution

bears the notional gap at the end (of length Tj−Cj which represents the minimum possible

time interval between two activations of τj) there is a time interval where τj is idle, between

two invocations (exclusive of that notional gap). In our example, this is because the gap

lengths prescribed by the synthetic distribution are the respective minimum values, while for

process execution time to reach a maximum (the worst-case) the respective maximum values

are required. The upper bound for this idle interval is Aj . (We stress that Aj does not

include the notional gap; the latter is treated, for the purposes of considering the interference

exerted by τj as remote execution belonging to the synthetic distribution, even though in

fact it is idle time). We can see that for our simple example Aj = Tj − Xj − Ĝj − Nj =

Tj − Xj − Ĝj − (Tj − Xj − Gj) = Gj − Ĝj .

Figure 6(a) shows the synchronous release scenario and the interference suffered by lower-

priority process τi. In Figure 6(b) the synthetic distribution for τj is modified (by shift-

rotating to the left) to 4−(4)−3−(6)−5−(2). Also the release of τj is shifted to the right so

that the “tail” of a previous invocation of the same process gets to interfere with τi. Allowing

the two invocations to run back-to-back (ie. with the minimum “spacing” that the final gap

of length 2 allows between the last LB from the earlier invocation and the first LB of the

next one) has the effect of reducing the interarrival time for the longest LB (that of length 5)

to Tj − Aj from Tj that it was in the previous scenario. Choosing a suitable relative offset

for the release of τi (like the one shown in Figure 6(b)) observed interference increases (as

displayed). The actual effect is equivalent to having synchronous releases of τj (following

the synthetic distribution) but with a release jitter of Aj (which equals the variability in the

response time of τj). Indeed Tj − Aj is the minimum interarrival time that can be observed

for releases of the same LB in successive invocations of the process. Revisiting Equation 2:

it becomes evident that an upper bound on the individual “release jitters” Jjk
of all LBs

when the synthetic distribution holds (being the worst-case for interference on lower-priority

processes exerted by a single instance of τj) is Aj . Otherwise, consecutive invocations of the

same process τj would overlap in time, thus the system would not be schedulable. Thus we

have identified an upper bound for interference suffered for all possible offsets and phasings.

Extrapolating from Equation 2 we then obtain for the interference Ij→i exerted on τi by τj :

Ij→i =

n(τj)
X

k=1

‰

Ri − Ojk
+ Aj)

Tj

ı

u(Ri − Ojk
)Xjk

(3)

The indices correspond to the block order in the synthetic distribution, without loss of

generality. The cumulative interference on τi is again Ii =
P

j∈hp(i) Ij→i. However, for the

equation to be usable, valid values for Ojk
, Aj are required.

8

In our simple two-process example the offsets Ojk
for the higher priority process are derived

simply by adding up the lengths of the preceding blocks in the synthetic distribution (maximal

local blocks, minimal gaps). Also Aj = Gj − Ĝj .

With multiple higher priority processes things are more complicated. However, we will

show that even then, we can use

Ojk
=

k−1
X

m=1

(Xjk
+ Ĝjk

) and Aj = Gj − Ĝj

(k-indexes referring to block order as per the synthetic distribution) and the worst case

will still be covered. We elaborate:

With multiple higher-priority processes, the variability in release time of a block may be

due not only to variability in execution time of the preceding blocks but also due to preemption

of preceding blocks by even-higher-priority processes. Thus the release jitter for a block of

τj may appear to exceed Gj − Ĝj (say by ∆Jj). However, without loss of generality, we can

take the release in consideration to have occured earlier by ∆Jj . This does not decrease (and

in fact may increase) interference, so the worst-case analysis is not compromised. At the

same time we are able to bound the variability in the release time of the block to Gj − Ĝj .

Meanwhile, acceptable values for Ojk
should be lower bounds on the release offset of the k-th

block of τj relative to the process itself (given the synthetic distribution). Thus, with or

without interference on τj we can use

Ojk
=

k−1
X

m=1

(Xjm + Ĝjm)

3.4 Response Time Equations

The WCRT equations according to this newer analysis take the form

Ri = Xi + Gi +
X

j∈hp(i)

n(τj)
X

k=1

‰

Ri−Ojk
+Aj

Tj

ı

u(Ri−Ojk
)Xjk

(4)

where Ojk
=

Pk−1
m=1(Xjm + Ĝjm), Aj = Gj − Ĝj .

The equation is solved by forming a recurrence relationship as in classical analysis [5].

By juxtaposition with Equation 1 (which gives WCRTs under the Original Limited Parallel

model) we observe that we can expect reduced pessimism due to:

• the “fragmentation” of local execution in many distinct blocks (with gaps in between,

during which lower-priority processes may execute) as opposed to one big block

• the reduction of the term acting as jitter: Aj = Gj − Ĝj ≤ Gj .

We note that the term acting as jitter is the same as in the Original Limited Parallel Model

for the specific case that gaps always precede any local execution in the process activation [4].

Conversely we observe that for the inverse pattern (local execution preceding all remote

execution) the term Aj may be omitted altogether, as the single contiguous LB is strictly

periodic.

9

In case a specific process is not amenable to the synthetic analysis (because its activations

are not consistently characterised by the same sequence of blocks), the interference it exerts

on other proceses can still be derived according to the worst case for the original analysis for

the limited parallel model [3].

Comparing the complexity of the synthetic analysis with that of the original limited parallel

model, the increase comes from two factors:

• The increased number of addends in the WCRT equations (one for each of the n(τj)

LBs of each interfering process τj compared to one per process).

• The increased average number of iterations for the recurrence relationship to converge.

Regarding the first factor, the cost scales linearly with the number of addends for each

iteration of the recurrence relation. Thus the respective complexity is at most maxj{n(τj)}

times that for the original limited parallel (and the uniprocessor) model.

The effect of the second factor has not been quantified as it is highly input-dependent but

it is deemed negligible.

4 The Effects Of Blocking

Resource control protocols can be implemented on top of limited parallel systems with no

change of semantics, as demonstrated in [4] with the Priority Ceiling Protocol (PCP) [14].

Remote co-processors (where gaps execute) can also be treated in the same way as regular

resources, if accessed through a protected object [4]. What changes in the context of this

paper up to this point is not the class of the systems covered but rather the approach to

timing analysis. Thus the PCP still applies and the effects of blocking can be modelled in

the same way as previously. Namely a blocking term Bi is added to the WCRT equation:

Ri = Ci + Ii + Bi. According to the PCP:

Bi = maxU
u=1usage(u, i)C(u)

where usage(u, i) = 1 if resource-u is used by at least one process with priority less than

that of τi and at least one process with priority greater than or equal to that of τi (else it is

0). C(u) denotes the worst-case length of the respective critical section. Note that if critical

sections transcend block boundaries, their lengths are established according to the actual

distribution, not the synthetic one.

4.1 Evaluation Of The Analysis

We evaluate the Synthetic analysis against the existing one for an arbitrary process set.

The process set attributes are presented in Table 1 whereas the actual distributions and the

synthetic ones derived from them are shown in Figure 7. Response times are juxtaposed

in Table 1 with those derived under the original analysis for limited parallel systems [3, 4].

10

4-5
 20-25
 9-10

4-7
 4
 12-15

1-5
 18-20
 4-8

50-80

+15
 10
 15
 5

15
 4
 7

20
 48

20

34

(not required)

+34

+43

idle

idle

idle

+370

idle

4

3

2

1

Figure 7: Distributions: actual → synthetic

Any improvement is input-dependent but our example shows that it can be noticeable. We

were not able to use a real-world process set for the evaluation at this point, as the codesign

environment into which the analysis is to be integrated has not yet been developed.

τ T X G C A R
synth

R
orig

τ4 55 15 25 40 5 40 40

τ3 60 22 4 26 0 41 56

τ2 160 20 13 33 8 117 159

τ1 450 80 0 80 0 402 414

Table 1: Process set and results

5 Priority Assignment

WCRT analysis is of limited usefulness if an arbitrary or suboptimal process set is assumed

as systems which would otherwise have been fesible for a different priority assignment may

appear infeasible. In the absence of a tractable optimal priority assignment algorithm all

individual priority orderings would have to be examined to determine feasibility, at the cost

of exponential complexity. We thus formulate an optimal branch-and-bound algorithm for

priority assignment which uses WCRT analysis for the feasibility test and discuss its charac-

teristics. The algorithm is general; it applies to either the uniprocessor model or the variants

of the limited parallel models in the presence of blocking.

5.1 Insight

Audsley formulated a generalised priority asignment algorithm [2] that is optimal in the

absence of shared resources. The algorithm uses the familiar WCRT equations as a feasibility

test. These have the form

Ri = Ci + Ii

where Ri is the derived bound on the WCRT of process τi and i is the worst case interference

suffered by τi (due to the execution of higher-priority processes). A brief description of that

algorithm [2] follows:

11

1. Starting with the lowest priority, processes are tested for feasibility at that proprity

level.

2. If none is found feasible then neither is the process set. Else, any of the processes found

feasible is assigned this priority level.

3. The previous steps are repeated with the remaining procesess and priority levels.

The algorithm works in the absence of shared resources because then the response time of

a process can only go down (up) if its priority increases (decreases) and the relative priority

ordering of the remaining processes is retained. This is because process WCETs are invariant

and the interference suffered by a process exhibits the same monotonicity (and R = C + I).

However with shared resources we have R = C + I + B; the blocking term is not a decreasing

function of the priority, given a relative priority ordering of the remaining processes. Thus

the monotonicity of the response time can no more be asserted. In practice, this means that a

process feasible at priority i may cease to so be if exchanging priorities with the next-highest-

priority process. Thus Audsley’s algorithm, if applied, may fail to produce a feasible priority

assignment when one does in fact exist. We later provide such an example.

We overcome this complication by noting that in the presence of shared resources, the

WCRT (and thus feasibility) of a process depends on the set of higher-priority processes

(which of course also determines the set of lower-priority processes and vice versa) but not

their relative priority ordering. This has the following interesting corollary:

Corollary 1: If a process is not feasible given a priority ordering, it will not be feasible

either for any priority ordering with the same lower-priority process set (and thus also the

higher-priority process set) for the process under consideration as in the original ordering.

In our approach, this property is used to eliminate groups of orderings with a single test,

thus reducing the overall complexity.

5.2 The Branch-And-Bound Algorithm

We proceed to formulate the algorithm:

1. Starting with the lowest priority level, all processes are tested for feasibility at this level.

2. For each of those processes found feasible at that priority, the procedure continues

recursively, after assigning that priority to the process, with the remaining processes

and priority levels. If at this stage no more priorities and processes are left, a feasible

ordering has been identified.

The algorithm always terminates and will find all feasible (in the offset-agnostic sense)

orderings. If any of those suffices, it can be modified to terminate on the first one found.

The algorithm essentially constructs an implicit permutation tree for the n processes, like

that of Figure 8. Each path from a leaf to the root of the tree corresponds to a priority

ordering. Each node represents a process, its depth i corresponding to its assigned priority,

12

/

c

b
a

a
b

b

c
a

a
c

c
b

b
c
 p=3

p=2

p=1
a

Figure 8: Permutation tree for {τa, τb, τc}

and is the parent of n − i distinct subtrees. Our algorithm traverses the tree depth-first and

conducts a process feasibility test for each node. If the test returns infeasible the traversal of

the subtree is aborted, as all paths (orderings) sharing the specific node would be infeasible.

A feasible ordering is identified as soon as a leaf is reached for which the test returns feasible.

Our algorithm is thus classified as branch-and-bound.

In the worst-case (which occurs a full traversal of the tree) the number of process feasibil-

ity tests (equals to the number of nodes) is:

n+n(n−1)+n(n−1)(n−2)+...+n(n−1)...1=
Pn

i=1
n!

(n−i)!
=n!

Pn−1
u=0

1
u!

<n!
P∞

u=0
1
u!

=en!

Thus the complexity in scheduling a process set is O(n!) times the complexity of the pro-

cess feasibility test. Alternatively we note that the complexity of a process feasibility test

is roughly proportional to the number of the terms in the response time equation (thus, of

higher-priority processes). Then, if ξ is the complexity of the feasibility test for a single

higher-priority process, the overall scheduling complexity is

Pn

i=1
n!

(n−i)!
(n − i)ξ =

Pn

i=1
n!

(n−i−1)!
ξ =n!

Pn−2
v=0

1
v!

ξ < en!ξ = O(n!)ξ

However, as the algorithm is branch-and bound, we expect an average complexity orders

of magnitude lower. By comparison, the worst-case complexity of Audsley’s algorithm is

n
X

i=1

i(i − 1)ξ = O(n3)ξ

and the complexity for exhaustively testing all n! possible priority orderings is

n!
n

X

i=1

(n − i)ξ = n!
n2 + n

2
ξ = O((n + 2)!)ξ.

A demonstration of the algorithm follows.

5.3 Demonstration

We illustrate the priority assignment algorithm for an artificial process set; in the process we

also highlight why Audsley’s algorithm is not optimal for this class of systems. The process

set parameters are provided in Table 2. For convenience, the timing analysis is according to

the original limited parallel model [3, 4]

13

G, X denote worst-case figures for execution time spent in hardware/software respectively

and for our example C = X + G for all processes. The column with the heading b displays

the length of the critical section guarding access to the single shared resource. We use the

following notation:

The string XY Z denotes the assignment of priorities 1, 2, 3 to processes τX , τY , τZ

respectively. The expression RY |XY Z denotes the worst-case response time of process τY

for the given priority assignment XY Z. The wildcard ∗ can be used to represent partial

assignments, for example A∗∗ denotes that τA has a priority of 1 but the remaining priorities

(2 and 3) may be assigned in any way to the remaining processes (τB , τC). However, as the

set of higher-priority processes is defined for τA for the partial priority assignment A ∗ ∗, we

can calculate the worst-case response time of τA and RA|A∗∗ = RA|ABC = RA|ACB .

τ T D X G C b

τA 60 40 5 15 20 20

τB 60 60 15 5 20 20

τC 60 40 15 5 20 20

Table 2: Process set parameters

For convenience only, we provide in Table 3 the blocking terms for each process for each

of the possible priority orderings according to the ceiling protocol [14]. Onwards with the

demonstration:

τ ABC ACB BAC BCA CAB CBA

τA 0 0 20 20 20 20

τB 20 20 0 0 20 20

τC 20 20 20 20 0 0

Table 3: Blocking term lookup table

Processes are tested in turn for feasibility at the lowest priority (of 1):

• As RA|A∗∗ = 50 > DA the whole set of orderings A∗∗ is disqualified as infeasible.

• We next calculate RB|B∗∗ which is found to be 40 < DB thus τB is feasible. Thus we

recursively test the remaining priorities at the remaining levels: But

– RA|BA∗ = 55 > DA and

– RC|BC∗ = 60 > DC

thus τA, τC are both infeasible so we disqualify the set of orderings B ∗ ∗ and backtrack.

Audsley’s algorithm does not backtrack and would terminate at this point without pro-

ducing a feasible assignment.

14

CPU

CPU

CPU

CPU

B u s

RAM

a
 c
 d
 e
b

Reconfigurable Logic

Figure 9: Multiprocessor Architecture Extension

d

CPU

CPU

CPU

CPU

B u s

RAM

a
 b
 c
 e

PCP

arbiter

 Reconfigurable Logic

Figure 10: Implementation Of A PCP Arbiter

System Bus

crossbar

CPU

RAM
crossbar

CPU

RAM

Local

access

Remote

access

Figure 11: A typical NUMA architecture

• However, we find that RC|C∗∗ = 40 < DC and recursively:

– RA|CA∗ = 55 > DA (thus CA∗ is disqualified) but

– RB|CB∗ = 60 = DA (feasible) and recursively

∗ RA|CBA = 40 = DA

thus the process set is feasible under the priority ordering CBA.

6 Multiprocessor Extension

We generalise the analysis to also cover limited parallel systems with co-processors where

instead of a single instruction set processor there exists an array thereof: these processors

are identical, sharing the same address space and any process can run on any processor and

even migrate during execution. Figure 9 depicts such an architecture. The N highest-priority

processes among those competing for the processor are executing on any given instant.

We require system resources to be global and accessed symmetrically by all processing

elements. One could argue for local memories attached to specific processors, in what would

effectively constitute a Non Uniform Memory Access (NUMA) architecture. Such an example

is depicted in Figure 11. Local memory is accessed through the local I/O controller (crossbar).

Remote Memory is accessed through two additional hops, accross the system bus and through

the crossbar of the remote processsor; this incurs greater access latencies. We explain why

the NUMA approach would be problematic.

First of all, as processes are not attached to a specific processor (and can even migrate

during execution), there is no incentive to have any resource be local to any particular pro-

cessor. Secondly, having process state reside in local memory would introduce long delays

15

(due to data tranfer) on process migration. By having all memory resources be global and

symmetrically accessed we can assume migration costs to be negligible. And thirdly, it would

be impossible to determine during offline WCET whether a memory access would be local or

remote, so the worst would have to be assumed.

The issue then of access to the shared system bus arises. To cope with that we assume

that is possible for memory accesses to be blocked on accessing the bus for very short in-

tervals. However we assume that bus access arbitration is handled in a fair manner by the

communication controllers of the processors. The resulting increased memory latencies are

an aspect of the architecture/implementation and, as such, are factored in during the WCET

analysis for the code (which exceeds the scope of this paper).

6.1 The Synthetic Analysis Revisited

Revisiting the previous analysis, the term “local block” would, in the new context, mean

“block local to the processor array” or “software block”. Intuitively the existence of N >

1 processors would increase availability and reduce interference suffered by processes. We

proceed to quantify this effect and calculate upper bounds on WCRTs for such systems. For

the ensuing analysis we again require that no resources be shared; such considerations are

dealt with later.

For a process τi the term Wi is an upper bound on the time spent executing locally to the

processor array (ie. in software) by all higher-priority processes:

Wi =
X

j∈hp(i)

n(τj)
X

k=1

‰

Ri − Ojk
+ Jjk

Tj

ı

u(Ri − Ojk
)Xjk

Wi is measured in processor-ticks. If there is only N = 1 processors in the system, then

Wi = Ii. However, with N > 1 processors, a process competing for the a processor can only

be denied a processor to execute on (thus suffering interference) on the following condition:

There are N or more higher-priority processes also competing for a processor at the given

instant (thus the N processors are granted to those with the N highest priorities among them).

An upper bound for the cumulative time that this condition may hold true for a given

process τ + i over a time window of length equal to its WCRT thus is an upper bound for the

worst-case interference suffered by it. We will show that such a bound can be derived as:

Ii =

8

>

<

>

:

0 if τi is among the N highest-priority processes
j

Wi

N

k

otherwise

Proof: If τi is among the N highest-priority processes then it may never be preempted by

another process. If not: Assume that the worst-case interference for τi is Ĭi = Ii + a, a being

a positive integer. Then there could be at least Ĭi instants from release to termination of τi

where all processors would be busy executing higher-priority processes. Thus the cumulative

16

time spent executing higher-priority processes (in processor-ticks) for the whole array would

have been at least

NĬi = N(Ii + a) = Na + N

—

Wi

N

�

≥ Na + N
Wi

N
− 1 = Na − 1 + Wi > Wi

which is impossible (see the definition of W).

�

Thus, bounds on interferences derived by the analysis are inversely proportional to the

number of processors in the array for a given process set. A refined model is obtained by

noting that the N highest-priority processes may not suffer any interference at all. Thus for

a task τi belongs to that group of processes: Ii = 0.

Substituting the above expression for Ii into the equation Ri = CiIi and solving the

recurence relation computes the WCRT for τi. Note that the analysis also applies for pure

symmetric multiprocessor (SMP) systems, without any hardware co-processors, as a subcase.

To the best of our knowledge this is the first WCRT-based feasibility test for FP-scheduled

SMP systems. Existing analyses (summarised in [13]) offer utilisation-based feasibility tests

only, which do not cover systems where deadlines are less than the process periods.

Process WCETs calculated under our approach for multiprocessor architectures are a de-

creasing function of the process priority (for a given relative priority ordering of the remaining

processes). Thus we note the absence of any scheduling anomalies like those described

by Graham [7] under non-preemptive EDF.

The next section introduces the effects of shared resource control.

6.2 Resource Control and Priority Assignment For Multipro-

cessor Limited Parallel Systems

The Priority Ceiling Protocol (PCP) [14] as formulated for uniprocessor systems has been

shown to have the same properties (liveness, bounded blocking times, no chained blocking)

for limited parallel systems if the hardware co-processors themselves are treated as shared

resources [4]. Bounds on blocking times are then derived by using the same equations as in

the uniprocessor case.

We will show that same protocol can be applied to the multiprocessor extension of the

limited parallel model in the same manner (and that the same properties and equations hold)

if requests for resource locking originating from processes on different processors are serialised.

We then propose a mechanism enforcing this serialisation.

Rajkumar [12] discusses two variants of the PCP for multiple processor systems with/without

shared memory respectively. Local resources are accessed under uniprocessor PCP on each

processor; global resources are accessed according to the Distributed/Multiprocessor PCP re-

spectively. In either case, global critical sections reside on dedicated synchronization proces-

sors, which arbitrate access requests by processes from other (application) processors. Then,

17

because all global critical sections are on a single synchronisation processor, the execution of

global critical sections is serialised (a single processor not allowing parallel execution).

The multiprocessor model we use in this paper does not require the overhead of a separate

synchronisation processor. All shared resources are global, accessible by any process on any

processor, allowing arbitrary process migration (cf. [12] assumes a static assignment of

processes to processors). Thus, uniprocessor PCP suffices, an arbiter is only needed for the

avoidance of race conditions, with the execution of the global critical section occuring on

the processor of the calling process (and not the synchronisation processor). This provides

a significant reduction in blocking overheads – many global critical sections can be executed

in parallel (by processes on different processors), with only the access requests themselves

serialised by the arbiter.

One possible solution for implementing the serialisation of locking operations originating

from different processors is by means of a dedicated hardware arbiter. This resource is then to

be accessed as a shared location in the common address space. In fact if the locking/unlocking

requests can be implemented as atomic single instruction read/write operations, the issue of

controlling access to the arbiter is resolved (by the memory bus itself).

Consider the following protocol:

Assuming that shared memory blocks are placed at 2β byte boundaries and a data bus

width of λ bits, a control word can be used to encode such requests where the λ− β highest-

order bits signify the memory location, the remaining β bits serving as opcode. A process

requesting to lock a memory location (signifying the start of an area of shared memory) writes

such a control word to the memory address of the arbiter. When it receives an ACK, it can

then access it. When it has finished, it sends another control message to signal this.

Since FPGAs are the platform of choice for implementing limited parallel systems, they

also provide the flexibility to implement the proposed arbiter in reconfigurable logic. Moreover

the use of co-processors by itself suggests a design paradigm where the platform itself is tailor-

made for the application. The introduction of the PCP arbiter into the hardware fits well

with this paradigm so that trying to adapt the application and the protocol to the limitations

of a rigid architecture is not an attractive option.

Regarding optimal priority assignment in the presence of blocking, the algorithm detailed

in [6] is applicable. It is an exponential algorithm ((O(n − 1)!) where n is the number of

processes), but due to its branch-and-bound nature, we expect the average complexity to be

orders of magnitude better.

7 Conclusion

The analysis formulated provides tighter bounds on the interference exerted by processes

in the worst-case, compared to existing analysis for the the limited parallel model [3, 4].

However processes must always be characterised by the same sequence of code blocks in their

18

invocations so as to be able to be modelled in this way. Derived worst-case response times are

respective upper bounds for all possible relative release offset combinations for the processes.

We deem the analysis suitable for use in hardware / software codesign, aiming at correctness

by design regarding timing requirements. We introduce a multiprocessor extension to the

model and a WCRT analysis free of scheduling anomalies for multiprocessor systems under

FPS, with or without co-processors.

References

[1] Altera Corporation. Altera Product Information : http://www.altera.com/products, 2005.

[2] N. C. Audsley. On Priority Assignment in Fixed Priority Scheduling. Information Pro-

cessing Letters, 79(1):39–44, 2001.

[3] N. C. Audsley and K. Bletsas. Fixed Priority Timing Analysis of Real-Time Systems

with Limited Parallelism. In Proc. Euromicro Conference on Real-Time Systems, 2004.

[4] N. C. Audsley and K. Bletsas. Realistic Analysis of Limited Parallel Software / Hardware

Implementations. In Proc. 10th Real Time Applications Symposium, 2004.

[5] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings. Applying

New Scheduling Theory to Static Priority Pre-emptive Scheduling. Software Eng. J.,

8(5):284–292, 1993.

[6] K. Bletsas. A priority assignment algorithm in the presence of blocking. Technical Report

YCS-385, Department of Computer Science, University of York, 2005.

[7] R. L. Graham. Bounds on multiprocessor timing anomalies. SIAM Journal on Applied

Mathematics, 17(2):416–429, Mar. 1969.

[8] J. C. P. Gutierrez, J. J. G. Garcia, and M. G. Harbour. On The Schedulability Analysis

For Distributed Hard Real-Time Systems. In Proc. Euromicro Conference on Real-Time

Systems, 1997.

[9] M. Joseph and P. Pandya. Finding response times in a real-time system. The Computer

Journal (British Computer Society), 29(5):390–395, October 1986.

[10] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environment. J. of the ACM, 20(1):40–61, 1973.

[11] R. Pelizzoni and G. Lipari. Improved schedulability analysis of real-time transactions

with earliest deadline scheduling. In Proc. 11th Real Time Applications Symposium, 2005.

[12] R. Rajkumar. Synchronization In Real-Time Systems - A Priority Inheritance Approach.

Kluwer, 1991.

[13] L. Sha, T. Abdelzaher, K. E. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Cac-

camo, J. Lehoczky, and A. K. Mok. Real time scheduling theory: A historical perspective.

Journal of Real Time Systems, 28(2/3):101–155, 2004.

19

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to

real-time synchronisation. IEEE Transactions on Computers, 39(9):1175–85, Sept. 1990.

[15] K. Tindell and J. Clark. Holistic Schedulability Analysis for Distributed Hard Real-Time

Systems. Euromicro J., Nov.-Dec. 1993.

[16] Triscend Corporation. Triscend Products : http://www.triscend.com/products, 2005.

[17] Xilinx Corporation. Xilinx Product Information : http://www.xilinx.com/products, 2005.

20

