
A Real-Time RMI Framework for the RTSJ ∗

Andrew Borg and Andy Wellings.{aborg, andy}@cs.york.ac.uk
Department of Computer Science, The University Of York, UK.

Abstract

The Real-Time Specification for Java (RTSJ) provides
a platform for the development of real-time applications.
However, the RTSJ does not take the distribution require-
ments of real-time applications into consideration. As dis-
tribution in Java is often implemented using Java’s Remote
Method Invocation (RMI), a real-time version of RMI be-
tween RTSJ implementations can provide a platform for
writing distributed real-time systems.

This paper describes a Real-Time RMI (RT-RMI) frame-
work that supports timely invocation of remote objects. The
thread classes defined by the RTSJ are used to provide
the client and server threading mechanisms. The memory
model of the RTSJ is considered to ensure that threads cor-
rectly use memory areas and avoid memory leaks in the ab-
sence of the garbage collector. New classes are developed
to control the threads used throughout the invocation and
to provide new semantics for remote objects that can be in-
voked in a timely fashion.

1 Introduction

The Real-Time Specification for Java (RTSJ) [9] pro-
vides extensions to the Java platform to make it suitable
for writing real-time applications. These extensions include
amongst others the definition of real-time thread scheduling
and dispatching mechanisms and a new memory model that
allows the application to avoid garbage collection penalties.

The RTSJ is silent on issues of distribution. Conse-
quently, a Distributed RTSJ (DRTSJ) Expert Group has
been set up under the Java Community Process [2]. Al-
though no draft specification has been released as yet, it
is understood that the preferred programming model is the
control flow model implemented using Java’s RMI [11].

An initial framework by the expert group describes three
levels of integration of RMI with the RTSJ [18]. At
level (0), real-time Java virtual machines communicate via
standard RMI. No guarantee of timely delivery of a remote
request can be assumed and the programmer must explicitly

∗This work is funded by an EPSRC grant. The authors would like to
acknowledge the helpful comments provided by the reviewers, in particular
the paper’s shepherd, Tullio Vardanega.

pass real-time parameters with each call. This requires no
extension of either RMI or the RTSJ. At level (1) integra-
tion, the notion of a real-time remote object is introduced,
supported by an RMI runtime that provides timely invoca-
tion guarantees. Level (2) integration augments level (1)
with distributed thread semantics.

This paper explores the facilities required by a real-time
RMI (RT-RMI) and provides a framework for its implemen-
tation. The focus is on RT-RMI for level (1) integration.

We identify two requirements of RT-RMI.

• Requirement 1: Timely invocation.

• Requirement 2: Real-time support for RMI.

The first requirement aims to bound the time for an end-
to-end RMI call to guarantee timeliness and bound priority
inversion. Relevant distributed schedulability analysis (e.g.
[17]) can then be used to guarantee the real-time proper-
ties of the whole system. The second requirement deals
with extending support of RMI components such as the dis-
tributed garbage collector and serialisation with functional-
ity for real-time environments.

This paper deals solely with fulfilling the first require-
ment by developing a framework for an RMI runtime that
can provide timely invocation with bounded priority inver-
sion using RTSJ facilities. We preserve the fundamental
RMI semantics but extend the way remote invocations are
handled in the RMI runtime. We do not provide a com-
plete implementation but discuss how the framework could
be used to develop one.

The goal of the framework is to provide an RMI founda-
tion that is flexible enough to (1) allow an implementation
to use arbitrary scheduling policies (as far as the RTSJ al-
lows this), (2) support different real-time networks and (3)
allow an application to control the real-time parameters of
the invocation process. The RTSJ also requires modifica-
tions but we try to make these as conservative as possible.

An important goal is to keep separate the framework
classes and the network-dependent implementation classes.
This allows pluggability of the framework with RTSJ im-
plementations and network architectures, with the frame-
work sitting between the latter two. We achieve this by
partitioning RMI as shown in Figure 1. The RMI Speci-
fication [1], though independent of any Java implementa-
tion provides no separation between threading functionality



Figure 1. RT-RMI and the RTSJ

and the network (in particular the unicast classes for TCP/IP
networks). Our framework provides this separation whilst
supporting a stronger binding with the RTSJ implementa-
tion and exposing the thread mechanism to the application.

The rest of this paper is set out as follows. In Section 2,
the classes that allow an application to interact with RT-RMI
are defined. Section 3 describes the server thread mech-
anism for RT-RMI while Section 4 focuses on the thread
properties of the client. Section 5 describes related work
and finally Section 6 describes future work and concludes.
A more detailed discussion of this work and an example can
be found in [6].

2 Extending RMI

This section identifies the key classes in the RMI speci-
fication [1] that must be considered for the development of
RT-RMI. A brief introduction to RMI and its class hierarchy
is provided, followed by the RT-RMI class hierarchy.

2.1 Classes and Threads in RMI

The RMI specification defines theRemoteObject

class that provides theObject semantics for remote
objects. RemoteStub provides the client handle to
a remote object whileRemoteServer provides the
server handle. The subclasses ofRemoteServer (such
as UnicastRemoteObject ) implement the network-
dependent logic.

A remote object must first be exported to allow the
RMI runtime to set up the connection and prepare for re-
mote invocations. ForUnicastRemoteObject , the ex-
portObject() methods are static to allow the export of
any object that implementsRemote and not just sub-
classes ofUnicastRemoteObject . exportObject() re-
turns aRemoteStub object that is used to bind the object
to the registry. In a remote invocation, the logic in the stub
packages the parameters and calls theinvoke() method of

the ref object. Theref field is inherited byRemoteStub

from RemoteObject :
ref.invoke(Remote obj, Method method,

Object[] params, long opnum)

The client threading mechanism in Java’s RMI is syn-
chronous. The RMI specification makes no restrictions on
the thread behaviour on the server node. An implementa-
tion may provide a single-server invocation thread mecha-
nism or a multi-threaded server model. It may also use some
load control system such as maintaining a queue of requests
and using thread pools.

2.2 Extending the RMI Class Hierarchy

The RTSJ does not attach real-time properties to regular
objects but to objects that implement theSchedulable in-
terface. As it is a regular object that is exported and not a
Schedulable object, it is necessary to extend the seman-
tics of a remote object for it to be able to export the fact
that it can be run in a real-time context. The current RMI
methods to invoke and export remote objects must then be
extended to allow for the propagation of parameters by the
client and server objects to the RT-RMI runtime.

Figure 2 shows how the class hierarchy for RMI as
described in the RMI specification is extended in or-
der to specify real-time remote objects. The new tag-
ging interfaceRealtimeRemote shows that the object can
be invoked remotely in a timely fashion. The classes
RealtimeRemoteStub and RealtimeRemoteServer

are analogous to their non real-time counterparts and
embed the network-independent real-time functional-
ity of the runtime. Note that we choose not to
have a classRealtimeRemoteObject analogous to
RemoteObject and have RealtimeRemoteStub and
RealtimeRemoteServer extend this class. This approach
conforms to the argument that the RTSJ does not place real-
time semantics on objects.

2.3 Exporting Server Parameters

When an object is exported in RT-RMI, it may define
the real-time parameters of theSchedulable object that
is to handle the invocation. These include several param-
eters such as the type and scheduling parameters of the
Schedulable object that is to handle the request, the mem-
ory area used and parameters that specify the propagation
policy (that is whether to use client or server propagated
policies). The propagation policy is defined and enforced
by the server and can be changed at run-time.

Although the RMI documentation states that: “the func-
tions needed to create and export remote objects are pro-
vided abstractly byRemoteServer and concretely by its



Figure 2. The Class Hierarchy for RT-RMI

subclass(es)”, this class does not define any abstractex-
portObject() methods. This ensures thatRemoteServer

remains independent of any network implementation. It
does not encapsulate any more semantics than those in the
RemoteObject class it extends. The semantics of export
are defined almost entirely by subclasses ofRemoteServer

such asUnicastRemoteObject in which the necessary
logic is provided. ARealtimeRemoteServer object how-
ever defines new semantics which it must encapsulate: the
real-time semantics of theSchedulable s that are to ser-
vice the request.

The classRealtimeRemoteServer should not attempt
to describe the network-specific semantics used for ex-
port, be they real-time or not. Similarly, the real-time
threading functionality of RT-RMI should be indepen-
dent of the underlying network-specific mechanism ex-
pressed in the subclass ofRealtimeRemoteServer such
as UnicastRealtimeRemoteObject . A separation of
concerns is required.RealtimeRemoteServer will pro-
vide only the real-time invocation functionality whereas
subclasses (such asUnicastRealtimeRemoteObject

that implement point-to-point TCP implementations) en-
capsulate network-specific information. The latter will use
RealtimeRemoteServer to manipulate real-time proper-
ties but will not encapsulate any real-time related semantics
other than those supported by the network.

An exportObject() operation of some class
UnicastRealtimeRemoteObject that extends
RealtimeRemoteServer may take real-time param-
eters such asSchedulingParameters and network-
specific parameters such as a TCP port and network
priority. The relevant constructors and methods are called
in RealtimeRemoteServer to set up the real-time
properties of the remote object. A thread pool can be
used with each thread set to have application defined
scheduling parameters before being used. The logic
to listen on the port is then carried out by methods in
UnicastRealtimeRemoteObject and related classes. A
description of the relationship between these classes and
RealtimeRemoteServer , together with a description of
theThreadpool class is given in Section 3.

In contrast toUnicastRemoteObject , subclasses of
RealtimeRemoteServer should not return a stub af-
ter export but a reference to the instance of itself or
RealtimeRemoteServer created after export. This ex-
poses the real-time thread mechanism to the application
and allows the application to dynamically manipulate the
real-time parameters attached to an exported object, for
example when mode changes are required. A method
to generate aRealtimeRemoteStub instance from a
RealtimeRemoteServer object similar togetStub() in
RemoteObject is provided inRealtimeRemoteStub .



2.4 Propagating Client Parameters

A client must be able to specify its real-time require-
ments of the server by providing real-time parameters.
We introduce newinvokeRealtime()methods in the new
RealtimeRemoteStub class that are called by the stub in-
stead ofref.invoke(). These methods obtain the real-time
parameters using one of three methods described below.
These parameters are packaged with the non real-time pa-
rameters into the array of parameters (params) that is then
passed to theinvoke() method of theRemoteRef instance
(ref) of the object. The RT-RMI runtime on the remote ma-
chine retrieves these parameters, sets up theSchedulable

to handle the invocation and calls the relevant method in
the implementing object with its parameters. An implemen-
tation can distinguish between real-time and non real-time
parameters at the server by either using a special separator
between the two parameter types or by having all real-time
parameters implement some tagging interface. None of the
real-time parameters added byinvokeRealtime()ever ap-
pear in the remote object. Note that few of the classes in the
RTSJ implement theSerializable interface. All classes
whose instance can be propagated must be made serializ-
able. These include theSchedulingParameters class
and its subclasses and some of the time-related classes such
asAbsoluteTime for time-driven schedulers such as EDF.

We identify three ways by which a client can express
client-propagated parameters:

• Assigning parameters to aRealtimeRemoteStub in-
stance.

• Implicitly inheriting or deriving the parameters from
the clientSchedulable object.

• Explicitly specifying parameters for each invocation.
For classes that extendRealtimeRemote , rmic (or its
dynamic equivalent) generates extra methods for each
method defined in<ServerObject> Stub with ap-
propriate real-time parameters.

The above three can be used concurrently. For example,
scheduling parameters would normally use the second op-
tion whilst a flag stating whether the server is to enforce the
propagation policy would use the first.

In Section 2.3 we showed how
RealtimeRemoteServer separated the real-time
functionality of RT-RMI with the network-dependent
functionality defined in the subclasses. However, no
subclass ofRealtimeRemoteStub for the client is defined
for RT-RMI. The reason for this is that the RMI specifica-
tion uses implementation classes of the remote reference
interface RemoteRef (such asUnicastRef ) to define
network specific properties. This is maintained in RT-RMI.

Figure 3. General Server-Side Handling of RMI

Network-specific real-time parameters are passed using one
of the above mechanisms to the instance of theRemoteRef

implementation for which theinvoke() method is defined.
The logic in invoke() is then responsible for extracting
network related parameters fromparamsand preparing the
network for the invocation.

3 The Server Threads in RT-RMI

In this section, a description of the server-side function-
ality of RT-RMI is provided. The framework is extended
with a new set of classes and theRealtimeRemoteServer

class is revisited in further detail. We show how the
Schedulable objects used to handle invocation requests
are defined and manipulated by the application and how the
correctness of the RTSJ memory model is maintained.

3.1 Control of the Threading Behaviour

Unlike RMI, RT-RMI implementations are not free to
choose an arbitrary threading mechanism. We provide a
specific threading mechanism that is flexible but provides
a minimum functionality and semantics that an implemen-
tation must adhere to and which any application can there-
fore assume. This also provides a solution for a RT-RMI
implementation to bound priority inversion.

Figure 3 shows how acceptance and execution are car-
ried out in an RMI invocation with a single-threaded server
mechanism. A multi-threaded server could accept the re-
quest and create/obtain a new thread to handle deserialisa-
tion and the upcall on the remote object’s implementation
before waiting for the next request. Alternatively it could
carry out deserialisation itself before using another thread
to make the upcall.



RT-RMI requires that the acceptance mechanism oper-
ate at the highest priority when client propagated param-
eters can be used in order to bound priority inversion.
(For non priority-driven schedulers,AcceptorRealtime

threads are the most eligible threads and are dispatched
first). Once an acceptance is made, the parameters of
the Schedulable object to handle the invocation are set
by reading the values fromRealtimeRemoteServer for
server-exported parameters and by reading from the net-
work for client-propagated parameters. This handler object
will then carry out the execution of the request.

In order to allow multi-threaded servers and also to
minimise priority inversion to the time taken for client-
propagated parameters to be extracted, we split the server-
side invocation process into two. The acceptance and ex-
traction of the client-propagated parameters of a request
is controlled by an object of typeAcceptorRealtime .
The remainder of the invocation including the retrieval and
unmarshalling of non real-time parameters and the upcall
to the implementing object is controlled by an object of
type HandlerRealtime . The AcceptorRealtime and
HandlerRealtime classes are detailed next.

3.1.1 TheAcceptorRealtime Class

AcceptorRealtime is defined as an abstract class that
implements Runnable , encapsulates aSchedulable

object and is used to control and manipulate the
real-time properties of this Schedulable ob-
ject. The subclass ofAcceptorRealtime such as
UnicastAcceptorRealtime encapsulates the network-
specific functionality of the acceptor. In particular, this
subclass implements therun() method that contains the
logic for waiting for remote invocation requests. When
a new AcceptorRealtime object is instantiated, a new
Schedulable object is created andthis is passed in
the constructor of theSchedulable . The type of the
Schedulable can be specified at the time of export
of the RealtimeRemote object or defaulted to either
RealtimeThread or the type of the Schedulable

object issuing the export. TheSchedulable is started by
running theAcceptorRealtime.start()method which runs
start() on theSchedulable object if it is an instance of
RealtimeThread or NoHeapRealtimeThread .

Figure 4 shows theAcceptorRealtime class and its
unicast subclass. The private static methods are used
to return an instance of either a heap or no-heap real-
time thread depending on a boolean value passed in the
constructor ofAcceptorRealtime . (The different con-
structors are not shown in the figure). A similar mecha-
nism is used ifAcceptorRealtime ’s Schedulable were
an event handler. The static methodgetNewAsyncEven-
tHandler(t: Runnable)returns a new event handler that is

then bound to someAsyncEvent object passed throughex-
portObject()by the application and that signifies the receipt
of a request.

3.1.2 TheHandlerRealtime and Threadpool Classes

Figure 5 shows theHandlerRealtime class and its unicast
subclass together with theThreadpool class. Similarly to
AcceptorRealtime , HandlerRealtime is also defined
as an abstract class that implementsRunnable , and encap-
sulates aSchedulable object. ThisSchedulable is used
to read the non real-time section of the call from the net-
work, unmarshall the parameters, make the upcall to the im-
plementing object and finally marshall and send the result.
The Schedulable object can be of anySchedulable

type as long as the implementation makes correct use of
heap and noheap versions ofSchedulable and conforms
to the RTSJ memory model.

Instances ofHandlerRealtime may be referenced in
a linked-list fashion by a new classThreadpool that
contains a list ofHandlerRealtime instances. When a
new handler is required byRealtimeRemoteServer , the
HandlerRealtime instance returned may be taken from a
Threadpool object or created afresh, depending on what
parameters were passed when the object was exported or
on the defaults for that implementation.Threadpool in-
stances may be shared between exported objects and serve
two important functions:

• A control of the amount of concurrency allowed.

• A reusable source of Schedulable objects, thereby im-
proving performance and predictability.

Concurrency control is achieved by having the accep-
tor’s Schedulable block inRealtimeRemoteServer on
getHandler()if no handler is available in the thread pool at
the time.

There is a fundamental difference between
AcceptorRealtime and HandlerRealtime objects
that warrants there being two types of threads that
handle each of the two parts of the invocation. While
AcceptorRealtime objects are meant to live for the
duration of a single exported object,HandlerRealtime

object are reusable components shared by possibly many
exported objects. UnlikeAcceptorRealtime where the
run() method of the subclass is the only logic required,
HandlerRealtime defines arun() method itself as it
must carry out some logic after the request is completed.
This run() method calls thehandleRequest()method
of its subclass (such asUnicastHandlerRealtime ).
When handleRequest()returns, therun() methods does
any necessary cleaning up and returns the thread to its
Threadpool if it belongs to one.



Figure 4. The AcceptorRealtime and UnicastAcceptorRealtime Classes

Figure 5. The HandlerRealtime , UnicastHandlerRealtime and Threadpool Classes



3.2 Bringing it All Together: The
RealtimeRemoteServer Class

Section 2.3 introduced theRealtimeRemoteServer

and described how it provides the interface to its subclasses
to export objects in real-time contexts. We now show how
RealtimeRemoteServer does this by defining a number
of methods that make use of theAcceptorRealtime and
HandlerRealtime classes and their subclasses as well as
theThreadpool class.

Figure 6 shows theRealtimeRemoteServer class and
its unicast subclassUnicastRealtimeRemoteObject .
Each instance ofRealtimeRemoteServer maintains a
reference to an instance ofAcceptorRealtime and to
an instance ofThreadpool . HandlerRealtime ob-
jects are extracted from the thread pool if one is assigned
to the RealtimeRemoteServer object or created afresh
by using the abstractgetHandler()method. Instances of
AcceptorRealtime ’s subclass are returned by using the
abstractgetAcceptor()method.

The real-time behaviour of the request-handling mecha-
nism is controlled byRealtimeRemoteServer based on
the parameters passed in theexportRealtime()methods as
called by the subclass. A final specification would define a
suitable set of these methods that manipulate the behaviour
of the AcceptorRealtime and HandlerRealtime ob-
jects and the real-time parameters of theirSchedulable s.

An interesting consequence of the separation provided
by the framework is that the logic for accepting and han-
dling requests need not be fixed for all objects in the sys-
tem. It is possible to pass different subclass implemen-
tations of AcceptorRealtime and HandlerRealtime

dynamically at run-time. An implementation of a sub-
class ofRealtimeRemoteServer may also provide ex-
port methods that take as parameters class types of
AcceptorRealtime and HandlerRealtime subclasses
or their instances passed by the application. Besides the
added flexibility provided in allowing protocol selection
and configuration, this allows an implementation to easily
port and support a larger range of networks.

3.3 Memory Considerations

A number of issues arise when using the memory model
of the RTSJ with RT-RMI. The primary cause of this is
that different types of threads can be used to handle events
which must all follow strict memory usage rules. In this sec-
tion we devise a number of requirements of a RT-RMI im-
plementation that maintain the integrity of the RTSJ mem-
ory model.

In general, the export operation may pass a number of
parameters that reference objects that may exist in heap,
immortal or scoped memory. Examples include refer-

ences to an instance ofThreadpool and an instance of
SchedulingParameters . A reference to the object to ex-
port is also passed. An additional important parameter that
may be passed is a boolean signifying if theSchedulable

should be run in a heap or noheap context.

The first step of the export procedure creates a
new Schedulable as part of the creation of the
AcceptorRealtime object. The rules for memory ar-
eas state that thisSchedulable inherits the memory area
stack of the thread making the export. However, the new
Schedulable might be a noheap thread and therefore must
run in immortal memory or scoped memory. Moreover,
it can not reference objects in the heap. Therefore a rule
for exporting objects whose acceptor will run in a noheap
context is that all parameters passed must not exist in heap
memory or reference any objects on the heap. The applica-
tion developer must therefore bear in mind that exportation
is the same as creation of aSchedulable .

The scoping rules must be kept in mind by an application
developer when an object is exported to run in scoped mem-
ory. An application that exports an object using a thread
that runs in a scoped memory area may not create objects
during the execution of the method in the upcall if creating
that object requires any reference manipulation that breaks
the scoping rules of the RTSJ. We believe that though this
is the most significant burden placed on the developer it is
no greater than that placed by the RTSJ on applications that
make use of nested scoped memory areas.

Once the extraction of the client-propagated parameters
is complete, the next step is setting up the handler. One re-
quirement is that theSchedulable in HandlerRealtime

can only be a noheap thread if theSchedulable in
AcceptorRealtime is a noheap thread. This creates a
small burden on the application designer to ensure this is
adhered to or an exception will be raised. If the han-
dler is to be created afresh by creating a new instance of
HandlerRealtime , the same mechanism used above for
AcceptorRealtime ’s schedulable can be used. However,
if the thread is to be taken from a thread pool and is a no-
heap thread, the stack of the handler must be rebuilt from
the stack of the acceptor. This is a problem for a framework
implementation and is transparent to the developer.

We note a final important issue that must be ad-
dressed by a RT-RMI implementation. The runtime on
the server node creates a number of temporary objects
such as the unmarshalled parameters sent in an invoca-
tion. If the Schedulable s in AcceptorRealtime and
HandlerRealtime use scoped or immortal memory, the
garbage collector will be unable to dispose of these ob-
jects. In these cases, an implementation should nest the
invocation appropriately inside scoped memory areas that
are freed once a remote request is completed.



Figure 6. Detail of RealtimeRemoteServer and UnicastRealtimeRemoteObject

4 The Client Threads in RT-RMI

The client thread mechanism is much simpler to define
than that of the server. A single thread is involved on the
client that blocks on invocation until a reply is returned.
This thread is already controlled by the application and
therefore does not need to be exposed in the same way as
the server threads.

Real-time applications often require more control over
a remote invocation and simply blocking for an unknown
amount of time in a synchronous call is not an option. There
are two solutions to this which we consider: asynchronous
calls and time-outs. Although there are a number of asyn-
chronous techniques that could be used, they would modify
the fundamental control-flow semantics provided by RMI.
Therefore, we choose to avoid asynchronicity in RT-RMI.

Time-outs can however be used and still maintain the
synchronous control-flow of RMI. They are propagated to
the runtime as described in Section 2.4. There are two possi-
ble behaviors of the runtime when a timeout expires, though
the way they are implemented is not defined as it depends
on the support provided by the OS and the network. The
first is that an exception is raised and control is returned to
the application. Alternatively an event could be fired that
runs an event handler propagated by the application.

4.1 Memory Considerations for Client Threads

The memory model for the client thread is much simpler

as no additional threads are involved. The thread making
the invocation may be a heap or noheap thread and may pass
parameters that reside in heap, immortal or scoped memory.
As with the server-sideSchedulable s, the invoke opera-
tion creates temporary objects that should be appropriately
scoped. An object created as the return value of an invoca-
tion is created in the memory area the thread was running in
at the point of invocation. No additional memory concerns
are placed on the application developer.

5 Related Work

The focus in distributed real-time communication is
shifting away from traditional message passing systems to
more structured communication such as the control-flow
paradigm as provided by remote invocation. The Real-Time
CORBA Specification (RT-CORBA) [5] uses this paradigm
to provide end-to-end real-time support for heterogenous
real-time systems. The Dynamic Real-Time CORBA Speci-
fication [3] extends the original specification and uses a dis-
tributed thread model that allows the dynamic scheduling of
the distributed thread.

There is a strong argument to utilise RT-CORBA as the
distribution medium of the RTSJ. The OMG has set out an
RFP soliciting extensions to the existing Java Language to
IDL Mapping specification to support the RTSJ [4]. Similar
considerations were made when discussing whether to use
RT-CORBA for distributed real-time Ada or to extend the
Ada Distributed Systems Annex [13, 10, 16]. It was high-



lighted that distributed applications would be simpler, more
efficient and more reliable without CORBA. While we be-
lieve that our work can help to understand how RT-CORBA
can be mapped to the RTSJ, our focus remains on RMI as
the direction chosen for the DRTSJ.

The Zen project [12] seeks to develop a RT-CORBA
ORB using the RTSJ. Implementing a real-time ORB in the
RTSJ requires consideration of similar issues that are faced
in implementing a real-time RMI runtime. An example of
this is the appropriate use of scoped memory areas in the
invocation mechanism to avoid memory leaks. However,
though Zen uses RTSJ facilities inside the ORB, it does not
specify how the RT-CORBA API would map to the RTSJ’s
thread and memory model.

Although there has been much work on improving RMI
for general distributed systems (for example [15, 14]), there
has been limited work on real-time RMI or indeed real-time
distributed Java in general. We highlight the work carried
out by Miguel [8] who uses a reservation-based protocol
on the network to guarantee end-to-end message delivery.
Miguel’s work differs from ours in that we separate the real-
time network from the thread handling mechanism, closely
binding the latter to the RTSJ.

6 Future Work and Conclusion

Our work on RT-RMI is still ongoing and we have
found several interesting problems for which the solutions
are often not trivial. The memory-model of the RTSJ
proves particularly challenging for RT-RMI. The second
requirement described in the introduction, support for
the RT-RMI, is also being considered. We are working
in particular on understanding the semantics of remote
references to objects in scoped memory areas to understand
how the distributed garbage collector should operate.
Another more ambitious area of research involves moving
RT-RMI to level (2) integration. Although the distributed
thread model is now well understood, even in real-time
systems [7], research into new territory is required due to
the new thread semantics of the RTSJ and more-so because
of its memory model.

Several open problems still exist arising mainly from in-
tegrating the novel model of the RTSJ with a communica-
tion mechanism that provides a higher level of abstraction
than the traditional message-passing mechanism. The RTSJ
has generated a large amount of research. Achieving a dis-
tributed RTSJ is necessary as many real-time applications,
particularly in embedded devices, are no longer centralised.
The RT-RMI framework described in this paper provides an
initial step in this direction through a flexible specification
that can be adapted to any real-time network and scheduling
policy of an RTSJ implementation.

References

[1] Java Remote Method Invocation Specification
Available from: ftp://ftp.java.sun.com/docs/j2se1.4/rmi-
spec-1.4.pdf.

[2] The JSR-50 Home Page –
http://jcp.org/en/jsr/detail?id=050.

[3] Real-Time CORBA v2.0: Dynamic Scheduling, OMG Doc-
ument ptc/01-08-34.ACM Ada Letters, XXI 1, September
2001.

[4] JCP RTSJ and Real-time CORBA Synthesis - Request for
Proposal, OMG Document orbos/02-01-16. February 2002.

[5] Real-Time CORBA v1.1, OMG Document formal/02-08-
02. August 2002.

[6] A. Borg. A Real-Time RMI Framework for the RTSJ, De-
partment of Computer Science, University of York.
Available from: http://www.cs.york.ac.uk/ftpdir/reports/.
2003.

[7] R. K. Clark, E. D. Jensen, and F. D. Reynolds. An Architec-
tural Overview of the Alpha Real-Time Distributed Kernel.
In Proceedings of the USENIX Workshop on Microkernels
and Other Kernel Architectures, April 1992.

[8] M. A. de Miguel. Solutions to Make Java-RMI Time Pre-
dictable. InProceedings of the 4th IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Comput-
ing, pages 379–386, 2001.

[9] G. Bollella et. al. The Real-Time Specification for Java
Available from: www.rtj.org. 2000.

[10] J. J. G. Garcia and M. G. Harbour. Towards a Real-Time
Distributed Systems Annex in Ada.ACM Ada Letters, XXI
1, pages 62–66, March 2001.

[11] E. D. Jensen. Rationale for the Direction of the Distributed
Real-Time Specification for Java. InProceedings of the 5th
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, 2002.

[12] R. Klefstad, D. C. Schmidt, and C. O’Ryan. The Design of a
Real-time CORBA ORB using Real-time Java. InProceed-
ings of the International Symposium on Object-Oriented
Real-time Distributed Computing, April 2002.

[13] L. M. Pinho (Rapporteur). Session Summary: Distribution
and Real-Time. ACM Ada Letters, XXI 1, pages 14–16,
March 2001.

[14] J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, and
A. Plaat. An Efficient Implementation of Java’s Remote
Method Invocation. InPrinciples Practice of Parallel Pro-
gramming, pages 173–182, 1999.

[15] C. Nester, M. Philippsen, and B. Haumacher. A More Effi-
cient RMI for Java. InJava Grande, pages 152–159, 1999.

[16] S. A. Moody (Rapporteur). Session Summary: Distributed
Ada and Real-Time.ACM Ada Letters, XIX 2, pages 15–18,
June 1999.

[17] K. Tindell and J. Clark. Holistic Schedulability Analysis for
Distributed Hard Real-Time Systems.Microprocessing and
Microprogramming - Euromicro Journal (Special Issue on
Parallel Embedded Real-Time Systems), 40:117–134, 1994.

[18] A. Wellings, R. Clark, D. Jensen, and D. Wells. A Frame-
work for Integrating the Real-Time Specification for Java
and Java’s Remote Method Invocation. InProceedings of
the 5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 13–22, 2002.


