
REAL-TIME JAVA FOR EMBEDDED DEVICES:
THE JAVAMEN PROJECT*

A. Borg, N. Audsley, A. Wellings

The University of York, UK

ABSTRACT: Hardware Java-specific processors have
been shown to provide the performance benefits over
their software counterparts that make Java a feasible
environment for executing even the most
computationally expensive systems. In most cases, the
core of these processors is a simple stack machine on
which stack operations and logic and arithmetic
operations are carried out. More complex bytecodes are
implemented either in microcode through a sequence of
stack and memory operations or in Java and therefore
through a set of bytecodes. This paper investigates the
state-of-the-art in Java processors and identifies two
areas of improvement for specialising these processors
for real-time applications. This is achieved through a
combination of the implementation of real-time Java
components in hardware and by using application-
specific characteristics expressed at the Java level to
drive a co-design strategy. An implementation of these
propositions will provide a flexible Ravenscar-
compliant virtual machine that provides better
performance while still guaranteeing real-time
requirements.

1. INTRODUCTION

The Java programming model has become established
in mainstream software development as a platform for
general-purpose applications. The abstraction provided
by the virtual machine realises the attractive Write-
Once-Run-Anywhere (WORA) concept. Initially
created for developing software for consumer devices, it
achieved its success in the rapid expansion of the
Internet for which the WORA concept found an ideal
application. Today, Java is penetrating into more niche
markets, from large enterprise applications to small
embedded devices such as mobile phones. In particular,
the Micro Edition of the Java 2 Platform (J2ME)
provides an application development environment that
specifically addresses the needs of embedded devices
such as personal digital assistants and set-top boxes.1

Despite this new focus on embedded devices, J2ME and
the Java superset do not address the application domain
of real-time applications. Indeed, until recently, “Java”
and “real-time” were considered an oxymoron as Java
lacked the infrastructure to enable development of real-
time systems. The specifications of both Language (1)
and Virtual Machine (2) were never designed with

* This work is funded by the Next Wave Technologies Program (UK
Government DTI) in conjunction with Sun Microsystems.
1 The J2ME combines a set of configurations, profiles and optional packages
that can be combined together to provide this environment. Broadly speaking,
this gives a subset of the full Java standard edition with cut-down functionality
in the virtual machine and a smaller set of core and application libraries.

Figure 1: Three alternatives for executing Java code (take from (6))

timeliness as a key issue. The language therefore fails to
allow more advanced temporal requirements of threads
to be expressed and virtual machine implementations
may behave unpredictably in this context. For example,
whereas a basic thread priority can be specified, it is not
required to be observed by a virtual machine and there
is no guarantee that the highest priority thread will
preempt lower priority threads. In order to address this
shortcoming, two competing specifications have been
introduced: the “Real-Time Core Extensions” from the
J-Consortium (3) and the ``Real-Time Specification for
Java'' (RTSJ) (4) from Sun Microsystems. The former
has not achieved the exposure of the RTSJ, though
attempts are now being made to combine the two
standards for a safety-critical Java (5).

The Java Virtual Machine specification describes an
abstract stack machine that executes byte-code, the
intermediate code of the Java language. The
implementation of this abstraction could be handled
either as a middleware application on top of stock
hardware and operating systems or by a direct hardware
implementation. The tradeoff between these two
approaches is one of cost and speed; hardware
implementations are fast but could be expensive. As
with any programming language, Java code could be
compiled down to native code unique to a particular
platform, thereby deriving a performance benefit at the
cost of portability and a significantly larger code size.
This latter overhead occurs because the runtime
semantics must be embedded in application code. These
three approaches are depicted in Figure (1) as described
in (6) for the picoJava processor. The majority of
current deployments of Java virtual machine
implementations are of the first type. Even devices that
provide J2ME implementations generally execute a
software JVM with no Java-specific hardware support.

The JavaMen research project is being carried out at the
University of York to capture the requirements of a
virtual machine implementation with hardware support

that is compatible with a high-integrity subset of the
RTSJ, the Ravenscar Java profile (7). Briefly, the two
goals of the JavaMen project are to:

• Design and implement a minimal real-time
Java virtual machine to run as an IP-core.

• Provide distribution functionality through
which an application may perform a remote
invocation to offload part of its computation.

This paper focuses on the first goal by identifying the
research niches that are being addressed. The aim here
is to motivate the proposed solutions currently under
implementation. As will be shown in the next section,
some areas of this field have already been extensively
researched. While adopting whenever possible positive
results from existing research in our own
implementation, this work is unique in that it optimises
for the real-time characteristics of the application while
supporting a flexible co-design strategy for application-
specific environments.

The rest of this paper is set out as follows: Section 2
gives a brief overview of the state-of-the-art in Java
processor research. Section 3 identifies the research
niches that are being addressed in the JavaMen project.
A brief description of the RTSJ and the basic principles
of hardware/software co-design is provided here in
order to set the context of this work. Section 4
introduces the proposed solutions and, finally, Section 5
concludes.

2. HARDWARE SUPPORT FOR REAL-TIME
JAVA

In 1996, Romer et. al. argued that there existed so much
possible optimisation of standard Java runtimes that
proposing hardware support was premature (8). This is
contentious statement given that software runtimes are
emulations of the Java abstract machine and that
proposed optimisations are only targeted at better
emulation. However, given the poor optimisation of
software virtual machines at the time, this statement was
probably true. A number of early hardware
implementations of the Java virtual machine were
developed soon after this time but none reached any
significant levels of distribution. As optimisation of
software implementations reaches its peak, hardware
support is once again beginning to prove necessary in
order to overcome the performance barrier of Java
interpretation (and just-in-time runtime compilation) on
general purpose platforms.

There are two ways of improving bytecode execution
using hardware. The first is to use a coprocessor that
works in conjunction with a general purpose CPU by
either providing a fast bytecode translation to that
CPU's native instruction set or by executing simple
bytecode itself. Examples of the coprocessor option
include Jazelle (9) and JSTAR(10). The second option
is to provide a Java-specific processor which therefore
is limited but specialised to Java applications. PicoJava
(6), aJile (11) and JOP (12,13) are examples of Java

processors that adopt this approach, each with slightly
difference optimisations. In essence however, the
architectures are similar; they mostly implement a stack
machine architecture with simpler bytecodes being
executed in a small number of cycles and more complex
ones executed in microcode or software. PicoJava's
optimisations include features such as instruction
folding and bytecode prediction, aJile provides simple
synchronisation and scheduling primitives in microcode
whereas JOP opts for as minimal a model as required to
provide predictable real-time guarantees. Other
examples of existing Java Processors are Moon (14),
Lightfoot (15), LavaCore (16) and FemtoJava (17), each
providing different stack-based implementations.
LavaCore and FemtoJava allow an analysis of the
application to be carried out in order to fine-tune the
hardware generated, thereby providing an application-
specific hardware solution.

In order to provide the best possible hardware support,
the JVM abstraction must be analysed in order to
identify the optimisations over a naive stack-machine
implementation. In general this investigation is carried
out on a set of applications such as the SPECjvm98 (18)
benchmark suite with optimisations then being driven
by the ``average'' application. The literature contains
several examples of research into the characterisation of
the Java runtime but with the goal generally being to
drive the design of software JVMs. In (19,20), the
authors use trace information to optimise components of
the runtime such as the method cache and the decision
strategy of the JIT compiler. Other work applicable to
software JVMs can also be used in hardware
implementations. Examples include the optimisation of
JVM operations such as synchronisation (21) and using
common application characteristics such as the average
size of objects in making caching decisions.

El-Kharashi et. al. carry out a two-part investigation
into the architectural requirements of a Java
microprocessors (22, 23). The goal of the work is to
direct the instruction set design of a hardware JVM by
discovering the common cases of bytecode execution.
Their approach is to to insert probes into the main
interpretation loop of a software JVM in order to
calculate information such as the frequency of execution
and time cost of each bytecode when executing a given
test-bench application. Other information collected
includes the access patterns and frequency of
conversion for different data types, the number of local
variables in the method frame, the average number of
operands and the average instruction length. This
information can be used to drive design decisions in a
hardware JVM. For example, since this work suggests
that the number of local variables is usually between 16
and 32, this motivates the mapping of this number of
local variables to hardware registers. Crucially, this
work reports that multithreading is at the heart of the
JVM but make no recommendations on how to take
advantage of this fact.

There are similarities between research work targeted at
optimising Java processors and that aimed at software
JVMs; for example, optimisation of a common trait in
software that leads to caching of particular data can also
be transferred to the hardware domain by using
dedicated registers. In any case, the use of tools to
gather information about a general application
behaviour could be use to drive the final design of an
application-specific hardware solution. For example,
LavaCore (16) provides a tool that can be used to
identify the subset of used bytecodes, thereby
eliminating the hardware structures or microcode of
those bytecodes that are not used. This application-
specific approach could be taken to another level to
reconfigure the hardware. For example, if cache sizes
and bus widths could be configured, then these could be
optimised for a given application.

The JVM abstraction defines the execution of three
broad types of instructions:

• Simple memory loads and stores (for example
through loading constant-pool data) and
arithmetic and logic manipulations of the stack,

• Control flow operations such as jumps and
invocations,

• Higher-level operations such as object
instantiation and monitor control.

A simple stack machine can implement many of the first
and second types of instructions through standard
hardware components such as multiplexors, adders,
shifters, etc. Hardware support for the third type of
operations is rare due to the complexity of these
instructions and is often argued to be unnecessary due to
the infrequent use of these bytecodes. The notable
exception is jHISC (24) which provides hardware
support for object-oriented bytecodes such as putfield
and object invocation. Achieving this requires hardware
components that make the core “object-aware”, that is
by storing object information in hardware registers. In
most Java processor implementations, the complexity of
the third type of instructions is addressed through an
implementation on top of the simple stack machine
abstraction. There are two ways that this is achieved: the
first is to specify in the microcode control store the
sequence of stack instructions required to implement
this bytecode; the second is to trap on these bytecodes
and call a Java method which implements this
functionality. The latter option requires a set of
extended bytecodes to be defined that allow access to
hardware elements from the application level. The JOP
processor (12,13) is an example of a Java processor that
makes use of both approaches. This allows for a range
of these bytecodes to be moved between the microcode
instruction store residing in on-chip memory and a
standard method for which the implementing bytecodes
are stored in main memory.

The full functionality of the JVM is not expressed solely
by the semantics of bytecodes. For example, class-
loading semantics are not expressed as part of the

bytecode set. Crucially for real-time systems,
multithreading semantics are undefined at the bytecode
level: there are no bytecodes for starting a thread,
yielding execution, etc. In software VMs, these
operations are captured instead by the Java runtime
which intrusively modifies the state of the virtual
machine's stack and registers. In most Java processors,
multithreading support is absent at the hardware level.
Instead, the Java bytecode set is extended to allow Java-
level access to hardware structures such as the stack.
Alternatively, an extended bytecode set is defined to
provide the semantics of these higher level operations
and which therefore can be handled by a set of
microcode instructions without any vertical switching
between hardware and software levels. Note that both
these approaches are similar to those commonly used in
addressing the third type of bytecodes above. Again,
direct hardware support for these types of operations is
rare.

The provision of better hardware support for real-time
Java applications is the first area that JavaMen
addressing. Two components of the RTSJ are to be
considered: real-time scheduling and dispatching and
the unique memory model of the RTSJ. The majority of
research into hardware schedulers has been related to
the field of packet-switching in networks (25) though
some hardware schedulers for real-time systems have
been developed. For example in (26), a hardware
scheduler that can be configured for three types of
scheduling policies is described. The scheduler here is
defined in a separate block to the microprocessor and
interacts with the main processor through a shared bus.
Albeit an attractive solution for porting purposes, this
arrangement is subject to unpredictable bus contention
and is not as efficient as a scheduler with direct access
to the CPU registers. In a Java-specific environment, the
Komodo Java microcontroller (27) provides on-chip
registers to save the context of up to four threads,
thereby providing very fast context switching. The aJile
processor (11) also claims to provide multithreading but
this is achieved through extended bytecodes and
associated microcode instructions rather than through
any direct hardware support. Hardware support for the
RTSJ's novel scoped memory model is thus far an
unexplored area of research. In (28) the authors show
how the semantics of this memory model can be
integrated with that of a hardware processor. However,
it is only assumed that the hardware traps to a software
level on the relevant bytecodes and there is no support
either in microcode or directly in hardware to
implement the model's semantics.

The second area of research JavaMen is addressing is
the potential of a co-design solution for Ravenscar
applications. The goal here is to provide a development
environment were the functionality of the application
can easily traverse the hardware/software boundary.
Two components will be considered here: JVM-specific
functionality (in particular the scheduler and support for
memory management) as well as application-specific

functions for which equivalent hardware components
may exist. A more detailed description of these two
research areas is provided in Section 4. Next, brief
introductions to the RTSJ and the fundamentals of
application-specific codesign is provided as a
background for this description.

3. THE RTSJ AND CO-DESIGN TECHNOLOGY

The first step at achieving the first goal of the JavaMen
project is to identify a suitable development
environment for real-time Java applications. The
developed core and runtime would then need to
implement the functionality that can be expressed in this
environment. Expressing real-time requirements will be
possible using a subset of the RTSJ APIs: the Ravenscar
Java Profile (7). As the RTSJ provides a wide range of
features suitable for both hard and soft real-time
systems, Ravenscar defines this subset in order to
eliminate those features unsuitable for high-integrity
systems. A second API specific to JavaMen will be used
to express co-design functionality. A brief description of
the scheduling and memory-management features of the
RTSJ and its Ravenscar subset are described next. This
is followed by a brief introduction into application-
specific co-design principles.

3.1 The RTSJ

The RTSJ describes ``seven enhanced areas,'' that bring
real-time functionality to the Java platform. The three
areas relevant to this work and which feature in
Ravenscar are:

• the definition of real-time thread scheduling
and dispatching mechanisms,

• appropriate synchronisation and resource
sharing mechanisms and

• a new memory model that allows the
application to avoid the penalties of garbage
collection.

As the heart of the RTSJ is the Schedulable object, the
unit of execution that the real-time scheduler
understands. This added abstraction over standard
threads allows other classes such as event handlers to
form part of the scheduling and dispatching decision.
Schedulable objects implement the interface
Schedulable which, as an extension of the standard
Runnable interface, defines the abstract method run().
The information supplied by the methods defined in
Schedulable is used by the scheduler to create a
suitable context to execute run(). In Ravenscar these are
strictly priority parameters as the scheduler must be a
fixed priority scheduler. The RTSJ defines two types of
Schedulable objects: AsyncEventHandler and
RealtimeThread. NoHeapRealtimeThread extends
RealtimeThread and implements the same methods but
has special memory characteristics as described below.
For the purposes of this work, only

NoHeapRealtimeThread instances are being
considered as they provide the timing guarantees needed
but eliminating use of the garbage collector.

The RTSJ provides three types of memory areas: scoped
memory, immortal memory and heap memory which are
encapsulated in the ScopedMemory,
ImmortalMemory and HeapMemory classes
respectively. HeapMemory provides application-level
access to the standard Java heap in which objects are
allocated by java.lang.Thread threads. Every
application contains one instance of ImmortalMemory
in which residing objects live for the duration of the
application. Every ScopedMemory instance is
associated with a physical memory area called the
backing store that can be allocated and freed
dynamically. ScopedMemory is an abstract class with
two subclasses: VTMemory and LTMemory that
describe memory areas with variable and linear
allocation times respectively.
NoHeapRealtimeThreads can only access objects in
scoped and immortal memory.

Every RTSJ thread executes in some memory area at
any time and this memory area is called the current
execution context of that thread. For most purposes, it
can be assumed that the initial execution context of a
thread is immortal memory, a memory region in which
allocated object live for the duration of the application.
When a thread invokes the new operator to create a new
object, that object is created in the current execution
context of that thread. For example, if the current
execution context of a thread is the immortal memory
region, then any new objects created are allocated from
the immortal area. By changing their current execution
context, threads can create objects in either this
immortal region or scoped memory regions. Changing
execution context is done using the methods of the
ScopedMemory class namely the methods enter() and
executeInArea(). Allocation and deallocation of
scoped memory regions is defined by the semantics of
scoped memory as defined in the RTSJ. The reader is
referred to (4) for a full description of the RTSJ memory
model and the semantics of the methods in the memory
classes. For the purposes of this paper this brief
introduction suffices for describing the motivation of
the approach taken in this project.

3.2 Application-Specific Hardware/Software Co-
Design

Designing embedded systems often requires satisfying
or optimising for a variety of constraints. Amongst
others, these constraints include cost, power
consumption and performance. The boundary of the
hardware/software partition is often decided at the early
stages of development and it is often hard to move this
boundary at later stages. The motivation behind
hardware/software co-design is to allow a unified
development environment of these two parts of the
system that delays the fixing of these partitions until a

better understanding of the system emerges at later
stages of development. Moving the boundary as further
properties emerge is also simplified by the supporting
tools. The co-design field has several niche research
areas that range from finding suitable unified
abstractions for specifying systems that can then be
transparently mapped to either hardware or software to
algorithms that automatically search the solution space
of partitions for a particular partition that best satisfies a
set of user-specified requirements. The term
“application-specific” as used in this context is broadly
one of granularity in the co-design search space. If the
exact characteristics of the software that is to be
executed are unknown, then the co-design solution will
be one that will be optimised for a broad application
domain. In this case, the co-design solution could
therefore prove sub-optimal for a particular application.
At the finest granularity, if only one application is to be
executed on the hardware then a full characterisation of
that application may be identified and the co-design
solution could therefore be optimised.

The JavaMen processor implementation will provide co-
design support at two levels: Firstly, a configurable
fixed-priority hardware scheduler will be provided with
the scheduling logic and task structures specified as
required in Ravenscar. In particular, the initialisation
phase of Ravenscar requires the specification of the
number of executing tasks. This information can be
used to generate the exact number of thread context
structures either in software or in hardware at the
synthesis stage. Alternatively, a tradeoff can be
provided with a subset of these structures available
directly in hardware registers, another subset in on-chip
memory and the remainder in off-chip memory.
Secondly, an RMI-type abstraction will be developed to
allow an application to use available hardware directly.
Available hardware components will be wrapped in
object-like semantics for which equivalent software
implementations could be available. The availability of
this hardware will therefore be unknown at development
time and the decision on whether to provide this
hardware or use the software implementation can be
delayed until deployment. At runtime, the application
will have access to this functionality transparently, at
times using the hardware component if it is available
and at others making use of the software
implementation.

4. TOWARDS AN APPLICATION-SPECIFIC
DEVELOPMENT ENVIRONMENT FOR THE
RTSJ

Rather than implement a processor core from scratch,
we have opted to extend an existing open-source
processor, the Java Optimised Processor (JOP) (12,13),
for this research. JOP's hardware core is a simple 32-bit
stack machine with each bytecode being mapped to one
or more microcode instructions. The core is a
minimalistic 4-stage pipelined machine and, apart from
a simple bytecode cache, contains no complex

functionality such as bytecode folding or branch
prediction. This is ideal for the purposes of this project
as it allows for a clear evaluation of the proposed
solutions without the interference of these features.

4.1 Real-Time Scheduling and Memory Management
in JOP

JOP provides no support for multithreading within the
hardware core or at microcode level. The current release
provides a simple scheduler and allows multithreading
through a Java-level implementation that changes the
stack of the virtual machine though a set of extended
bytecodes. For example, native method getSP() is
converted to the special bytecode jopsys_getsp that
returns the value of the current stack pointer. A similar
bytecode, jopsys_setsp changes the value of the stack
pointer. Using these bytecodes, the context of a thread
can be loaded and unloaded.

Two alternative implementations of the scheduler are
proposed. The first is that similar to aJile's (11)
approach where threading specific bytecodes are
introduced. The entire scheduler can therefore be
implemented in microcode and vertical switching
between hardware and software is avoided. The close
mapping between bytecode and microcode instructions
is the primary motivation for JOP currently avoiding
this approach. However, since the bytecode for
scheduler operations is held in off-chip memory,
scheduling operations are subject to the latency of the
bytecode cache. Placing scheduling logic in the
microcode store consumes scarce on-chip ROM
memory but avoids these latencies.

The second implementation is a pure hardware
scheduler that is closely integrated in the core. Some of
the parameters of threads as defined in the RTSJ can be
mapped automatically to hardware registers. This means
that the static nature of Ravenscar (as necessary to
provide real-time guarantees) is also taken advantage of
in a single-application environment. To this end, a
simple tool is proposed that takes a Ravenscar-
compliant program specification for which the thread
components are generated. The maximum number of
threads depends on the available memory in the given
architecture and state information for these threads is
stored partially in off-chip memory and partially in on-
chip memory. In particular, information pertaining to
scheduling decisions (such as state and release
parameters) resides on-chip whereas context
information (such as the stack) resides off-chip. If it can
be guaranteed that no changes are made to priority
parameters in the mission phase, then the priority
ordering can be implied in the architecture due to the
fixed number of real-time threads.

There are two goals of this part of the research: the first
is a better understanding of the tradeoffs across the three
implementations. The second is to gauge how useful
static knowledge of the system's threads as available in

a Ravenscar-compliant application can be. For example,
knowing a system has exactly n periodic threads will
allow optimisations in the scheduler that should
improve performance. The Komodo (25) JVM showed
this to be the case for between 1 and 3 real-time threads.
In-keeping with our application-specific approach, these
implementations allow an arbitrary but fixed amount of
threads to be specified and the scheduler configured
accordingly. Comparing the performance and space
requirements gives an indication of the scalability of
this approach.

A similar process is being used to investigate different
solutions of the RTSJ memory model. The Ravenscar-
Java profile allows each Schedulable object to have only
one scoped memory region with no nested enter()
invocations. This makes the implementations of this
model trivial to implement both in hardware and
software. However, current research is aiming to
remove this restriction and it is therefore she current
JOP release provides no implementation of the scoped
memory model. Again, three implementations are
proposed: a purely Java solution, a microcode solution
and a hardware solution. The latter in particular is a
challenge as there is no previous work whatsoever in
this area. Despite popular belief that the RTSJ reference
checks add a significant overhead to the runtime cost of
an application, it was shown in (29) that this overhead is
minimal. If this is true then it would be expected that
little improvement would be evident across
implementations. The algorithms that maintain the
scope-tree structure are not trivial and require a
restructuring of the object representation in JOP.

4.2 An Object Abstraction of Hardware Components
for a Co-Design Environment

Some Java processors such as aJile allow access to
external hardware through user-defined extended
bytecodes. This allows Java applications to access this
hardware but the interface is still ad-hoc and defined at
a low level. Hardware components are similar to
software objects in that they encapsulate state and
function. The central idea in this part of the project is to
allow hardware components to be wrapped as objects
and therefore be accessible from Java in a transparent
manner.

A framework is being developed that allows the
specification of a Java interface that defines the
functionality of a hardware component. The main
challenge here is to define the semantics of this
encapsulation. We are using a similar technique to that
used in Remote Method Invocation (RMI) where an
interface is specified that describes a set of methods
including get/set-style methods that change state. An
equivalent software version of this functionality is also
provided. A special object implements one or more of
these interfaces and maintains references to the Java
implementation of these methods as well as the handoff
logic to the hardware implementation. This latter code

holds the low-level code similar to that used in aJile's
approach. Note that the semantics of software and
hardware invocation are not identical. This is because
invocation of hardware inside the runtime can be done
in parallel. To take advantage of this parallelism, control
should be returned to the processor in order to execute
other tasks. This means that some invocations will be
asynchronous and therefore the timing characteristics of
the application change. Appropriate schedulabilty
analysis to capture this behaviour is already being
investigated at York in the form of the Limited Parallel
Model (30) and will be used in this work.

5 CONCLUSION
This paper has introduced the JavaMen project and the
goals that we hope to achieved. The design and
implementation of the three Reverencer schedulers and
scoped memory implementations in JOP is currently
underway and initial results should be available at year-
end. An API framework for expressing co-design
decisions is also being developed and the similarity of
RMI and parallel execution is being exploited in order
to provide a unified semantics of these two types of
execution. We are hoping to have a complete co-design
development framework for developing Ravenscar
applications on a JavaMen processor by the middle of
the next year.

References

1. Gosling J., Joy B., Steele G., and Bracha G., Java
Language Specification, Second Edition: The Java
Series, 2000, Addison-Wesley Longman Publishing Co.
Inc., Boston, MA, USA

2. Lindholm T., and Yellin F., Java Virtual Machine
Specification, Second Edition, 1999, Addison-Wesley
Longman Publishing Co. Inc., Boston, MA, USA

3. The J-Consortium, International J-Consortium
Specification - High Integrity Profile Revision 0.2,
February, 2001, Available at: www.opengroup.org

4. Bollella G., and Gosling J., The Real-Time
Specification for Java, 2000 Computer, 33.6, 47-54,
Note: Latest version available at: www.rtj.org

5. Child J., Real-Time Java Takes Aim at Embedded
Control, 2004, Note: Available at:
www.rtcmagazine.com/home/article.php?id = 100111

6. picoJava Microprocessor Core Overview, Web
Publication available at:
www.sun.com/microelectronics/picoJava/overview.html

7. Kwon J., Wellings A., and King S., Ravenscar-Java:
A High Integrity Profile for Real-Time Java, 2002,
Proceedings of the 2002 joint ACM-ISCOPE
Conference on Java Grande, 131-140, Seattle,
Washington, USA, ACM Press

http://www.opengroup.org/
http://www.rtj.org/

8. Romer T. H., Lee D., Voelker G. M., Wolman A.,
Wong W. A., Baer and Brian J-L., Bershad N., and
Levy H. M., The Structure and Performance of
Interpreters, 1996, ASPLOS-VII: Proceedings of the
Seventh International Conference on Architectural
Support for Programming Languages and Operating
Systems, 150-159, Cambridge, Massachusetts, United
States, ACM Press

9. Information and white papers on Jazelle available at:
www.arm.com/products/solutions/Jazelle.html

10. Information on JStar available at: www.nazomi.com

11. Hardin D., Real-Time Objects on the Bare Metal: An
Efficient Hardware Realization of the Java Virtual
Machine, 2001, ISORC '01: Proceedings of the Fourth
International Symposium on Object-Oriented Real-Time
Distributed Computing, Washington, DC, USA, IEEE
Computer Society

12. Schoeberl M. Design and Implementation of an
Efficient Stack Machine, 2005
Proceedings of the 12th IEEE Reconfigurable
Architecture Workshop (RAW2005), Denver, Colorado,
USA, IEEE,

13. Schoeberl M. JOP: A Java Optimized Processor,
2003, On the Move to Meaningfull Internet Systems
2003: Workshop on Java Technologies for Real-Time
and Embedded Systems (JTRES 2003) LNCS 2889,
346-359, Catania, Italy, Springer

14. Information on Moon available at:
www.vulcanasic.com

15. Product specification available at:
www.xilinx.com/products/logicore/alliance/digital_com
m_tech/dct_lightfoot_32bit_processor.pdf

16. Product specification available at:
www.xilinx.com/products/logicore/alliance/dsi/dsi_java
_proc.pdf

17. Ito S. A., Carro L., and JacobiR. P., Making Java
Work for Microcontroller Applications, 2001, IEEE
Design and Test, 18.5, 100-110, IEEE Computer
Society Press, Los Alamitos, CA, USA

18. Information available at: www.spec.org/osg/jvm98/

19. Radhakrishnan R., Bhargava .,and John L. K.,
Improving Java Performance using Hardware
Translation, 2001, ICS '01: Proceedings of the 15th
international conference on Supercomputing, Sorrento,
Italy 427-439, ACM Press, New York, NY, USA

20. Radhakrishnan R., N. Vijaykrishnan, John L. K.,
Sivasubramaniam A., Rubio J., and Sabarinathan J.,
Java Runtime Systems: Characterization and

Architectural Implications, 2001, IEEE Transactions on
Computers, 50.2, 131-146, IEEE Computer Society,
Washington, DC, USA

21. Yang B-S., Moon S-M., and Ebcioglu K.,
Lightweight Monitors for the Java Virtual Machine,
2005, Software Practice and Experience, 35.3, 281-299,
John Wiley & Sons, Inc., New York, NY, USA

22. El-Kharashi M. W., Elguibaly F., and Li K. F., A
Quantitative Study for Java Microprocessor
Architectural Requirements. Part I: Instruction Set
Design, 2000, Microprocessors and Microsystems, 24.5,
225-236

23. El-Kharashi M. W., Elguibaly F., and Li K. F., A
Quantitative Study for Java Microprocessor
Architectural Requirements. Part II: High-level
Language Support, 2000, Microprocessors and
Microsystems, 24.5, 237-250

24. Hau G. K. W., Fong A., and Lun M. P., Support of
Java API for the jHISC System, 2003, SIGARCH
Computer Architecture News, 31.4, 12-17, ACM Press,
New York, NY, USA

25. Moon S. W., Shin K. G., and Rexford J., Scalable
Hardware Priority Queue Architectures for High-Speed
Packet Switches, 2000, IEEE Transactions on
Computers, 49.11, 1215--1227, IEEE Computer
Society, Washington, DC, USA

26. Kuacharoen P., Shalan M., and Mooney V.J., A
Configurable Hardware Scheduler for Real-Time
Systems, 2003, Proceedings of the International
Conference on Engineering of Reconfigurable Systems
and Algorithms, Las Vegas, Nevada, US, 95-101,
CSREA Press

27. Kreuzinger J., Schulz A., Pfeffer M., Ungerer T.,
Brinkschulte U., and Krakowski C., Real-Time
Scheduling on Multithreaded Processors, 2000,
Proceedings of the Seventh International Conference on
Real-Time Systems and Applications RTCSA'00),
Washington, DC, USA, IEEE Computer Society

28. Higuera T., Issarny V., Banare M., and Parain F.,
Memory Management for Real-Time Java: An Efficient
Solution using Hardware Support, 2004, Real-Time
Systems Journal, 26.1, 63-87, Kluwer Academic
Publishers, Norwell, MA, USA

29. Niessner A., Benowitz E., RTSJ Memory Areas and
Their Affects, 2003, On the Move to Meaningful
Internet Systems: OTM 2003 Workshops, LNCS 2889,
508-519, publisher = "Springer"

30. Bletsas K., Extending The Limited Parallel Model,
2005, Technical Report at the University of York, Dept.
of Computer Science, YCS391 (2005)

http://www.arm.com/products/solutions/Jazelle.html
http://www.nazomi.com/
http://www.vulcanasic.com/
http://www.xilinx.com/products/logicore/alliance/digital_comm_tech/dct_lightfoot_32bit_processor.pdf
http://www.xilinx.com/products/logicore/alliance/digital_comm_tech/dct_lightfoot_32bit_processor.pdf
http://www.xilinx.com/products/logicore/alliance/dsi/dsi_java_proc.pdf
http://www.xilinx.com/products/logicore/alliance/dsi/dsi_java_proc.pdf
http://www.spec.org/osg/jvm98/

	1. INTRODUCTION
	2. HARDWARE SUPPORT FOR REAL-TIME JAVA

