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ABSTRACT: Hardware Java-specific processors have 
been shown to provide the performance benefits over 
their software counterparts that make Java a feasible 
environment for executing even the most 
computationally expensive systems. In most cases, the 
core of these processors is a simple stack machine on 
which stack operations and logic and arithmetic 
operations are carried out. More complex bytecodes are 
implemented either in microcode through a sequence of 
stack and memory operations or in Java and therefore 
through a set of bytecodes. This paper investigates the 
state-of-the-art in Java processors and identifies two 
areas of improvement for specialising these processors 
for real-time applications. This is achieved through a 
combination of the implementation of real-time Java 
components in hardware and by using application-
specific characteristics expressed at the Java level to 
drive a co-design strategy. An implementation of these 
propositions will provide a flexible Ravenscar-
compliant virtual machine that provides better 
performance while still guaranteeing real-time 
requirements. 
 
1. INTRODUCTION 
 
The Java programming model has become established 
in mainstream software development as a platform for 
general-purpose applications. The abstraction provided 
by the virtual machine realises the attractive Write-
Once-Run-Anywhere (WORA) concept. Initially 
created for developing software for consumer devices, it 
achieved its success in the rapid expansion of the 
Internet for which the WORA concept found an ideal 
application. Today, Java is penetrating into more niche 
markets, from large enterprise applications to small 
embedded devices such as mobile phones. In particular, 
the Micro Edition of the Java 2 Platform (J2ME) 
provides an application development environment that 
specifically addresses the needs of embedded devices 
such as personal digital assistants and set-top boxes.1

 
Despite this new focus on embedded devices, J2ME and 
the Java superset do not address the application domain 
of real-time applications. Indeed, until recently, “Java” 
and “real-time” were considered an oxymoron as Java 
lacked the infrastructure to enable development of real-
time systems. The specifications of both Language (1) 
and  Virtual   Machine  (2)  were  never  designed   with  
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this gives a subset of the full Java standard edition with cut-down functionality 
in the virtual machine and a smaller set of core and application libraries. 

 
Figure 1: Three alternatives for executing Java code (take from (6)) 

 
timeliness as a key issue. The language therefore fails to 
allow more advanced temporal requirements of threads 
to be expressed and virtual machine implementations 
may behave unpredictably in this context. For example, 
whereas a basic thread priority can be specified, it is not 
required to be observed by a virtual machine and there 
is no guarantee that the highest priority thread will 
preempt lower priority threads. In order to address this 
shortcoming, two competing specifications have been 
introduced: the “Real-Time Core Extensions” from the 
J-Consortium (3) and the ``Real-Time Specification for 
Java'' (RTSJ) (4) from Sun Microsystems. The former 
has not achieved the exposure of the RTSJ, though 
attempts are now being made to combine the two 
standards for a safety-critical Java (5). 
 
The Java Virtual Machine specification describes an 
abstract stack machine that executes byte-code, the 
intermediate code of the Java language. The 
implementation of this abstraction could be handled 
either as a middleware application on top of stock 
hardware and operating systems or by a direct hardware 
implementation. The tradeoff between these two 
approaches is one of cost and speed; hardware 
implementations are fast but could be expensive. As 
with any programming language, Java code could be 
compiled down to native code unique to a particular 
platform, thereby deriving a performance benefit at the 
cost of portability and a significantly larger code size. 
This latter overhead occurs because the runtime 
semantics must be embedded in application code. These 
three approaches are depicted in Figure (1) as described 
in (6) for the picoJava processor. The majority of 
current deployments of Java virtual machine 
implementations are of the first type. Even devices that 
provide J2ME implementations generally execute a 
software JVM with no Java-specific hardware support. 
 
The JavaMen research project is being carried out at the 
University of York to capture the requirements of a 
virtual machine implementation with hardware support 



that is compatible with a high-integrity subset of the 
RTSJ, the Ravenscar Java profile (7). Briefly, the two 
goals of the JavaMen project are to: 

• Design and implement a minimal real-time 
Java virtual machine to run as an IP-core. 

• Provide distribution functionality through 
which an application may perform a remote 
invocation to offload part of its computation. 

This paper focuses on the first goal by identifying the 
research niches that are being addressed. The aim here 
is to motivate the proposed solutions currently under 
implementation. As will be shown in the next section, 
some areas of this field have already been extensively 
researched. While adopting whenever possible positive 
results from existing research in our own 
implementation, this work is unique in that it optimises 
for the real-time characteristics of the application while 
supporting a flexible co-design strategy for application-
specific environments. 
 
The rest of this paper is set out as follows: Section 2 
gives a brief overview of the state-of-the-art in Java 
processor research. Section 3 identifies the research 
niches that are being addressed in the JavaMen project. 
A brief description of the RTSJ and the basic principles 
of hardware/software co-design is provided here in 
order to set the context of this work. Section 4 
introduces the proposed solutions and, finally, Section 5 
concludes. 
 
2. HARDWARE SUPPORT FOR REAL-TIME 
JAVA 
 
In 1996, Romer et. al. argued that there existed so much 
possible optimisation of standard Java runtimes that 
proposing hardware support was premature (8). This is 
contentious statement given that software runtimes are 
emulations of the Java abstract machine and that 
proposed optimisations are only targeted at better 
emulation. However, given the poor optimisation of 
software virtual machines at the time, this statement was 
probably true. A number of early hardware 
implementations of the Java virtual machine were 
developed soon after this time but none reached any 
significant levels of distribution. As optimisation of 
software implementations reaches its peak, hardware 
support is once again beginning to prove necessary in 
order to overcome the performance barrier of Java 
interpretation (and just-in-time runtime compilation) on 
general purpose platforms. 
 
There are two ways of improving bytecode execution 
using hardware. The first is to use a coprocessor that 
works in conjunction with a general purpose CPU by 
either providing a fast bytecode translation to that 
CPU's native instruction set or by executing simple 
bytecode itself. Examples of the coprocessor option 
include Jazelle (9) and JSTAR(10). The second option 
is to provide a Java-specific processor which therefore 
is limited but specialised to Java applications. PicoJava 
(6), aJile (11) and JOP (12,13) are examples of Java 

processors that adopt this approach, each with slightly 
difference optimisations. In essence however, the 
architectures are similar; they mostly implement a stack 
machine architecture with simpler bytecodes being 
executed in a small number of cycles and more complex 
ones executed in microcode or software. PicoJava's 
optimisations include features such as instruction 
folding and bytecode prediction, aJile provides simple 
synchronisation and scheduling primitives in microcode 
whereas JOP opts for as minimal a model as required to 
provide predictable real-time guarantees. Other 
examples of existing Java Processors are Moon (14), 
Lightfoot (15), LavaCore (16) and FemtoJava (17), each 
providing different stack-based implementations. 
LavaCore and FemtoJava allow an analysis of the 
application to be carried out in order to fine-tune the 
hardware generated, thereby providing an application-
specific hardware solution. 
 
In order to provide the best possible hardware support, 
the JVM abstraction must be analysed in order to 
identify the optimisations over a naive stack-machine 
implementation. In general this investigation is carried 
out on a set of applications such as the SPECjvm98 (18) 
benchmark suite with optimisations then being driven 
by the ``average'' application. The literature contains 
several examples of research into the characterisation of 
the Java runtime but with the goal generally being to 
drive the design of software JVMs. In (19,20), the 
authors use trace information to optimise components of 
the runtime such as the method cache and the decision 
strategy of the JIT compiler. Other work applicable to 
software JVMs can also be used in hardware 
implementations. Examples include the optimisation of 
JVM operations such as synchronisation (21) and using 
common application characteristics such as the average 
size of objects in making caching decisions. 
 
El-Kharashi et. al. carry out a two-part investigation 
into the architectural requirements of a Java 
microprocessors (22, 23). The goal of the work is to 
direct the instruction set design of a hardware JVM by 
discovering the common cases of bytecode execution. 
Their approach is to to insert probes into the main 
interpretation loop of a software JVM in order to 
calculate information such as the frequency of execution 
and time cost of each bytecode when executing a given 
test-bench application. Other information collected 
includes the access patterns and frequency of 
conversion for different data types, the number of local 
variables in the method frame, the average number of 
operands and the average instruction length. This 
information can be used to drive design decisions in a 
hardware JVM. For example, since this work suggests 
that the number of local variables is usually between 16 
and 32, this motivates the mapping of this number of 
local variables to hardware registers. Crucially, this 
work reports that multithreading is at the heart of the 
JVM but make no recommendations on how to take 
advantage of this fact. 
 



There are similarities between research work targeted at 
optimising Java processors and that aimed at software 
JVMs; for example, optimisation of a common trait in 
software that leads to caching of particular data can also 
be transferred to the hardware domain by using 
dedicated registers. In any case, the use of tools to 
gather information about a general application 
behaviour could be use to drive the final design of an 
application-specific hardware solution. For example, 
LavaCore (16) provides a tool that can be used to 
identify the subset of used bytecodes, thereby 
eliminating the hardware structures or microcode of 
those bytecodes that are not used. This application-
specific approach could be taken to another level to 
reconfigure the hardware. For example, if cache sizes 
and bus widths could be configured, then these could be 
optimised for a given application. 
 
The JVM abstraction defines the execution of three 
broad types of instructions:  

• Simple memory loads and stores (for example 
through loading constant-pool data) and 
arithmetic and logic manipulations of the stack, 

• Control flow operations such as jumps and 
invocations, 

• Higher-level operations such as object 
instantiation and monitor control. 

 
A simple stack machine can implement many of the first 
and second types of instructions through standard 
hardware components such as multiplexors, adders, 
shifters, etc. Hardware support for the third type of 
operations is rare due to the complexity of these 
instructions and is often argued to be unnecessary due to 
the infrequent use of these bytecodes. The notable 
exception is jHISC (24) which provides hardware 
support for object-oriented bytecodes such as putfield 
and object invocation. Achieving this requires hardware 
components that make the core “object-aware”, that is 
by storing object information in hardware registers. In 
most Java processor implementations, the complexity of 
the third type of instructions is addressed through an 
implementation on top of the simple stack machine 
abstraction. There are two ways that this is achieved: the 
first is to specify in the microcode control store the 
sequence of stack instructions required to implement 
this bytecode; the second is to trap on these bytecodes 
and call a Java method which implements this 
functionality. The latter option requires a set of 
extended bytecodes to be defined that allow access to 
hardware elements from the application level. The JOP 
processor (12,13) is an example of a Java processor that 
makes use of both approaches. This allows for a range 
of these bytecodes to be moved between the microcode 
instruction store residing in on-chip memory and a 
standard method for which the implementing bytecodes 
are stored in main memory. 
 
The full functionality of the JVM is not expressed solely 
by the semantics of bytecodes. For example, class-
loading semantics are not expressed as part of the 

bytecode set. Crucially for real-time systems, 
multithreading semantics are undefined at the bytecode 
level: there are no bytecodes for starting a thread, 
yielding execution, etc. In software VMs, these 
operations are captured instead by the Java runtime 
which intrusively modifies the state of the virtual 
machine's stack and registers. In most Java processors, 
multithreading support is absent at the hardware level. 
Instead, the Java bytecode set is extended to allow Java-
level access to hardware structures such as the stack. 
Alternatively, an extended bytecode set is defined to 
provide the semantics of these higher level operations 
and which therefore can be handled by a set of 
microcode instructions without any vertical switching 
between hardware and software levels. Note that both 
these approaches are similar to those commonly used in 
addressing the third type of bytecodes above. Again, 
direct hardware support for these types of operations is 
rare. 
 
The provision of better hardware support for real-time 
Java applications is the first area that JavaMen 
addressing. Two components of the RTSJ are to be 
considered: real-time scheduling and dispatching and 
the unique memory model of the RTSJ. The majority of 
research into hardware schedulers has been related to 
the field of packet-switching in networks (25) though 
some hardware schedulers for real-time systems have 
been developed. For example in (26), a hardware 
scheduler that can be configured for three types of 
scheduling policies is described. The scheduler here is 
defined in a separate block to the microprocessor and 
interacts with the main processor through a shared bus. 
Albeit an attractive solution for porting purposes, this 
arrangement is subject to unpredictable bus contention 
and is not as efficient as a scheduler with direct access 
to the CPU registers. In a Java-specific environment, the 
Komodo Java microcontroller (27) provides on-chip 
registers to save the context of up to four threads, 
thereby providing very fast context switching. The aJile 
processor (11) also claims to provide multithreading but 
this is achieved through extended bytecodes and 
associated microcode instructions rather than through 
any direct hardware support. Hardware support for the 
RTSJ's novel scoped memory model is thus far an 
unexplored area of research. In (28) the authors show 
how the semantics of this memory model can be 
integrated with that of a hardware processor. However, 
it is only assumed that the hardware traps to a software 
level on the relevant bytecodes and there is no support 
either in microcode or directly in hardware to 
implement the model's semantics. 
 
The second area of research JavaMen is addressing is 
the potential of a co-design solution for Ravenscar 
applications. The goal here is to provide a development 
environment were the functionality of the application 
can easily traverse the hardware/software boundary. 
Two components will be considered here: JVM-specific 
functionality (in particular the scheduler and support for 
memory management) as well as application-specific 



functions for which equivalent hardware components 
may exist. A more detailed description of these two 
research areas is provided in Section 4. Next, brief 
introductions to the RTSJ and the fundamentals of 
application-specific codesign is provided as a 
background for this description. 
 
3. THE RTSJ AND CO-DESIGN TECHNOLOGY 
 
 
The first step at achieving the first goal of the JavaMen 
project is to identify a suitable development 
environment for real-time Java applications. The 
developed core and runtime would then need to 
implement the functionality that can be expressed in this 
environment. Expressing real-time requirements will be 
possible using a subset of the RTSJ APIs: the Ravenscar 
Java Profile (7). As the RTSJ provides a wide range of 
features suitable for both hard and soft real-time 
systems, Ravenscar defines this subset in order to 
eliminate those features unsuitable for high-integrity 
systems. A second API specific to JavaMen will be used 
to express co-design functionality. A brief description of 
the scheduling and memory-management features of the 
RTSJ and its Ravenscar subset are described next. This 
is followed by a brief introduction into application-
specific co-design principles. 
 
3.1 The RTSJ 
 
The RTSJ describes ``seven enhanced areas,'' that bring 
real-time functionality to the Java platform. The three 
areas relevant to this work and which feature in 
Ravenscar are: 
 

• the definition of real-time thread scheduling 
and dispatching  mechanisms, 

• appropriate synchronisation and resource 
sharing mechanisms and 

• a new memory model that allows the 
application to avoid the penalties of garbage 
collection. 

 
As the heart of the RTSJ is the Schedulable object, the 
unit of execution that the real-time scheduler 
understands. This added abstraction over standard 
threads allows other classes such as event handlers to 
form part of the scheduling and dispatching decision. 
Schedulable objects implement the interface 
Schedulable which, as an extension of the standard 
Runnable interface, defines the abstract method run(). 
The information supplied by the methods defined in 
Schedulable is used by the scheduler to create a 
suitable context to execute run(). In Ravenscar these are 
strictly priority parameters as the scheduler must be a 
fixed priority scheduler. The RTSJ defines two types of 
Schedulable objects: AsyncEventHandler and 
RealtimeThread. NoHeapRealtimeThread extends 
RealtimeThread and implements the same methods but 
has special memory characteristics as described below. 
For the purposes of this work, only 

NoHeapRealtimeThread instances are being 
considered as they provide the timing guarantees needed 
but eliminating use of the garbage collector. 
 
The RTSJ provides three types of memory areas: scoped 
memory, immortal memory and heap memory which are 
encapsulated in the ScopedMemory, 
ImmortalMemory and HeapMemory classes 
respectively. HeapMemory provides application-level 
access to the standard Java heap in which objects are 
allocated by java.lang.Thread threads. Every 
application contains one instance of ImmortalMemory 
in which residing objects live for the duration of the 
application. Every ScopedMemory instance is 
associated with a physical memory area called the 
backing store that can be allocated and freed 
dynamically. ScopedMemory is an abstract class with 
two subclasses: VTMemory and LTMemory that 
describe memory areas with variable and linear 
allocation times respectively. 
NoHeapRealtimeThreads can only access objects in 
scoped and immortal memory. 
 
Every RTSJ thread executes in some memory area at 
any time and this memory area is called the current 
execution context of that thread. For most purposes, it 
can be assumed that the initial execution context of a 
thread is immortal memory, a memory region in which 
allocated object live for the duration of the application. 
When a thread invokes the new operator to create a new 
object, that object is created in the current execution 
context of that thread. For example, if the current 
execution context of a thread is the immortal memory 
region, then any new objects created are allocated from 
the immortal area. By changing their current execution 
context, threads can create objects in either this 
immortal region or scoped memory regions. Changing 
execution context is done using the methods of the 
ScopedMemory class namely the methods enter() and 
executeInArea(). Allocation and deallocation of 
scoped memory regions is defined by the semantics of 
scoped memory as defined in the RTSJ. The reader is 
referred to (4) for a full description of the RTSJ memory 
model and the semantics of the methods in the memory 
classes. For the purposes of this paper this brief 
introduction suffices for describing the motivation of 
the approach taken in this project. 
 
3.2 Application-Specific Hardware/Software Co-
Design 
 
Designing embedded systems often requires satisfying 
or optimising for a variety of constraints. Amongst 
others, these constraints include cost, power 
consumption and performance. The boundary of the 
hardware/software partition is often decided at the early 
stages of development and it is often hard to move this 
boundary at later stages. The motivation behind 
hardware/software co-design is to allow a unified 
development environment of these two parts of the 
system that delays the fixing of these partitions until a 



better understanding of the system emerges at later 
stages of development. Moving the boundary as further 
properties emerge is also simplified by the supporting 
tools. The co-design field has several niche research 
areas that range from finding suitable unified 
abstractions for specifying systems that can then be 
transparently mapped to either hardware or software to 
algorithms that automatically search the solution space 
of partitions for a particular partition that best satisfies a 
set of user-specified requirements. The term 
“application-specific” as used in this context is broadly 
one of granularity in the co-design search space. If the 
exact characteristics of the software that is to be 
executed are unknown, then the co-design solution will 
be one that will be optimised for a broad application 
domain. In this case, the co-design solution could 
therefore prove sub-optimal for a particular application. 
At the finest granularity, if only one application is to be 
executed on the hardware then a full characterisation of 
that application may be identified and the co-design 
solution could therefore be optimised. 
 
The JavaMen processor implementation will provide co-
design support at two levels: Firstly, a configurable 
fixed-priority hardware scheduler will be provided with 
the scheduling logic and task structures specified as 
required in Ravenscar. In particular, the initialisation 
phase of Ravenscar requires the specification of the 
number of executing tasks. This information can be 
used to generate the exact number of thread context 
structures either in software or in hardware at the 
synthesis stage. Alternatively, a tradeoff can be 
provided with a subset of these structures available 
directly in hardware registers, another subset in on-chip 
memory and the remainder in off-chip memory. 
Secondly, an RMI-type abstraction will be developed to 
allow an application to use available hardware directly. 
Available hardware components will be wrapped in 
object-like semantics for which equivalent software 
implementations could be available. The availability of 
this hardware will therefore be unknown at development 
time and the decision on whether to provide this 
hardware or use the software implementation can be 
delayed until deployment. At runtime, the application 
will have access to this functionality transparently, at 
times using the hardware component if it is available 
and at others making use of the software 
implementation. 
 
4. TOWARDS AN APPLICATION-SPECIFIC 
DEVELOPMENT ENVIRONMENT FOR THE 
RTSJ 
 
Rather than implement a processor core from scratch, 
we have opted to extend an existing open-source 
processor, the Java Optimised Processor (JOP) (12,13), 
for this research. JOP's hardware core is a simple 32-bit 
stack machine with each bytecode being mapped to one 
or more microcode instructions. The core is a 
minimalistic 4-stage pipelined machine and, apart from 
a simple bytecode cache, contains no complex 

functionality such as bytecode folding or branch 
prediction. This is ideal for the purposes of this project 
as it allows for a clear evaluation of the proposed 
solutions without the interference of these features. 
 
4.1 Real-Time Scheduling and Memory Management 
in JOP 
 
JOP provides no support for multithreading within the 
hardware core or at microcode level. The current release 
provides a simple scheduler and allows multithreading 
through a Java-level implementation that changes the 
stack of the virtual machine though a set of extended 
bytecodes. For example, native method getSP() is 
converted to the special bytecode jopsys_getsp that 
returns the value of the current stack pointer. A similar 
bytecode, jopsys_setsp changes the value of the stack 
pointer. Using these bytecodes, the context of a thread 
can be loaded and unloaded. 
 
Two alternative implementations of the scheduler are 
proposed. The first is that similar to aJile's (11) 
approach where threading specific bytecodes are 
introduced. The entire scheduler can therefore be 
implemented in microcode and vertical switching 
between hardware and software is avoided. The close 
mapping between bytecode and microcode instructions 
is the primary motivation for JOP currently avoiding 
this approach. However, since the bytecode for 
scheduler operations is held in off-chip memory, 
scheduling operations are subject to the latency of the 
bytecode cache. Placing scheduling logic in the 
microcode store consumes scarce on-chip ROM 
memory but avoids these latencies.  
 
The second implementation is a pure hardware 
scheduler that is closely integrated in the core. Some of 
the parameters of threads as defined in the RTSJ can be 
mapped automatically to hardware registers. This means 
that the static nature of Ravenscar (as necessary to 
provide real-time guarantees) is also taken advantage of 
in a single-application environment. To this end, a 
simple tool is proposed that takes a Ravenscar-
compliant program specification for which the thread 
components are generated. The maximum number of 
threads depends on the available memory in the given 
architecture and state information for these threads is 
stored partially in off-chip memory and partially in on-
chip memory. In particular, information pertaining to 
scheduling decisions (such as state and release 
parameters) resides on-chip whereas context 
information (such as the stack) resides off-chip. If it can 
be guaranteed that no changes are made to priority 
parameters in the mission phase, then the priority 
ordering can be implied in the architecture due to the 
fixed number of real-time threads. 
 
There are two goals of this part of the research: the first 
is a better understanding of the tradeoffs across the three 
implementations. The second is to gauge how useful 
static knowledge of the system's threads as available in 



a Ravenscar-compliant application can be. For example, 
knowing a system has exactly n periodic threads will 
allow optimisations in the scheduler that should 
improve performance. The Komodo (25) JVM showed 
this to be the case for between 1 and 3 real-time threads. 
In-keeping with our application-specific approach, these 
implementations allow an arbitrary but fixed amount of 
threads to be specified and the scheduler configured 
accordingly. Comparing the performance and space 
requirements gives an indication of the scalability of 
this approach. 
 
A similar process is being used to investigate different 
solutions of the RTSJ memory model. The Ravenscar-
Java profile allows each Schedulable object to have only 
one scoped memory region with no nested enter() 
invocations. This makes the implementations of this 
model trivial to implement both in hardware and 
software. However, current research is aiming to 
remove this restriction and it is therefore she current 
JOP release provides no implementation of the scoped 
memory model. Again, three implementations are 
proposed: a purely Java solution, a microcode solution 
and a hardware solution. The latter in particular is a 
challenge as there is no previous work whatsoever in 
this area. Despite popular belief that the RTSJ reference 
checks add a significant overhead to the runtime cost of 
an application, it was shown in (29) that this overhead is 
minimal. If this is true then it would be expected that 
little improvement would be evident across 
implementations. The algorithms that maintain the 
scope-tree structure are not trivial and require a 
restructuring of the object representation in JOP.  
 
4.2 An Object Abstraction of Hardware Components 
for a Co-Design Environment 
 
Some Java processors such as aJile allow access to 
external hardware through user-defined extended 
bytecodes. This allows Java applications to access this 
hardware but the interface is still ad-hoc and defined at 
a low level. Hardware components are similar to 
software objects in that they encapsulate state and 
function. The central idea in this part of the project is to 
allow hardware components to be wrapped as objects 
and therefore be accessible from Java in a transparent 
manner.  
 
A framework is being developed that allows the 
specification of a Java interface that defines the 
functionality of a hardware component. The main 
challenge here is to define the semantics of this 
encapsulation. We are using a similar technique to that 
used in Remote Method Invocation (RMI) where an 
interface is specified that describes a set of methods 
including get/set-style methods that change state. An 
equivalent software version of this functionality is also 
provided. A special object implements one or more of 
these interfaces and maintains references to the Java 
implementation of these methods as well as the handoff 
logic to the hardware implementation. This latter code 

holds the low-level code similar to that used in aJile's 
approach. Note that the semantics of software and 
hardware invocation are not identical. This is because 
invocation of hardware inside the runtime can be done 
in parallel. To take advantage of this parallelism, control 
should be returned to the processor in order to execute 
other tasks. This means that some invocations will be 
asynchronous and therefore the timing characteristics of 
the application change. Appropriate schedulabilty 
analysis to capture this behaviour is already being 
investigated at York in the form of the Limited Parallel 
Model (30) and will be used in this work. 
 
 
5 CONCLUSION 
This paper has introduced the JavaMen project and the 
goals that we hope to achieved. The design and 
implementation of the three Reverencer schedulers and 
scoped memory implementations in JOP is currently 
underway and initial results should be available at year-
end. An API framework for expressing co-design 
decisions is also being developed and the similarity of 
RMI and parallel execution is being exploited in order 
to provide a unified semantics of these two types of 
execution. We are hoping to have a complete co-design 
development framework for developing Ravenscar 
applications on a JavaMen processor by the middle of 
the next year.  
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