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Abstract

As real-time and embedded systems become increasingly
large and complex, the traditional strictly static approach to
memory management begins to prove untenable. The chal-
lenge is to provide a dynamic memory model that guarantees
tight and bounded time and space requirements without over-
burdening the developer with memory concerns. This paper
provides an analysis of memory management approaches in
order to characterise the tradeoffs across three semantic do-
mains: space, time and a characterisation of memory usage
information such as the lifetime of objects. A unified approach
to distinguishing the merits of each memory model highlights
the relationship across these three domains, thereby identi-
fying the class of applications that benefit from targeting a
particular model. Crucially, an initial investigation of this
relationship identifies the direction future research must take
in order to address the requirements of the next generation
of complex embedded systems. Some initial suggestions are
made in this regard and the memory model proposed in the
Real-Time Specification for Java is evaluated in this context.

1 Introduction

Memory management is a major concern when develop-
ing real-time and embedded applications. The unpredictabil-
ity of memory allocation and deallocation has resulted in hard
real-time systems being necessarily static. Even when the an-
alytical worst-case space and time requirements can be de-
rived [28, 27], the high space and time overheads of tradi-
tional dynamic memory models such as fine grain explicit
memory management and real-time garbage collection (GC)
mean that it is hard to argue a case for these models in re-
source constrained environments. Alternative memory mod-
els such as that proposed in the Real-Time Specification for
Java (RTSJ) can be shown to reduce these overheads but at
a cost of significant development complexity. Identifying
and characterising the criteria used to gauge different mem-
ory models is non-trivial. Arguing that one memory model
is better than another must be qualified by a specification of
the driving design forces. One important element of these

driving forces is the application development cost of the cho-
sen model. GC is the best choice in this regard as the ad-
ditional development cost of using memory dynamically is
small. However, the real-time community remains highly po-
larised as to whether real-time GC can ever reach the pre-
dictability and efficiency required by these systems. Critics
of GC technologies argue that the space/time tradeoffs achiev-
able by real-time garbage collectors are still unsuitable for the
class of systems targeted by the static paradigm. In order to
achieve the required performance in one semantic domain, the
costs in the other are too high. On the other hand, critics of
new memory models such as that proposed in the RTSJ argue
that the burden of memory concerns placed on developers de-
tracts from what is arguably the most attractive feature of de-
veloping large and complex systems in environments such as
Java: freedom from memory concerns. The common ground
between these two camps is that the success or failure of pro-
viding a suitable environment for developing the next gener-
ation of complex real-time and embedded systems hinges on
getting the memory model right.

The motivation for this work comes from the recent de-
bate about which memory model the RTSJ should adopt. In-
deed, this continues to be the most contentious issue of the
RTSJ. Java developers could adopt a static approach in the
same way as the SPARK [5] but even the Ravenscar profile
for Java [20] which also targets high-integrity systems recog-
nises the need for a dynamic model by introducing a limited
region-based memory model. The need for dynamic memory
is however not a requirement only of real-time Java itself but
is a requirement of the next generation of embedded real-time
systems. The goals of this paper are threefold: (1) to identify
the implications of using different dynamic memory models;
(2) to motivate a new approach to developing dynamic mem-
ory models that goes beyond the “fine-tuning” approach of
current research; (3) to show why the RTSJ’s memory model
may be a step in the right direction in this regard. However,
it will also be argued that a number of changes to the model
and the way it is used are necessary.

To this end, this paper provides three contributions. First,
an analysis of fine grain memory management approaches
from previous work is carried out in Section 2 in order to iden-
tify and quantify the space and time overheads of these ap-
proaches. Although the results described here make a strong



case for an alternative memory model, current research ei-
ther fails to provide models for which the overheads are suf-
ficiently tight or proposes models which place a significant
burden on the developer. Section 3 describes the second con-
tribution of this paper, a novel, unified approach to distin-
guishing the merits of each memory model that is based on
a hypothesis that highlights the relationship across three se-
mantic domains: space, time and a characterisation of avail-
able information about the way memory is used by the appli-
cation, such as the average size of object or a characterisation
of their lifetime. This allows the derivation of a classification
of memory models, thereby identifying the class of applica-
tions that benefit from targeting each model. The hypothesis
developed in this section is used to make a case for the di-
rection research needs to take in order to develop memory
models suitable for the next generation of complex embedded
systems. In particular, it is argued that rather than trying to
adapt the memory models used in traditional environments to
real-time ones, new memory models that directly address real-
time requirements need to be developed. Section 4 describes
the third contribution in this paper: an overview of a detailed
investigation into the RTSJ memory model that has been car-
ried out in order to analyse whether this model captures the
shift in research strategy argued to be necessary in Section 3.
Although it is argued that this is achieved to some degree,
it can also be shown that the model’s abstraction fails to al-
low an expression of common lifetime patterns or restricts the
ability of this information to be expressed. Also, even when
lifetime information can be expressed, implementations often
fail to take full advantage of this information. Solutions to
address this are briefly described. Finally, Section 5 identifies
future work and concludes.

2 Fine Grain Models in RT Environments

The static approach to memory management is the tradi-
tional way of developing hard real-time systems. Assuming
an object-oriented language, the application would allocate all
necessary objects in a pre-mission phase and these would live
for the duration of the mission phase. If memory constrained
devices are the target of the application, developers are often
forced to consider recycling objects, thereby adding another
dimension of complexity to the development and maintenance
processes. In some cases, this problem is aggravated as the
object model may need to be broken in order to allow what
would ordinarily be type-incompatible objects to replace each
other. Dynamic memory allocation and deallocation can ad-
dress this problem if the reduced development complexity does
not come at an unacceptable space and time overhead.

Dynamic memory management is used in most develop-
ment environments outside the real-time domain in the form
of fine grain models whereby (assuming an object-oriented
environment), memory allocation and deallocation is carried
out at the granularity of a single object. In these models, al-
location is explicit whereas deallocation can take the form of

user-controlled or automatic deallocation by a garbage col-
lector. A large amount of research effort has been invested
in deriving algorithms for fine grain dynamic memory mod-
els. It is unsurprising therefore that recent research focuses
for the most part on porting these models to the real-time do-
main. However, in proposing the use of these memory models
in a real-time domain, the space and time overheads need to
be quantified. This is investigated in the rest of this section
and subsequently used to motivate research into an alternative
memory model.1 The sources of overheads in dynamic fine
grain models are broadly as follows:

1. Both explicit and automatic memory models introduce
space and time overheads due to fragmentation.

2. In automatic memory models, there is the additional
overhead of identifying garbage.

3. If memory management is made to be incremental, an
additional overhead for guaranteeing the mutual integrity
of the program and collector is incurred.

4. In order to counter (1), both explicit and automatic mem-
ory models can use defragmentation. This approach
merely shifts fragmentation overhead from the space do-
main to the time domain. Defragmentation is reassessed
in Section 3.3 when discussing the Metronome collector
and not discussed further in this section.

2.1 The Cost of Memory Fragmentation

Memory fragmentation introduces high pessimism and
unpredictability in space and time requirements that is un-
favourable in real-time environments [21]. An investigation
into the results from past work is carried out next in order to
quantify these overheads.

Measuring the Cost of Fragmentation: Space
A detailed investigation into the space overhead due to

fragmentation in a number of Dynamic Memory allocation
algorithms (DM algorithms) can be found in previous work
by Neely [25] and Johnstone [17]. These results are intrigu-
ing in that they show that the observed fragmentation is least
in the simpler policies such as first and best fit as opposed
to more complex policies such as buddy algorithms. These
simpler algorithms exhibit fragmentation that is also very
low, typically under 3%2 when averaged across all applica-
tions but rises to as high as 53% in more complex algorithms
such as binary buddy. When taking into consideration the
implementation costs of the policy (such as the data structures
maintaining free lists) and machine requirements (namely
byte alignment), these overheads increase to just 34% for

1No two page report can do justice to the large amount of research carried
out in this area and the goal here is to only identify and loosely quantify the
source of overheads. A good survey can be found in [32].

2F = MaxHeapSizeAtMaxLiveBytes−MaxLiveBytes
MaxHeapSizeAtMaxLiveBytes

.



best-fit and first-fit policies and 74% for binary buddy. A
conclusion that Johnstone draws from these results is that
the fragmentation problem is solved, and has been solved for
several decades. However, Johnstone’s work is based on the
observed rather than analytical worst case space requirements
of applications. In a series of work between 1971 and
1977 [29, 30, 28], Robson derived the worst case memory
requirements of the best-fit and first-fit policies whereas
Knowlton [19] derived in 1965 the worst case for buddy
systems. Given a maximum block size n and maximum
live memory requirements of M , the worst case memory
requirements are M log2 n for first-fit, 2M log2 n for binary
buddy and Mn for best-fit. Luby et. al. [22] showed that
the worst case requirements for some segregated policies is
similar to that for first-fit. Crucially, Robson showed that
there exists an optimal strategy that lies between 1

2M log2 n
and 0.84M log2 n. The first-fit policy therefore provides a
solution that is close to optimal. An interesting exercise is to
compare these results to Johnstone’s for observed fragmen-
tation. The work of Johnstone and Robson would lead one
to conclude that the first-fit policy is the best solution both
in terms of observed and analytical worst case overheads.
In fact, the most significant observation that can be drawn
from a comparison of Johnstone’s and Robson’s work is
that there exists a large discrepancy between the observed
and analytical worst cases for all policies. For example, a
program with a maximum live memory requirements of 1Mb
and which allocates objects that range over a conservative
size (say between 64 and 64k bytes) would still require 10Mb
to guarantee against breakdown due to fragmentation when
using first-fit and 20Mb when using the binary buddy algo-
rithm. In addition to this, the memory requirements of the
mechanism implementing the policy must also be considered.
These total memory requirements are a significant order of
magnitude higher than the 1.5Mb to 2Mb requirements one
would expect in the observed worst case.

Measuring the Cost of Fragmentation: Time

An important contribution in the analysis of the time over-
heads incurred by DM algorithms was provided recently by
Puaut in [27]. Puaut analysed the average and worst observed
times of four applications using a number of different DM
algorithms and compared them to the analytical worst case
allocation and deallocation times of these algorithms. The
average observed time overheads are similar across all DM
algorithms and moreover, the worst case overheads are typi-
cally less in the simpler policies such as best-fit than in the
more complex ones such as binary and Fibonacci buddy. The
analytical worst case overheads however tell a different story.
Here, the analytical worst case performance of best-fit and
first-fit DM algorithms using a naı̈ve mechanism is nearly a
thousand times worse than that of the buddy systems which
performs best for the analytical worst case. The significant
time used by a DM algorithm in a typical program are imme-

diately evident: the values for b-tree best fit and binary buddy
would be respectively around 64% and 63% time overhead for
a logic optimisation program called Espr; that is about 63%
and 64% of program execution is used in servicing alloca-
tion and deallocation requests. In the worst case, these values
jump to 96% and 71% respectively.

2.2 The Cost of (Non-Incremental) GC

When considering automatic memory management, it is
often implied that the garbage collector also assumes the role
of the DM algorithm and defragmentor, thereby executing
four tasks: servicing allocations, locating garbage through a
root scan and traversal of the object graph (tracing), freeing
garbage (sweeping) and defragmentation. This blurs the dis-
tinction between DM algorithms and garbage collectors and
limits a direct comparison between explicit allocation and
deallocation memory models and automatic memory manage-
ment models. In an effort to quantify each overhead, this pa-
per maintains the distinction between the processes of allo-
cation, tracing, sweeping and defragmenting memory. There
is an additional overhead in a garbage collected environment
over an explicitly managed one serviced directly by a DM al-
gorithm that is highlighted by this abstraction: the time over-
head involved in tracing that is not present when memory is
managed explicitly and the space overhead due to the delayed
deallocation of memory. Given this additional overhead, it
would be expected that GC would automatically imply higher
total overheads than an explicit memory management, in both
the space and time domain. There are several cases in the lit-
erature in which this is argued not to be the case in the time
domain [7, 15]. This phenomenon occurs because the delayed
deallocation of objects in a garbage collected environment re-
sults in higher space overheads but incurs lower time over-
heads due to infrequent vertical switching between the appli-
cation and underlying memory subsystem. However, existing
garbage collectors make use of strategies that are absent in ex-
isting DM algorithms but that could be readily implemented.
For example, a similar technique to reduce vertical switching
could be used for explicit memory management with free()
calls being delayed and a single call to the DM algorithm
passing the addresses of all memory to be freed. Garbage col-
lectors will therefore always incur additional overheads over
explicit fine grain models due to tracing. This is an important
observation as the cost of tracing becomes the single addi-
tional overhead between explicitly managed memory models
and non-incremental automatic memory management models.
The results in [2] for the Metronome collector show that trac-
ing incurs the highest cost of all collector operations, includ-
ing fragmentation. Section 3.3 revisits these results in detail.

2.3 The Cost of Incremental Collection

Irrespective of whether a work-based [4] or schedule-
based [1] approach to real-time collection is adopted, the ad-



ditional time cost of an incremental approach over a stop-the-
world one comes from one primary source: maintaining con-
sistency between the mutator and collector through the exe-
cution of barriers. Quantifying this overhead is often difficult
as the work done at each increment involves the execution of
other tasks such as tracing and defragmentation. Since these
overheads are being treated independently, the cost of a bar-
rier here is considered only to be the cost of maintaining a
suitable consistency between the mutator’s view of the object
graph and the actual object graph. In [33], Zorn shows that
the cost of read barriers alone can incur a 20% penalty on
application performance when executed in software though
Cheng et. al. claim that their Metronome garbage collec-
tor can reduce this to 4% on average and 9% in the worst
case. Considering that a read barrier based on pointer updates
can be implemented with a handful of operations (an average
four ALU/branch instructions in [33] and a compare, branch
and load in [1]), these significant overheads are caused by the
large number of times these barriers are executed.

3 Towards a Classification of Memory Models

Although the worst case space and time overheads for fine
grain models described in the previous section are clearly
too high for resource-constrained environments, making the
case for an alternative model is not easy. Crucially, it is un-
clear what direction research needs to take in order to develop
these models. Although significant research effort has been
invested in this area, particularly in the field of real-time col-
lectors, the returns have been minor. This section introduces a
novel way of classifying memory models that allows a direct
comparison between them to be derived and also highlights
the application classes for which suitable memory models still
need to be developed. This comparison is based on an evalua-
tion metric that consists of three parameters: time overheads,
space overheads and an expression of memory usage infor-
mation.

The relationship between space and time, although not al-
ways trivial, is in general described by a function in which
an increase in overheads in one domain tends to result in a de-
crease in the other. The choice of whether to use a defragmen-
tation algorithm is an example of this. The third parameter in-
troduced in this evaluation metric captures the burden placed
on the developer in describing the known information about
how objects are used in the application. For example in an ex-
plicit fine grain model, this information is an expression of the
lifetime of each object as specified by the malloc() and free()
operations. Other models such as the Metronome collector
discussed in Section 3.3 allows the expression of other infor-
mation such as the average object size. Typically, a memory
model is compared to another only in the space and time do-
mains. The burden of describing the third parameter is rarely
qualified in the traditional fine grain approaches introduced
in Section 2, in all probability because explicit and automatic
approaches at this granularity describe two extremes that are

Figure 1. Space/Time in the Entropy Hypothe-
sis

easy to characterise. In this section, it is argued that this bur-
den as captured by the expression of this information is not
independent of the space and time dimensions; rather it de-
fines them.

3.1 Memory Management as an Entropy
Problem

A description of the interrelation between the parameters
of the evaluation metric can be argued by the Entropy Hy-
pothesis which we propose. The Entropy Hypothesis states
that the relationships between space, time and object infor-
mation can be characterised as a form of entropy. We borrow
the concept of entropy from Information Systems Theory [31]
to which a parallel can be drawn. In information systems, en-
tropy is a measure that is used to calculate the amount of in-
formation in a source or, equivalently, the redundancy in that
source. The entropy gives a measure of the actual information
in a system and dictates the maximum degree to which that
system can be compressed and thereby the number of bits re-
quired to transmit that source. Every information source has
a maximum entropy that sets a lower bound for the compres-
sion of that source through lossless algorithms. When a sys-
tem is said to be at maximum entropy, it is implied that it ex-
hibits maximum randomness or, equivalently, no information
is known about the information source and lossless compres-
sion is impossible. However, if certain information is known
about the source (i.e it is not completely random), then this
can be used by a compression algorithm to reduce the number
of bits required for transmission.

Our analysis of memory management techniques accord-
ing to entropy is based on the hypothesis that the amount of
available information about an application defines the space
and time overhead domains of the application. Furthermore,
just as known information of patterns in an information source



can be used to reduce the cost of transmission, so information
about memory usage can be used to reduce the space and time
overheads of memory management. Also, using the notion of
maximum entropy, maximum randomness in an information
source that results in high transmission costs can be compared
to high space and time requirements in application execution.
For a given amount of information about an application, a so-
lution is defined in a memory/time trade-off space for which
an independent function that depends on the chosen memory
model will define the tradeoff in the time and space domains.
The tradeoff between these domains is a potentially unique
signature for that model and can identify at a fine granularity
a ranking of models for a particular application class.3 How-
ever, the bounds of this space are defined by the entropy of
that information: with a given amount of information, there
is a bound on the solution trade-off space. The Entropy Hy-
pothesis is depicted in Figure 1 for a hypothetical application
and memory model.4 The available information about the ap-
plication defines the space of memory/time trade-offs which
memory models can achieve. If less information is available,
the space and time requirements could increase but are always
bounded from below by the space for which maximum infor-
mation is available.

The Entropy Hypothesis thus defines a more abstract view
of the memory management problem and the function of a
memory model and hence motivates a more abstract definition
of what a memory model is and the functions it performs. A
memory model is defined as a mechanism that allows expres-
sion of knowledge of memory usage and takes advantage of
this knowledge in order to reduce time and space overheads.
The goals of a memory model are therefore twofold: provid-
ing a mechanism that allows this knowledge to be expressed
and taking advantage of this knowledge. In promoting any
memory model, the importance of making this knowledge as
easy to obtain and express as possible cannot be overstated.
This is particularly true of real-time environments as the guar-
antees the memory model can provide are directly related to
the accuracy and precision of this knowledge. The ability to
take advantage of this knowledge is equally important and can
be used to give a comparative assessment of different imple-
mentations of the same model.

Using the Entropy Hypothesis, the investigation into the
overheads of fine grain memory models described in detail
in the previous section and the well-known overheads of the
static approach, a spectrum of memory management tech-
nologies that describe the resultant overhead of some of these
models can be defined. This spectrum is shown in Figure 2
where the space and time overheads of each solution are de-
scribed in relation to the amount of information that is ex-
pressible and used by the memory model. This is based on

3The assumption here is that the tradeoff is defined for the worst-case
values of the respective domains. There is a significant complexity in defining
this function that is not addressed here.

4Note that the oval shape is not necessarily indicative of the true shape of
this space.

Figure 2. Classifying Memory Models

a representative hypothetical application of non-trivial com-
plexity and may vary for other applications. The shape of
the space is likely not as well defined in practice as the fig-
ure would lead one to believe, but for illustrative purposes
the tradeoff in space and time is captured here by the triangle
shape. In any case, an exact function describing this trade-
off is rarely available. Another simplifying assumption made
here is that the general application under investigation termi-
nates. If this were not the case then space requirements could
be infinite, thereby removing the top horizontal edge. Finally,
although the axis of the graph are left voluntarily general, it
is the analytical worst-case overheads for the application that
are considered here.

A hypothetical zero-cost memory model that incurs zero
space and time overheads is shown in Figure 2. This is tanta-
mount to there being complete knowledge of the application’s
memory usage available, which is leveraged in the implemen-
tation of the adopted memory model. Most models can in
practice achieve very small space or time overheads but rarely
can minimise both. For example, a fine grain model can min-
imise space overheads by defragmenting at every deallocation
but then the time overheads are high. At the other extreme,
near-zero time overheads can also be achieved at high space
costs by never deallocating objects.5 The argument made in
Section 2.2 that explicit memory management can always be
made to perform at least as well as automatic memory man-
agement is captured by the Entropy Hypothesis; the exact
lifetime of objects is unknown before runtime and therefore
the space/time tradeoff must be worse. The arguments made
in [7, 15] where garbage collectors are argued to perform bet-
ter than explicit allocation and deallocation are then captured

5This is never exactly zero due to the time required to update the pointer
to free memory.



by the tradeoff function. For example, in Figure 2, the points
A vs. B1 and B2 represent the space and time costs for an
application using an explicit memory model vs. an automatic
memory model respectively. Clearly, the automatic memory
model is more time efficient but less space efficient, at B1.
However, to achieve the same space overheads as A at B2 the
additional cost of tracing guarantees that a higher time over-
head is incurred than in the explicit model. A case for the
depicted location of coarse grain models in Figure 2 is made
in Section 4. In these models, allocation and deallocation is
carried out on a group of objects at one time rather than on a
single object as in a fine grain model. Memory pools are an
example of such models.

A caveat of the Entropy Hypothesis is that the decision of
which memory model to use must be made before implemen-
tation of the application begins. For example, if an explicit
coarse grain model such as a memory pool model is to be
used, then the developer must identify appropriate clusterings
to place inside each pool. In time-critical applications, con-
sideration must also be given to the timing requirements of
tasks. In quantifying the development costs of a chosen model
and the corresponding expected time and space overheads, an
important assumption is made: the developer must target that
memory model. Targeting a memory model plays an impor-
tant part in leveraging the advantages of that model. For ex-
ample, if a memory-pool model is provided, then program-
ming with a fine grain approach by placing one object in each
pool will fail to achieve the reduced time overheads of the
coarse grain approach. The importance of providing the right
abstractions to capture this information is crucial. The success
of bringing dynamic memory models to constrained real-time
environments must therefore lie in providing the right abstrac-
tions to capture information about memory usage in the ap-
plication.

The Entropy Hypothesis hints at the direction future re-
search must take in order to fill the gap between the static
approach and traditional fine grain models. In the absence of
a proven lower-bound for the space-time tradeoff of existing
memory models, there are two possible research directions
that can be taken to improve on the static approach: invest
further in refining existing fine grain models or derive alter-
native models that target regions of the trade-off space that
fall between the static and dynamic approaches. The bulk of
current research takes the former approach. For example the
work in [24] describes an DM algorithm with constant worst
case execution time which is shown to be lower than that of
several other algorithms. The worst case space overheads due
to fragmentation however are of order Mn, a value worse than
that derived by Luby [22] using an algorithm that employs a
segregated-fit policy which searches for a better fit. In both
cases, the information expressed in these two models are iden-
tical and therefore, as would be expected by the entropy hy-
pothesis, one only sees a space/time tradeoff between them.
The Entropy Hypothesis makes a case for research to adopt

the second research direction: developing memory models to
allow more information to be expressed in order to reduce
space and time overheads. Four questions that future research
must therefore address are:

1. What types of information can be captured?

2. Which single/combination types of information best al-
lows the shift towards the hypothetical zero cost model?

3. What is the best way to capture this information so as to
place the least possible burden on the developer?

4. What is the best way to make use of the different types
of information that can be captured?

The first of these questions is addressed next. The over-
heads for the Metronome collector are describe in Section 3.3
and, together with the analysis carried out in Section 2, is
used to motivate a move towards allowing the expression of
new types of information. In Section 4, coarse grain memory
models and the RTSJ memory model are evaluated in order
to show how this approach can achieve lower overheads. The
third and fourth questions are answered in relation to the RTSJ
memory model.

3.2 Information in Object-Based Systems

Information about objects in an application can be ex-
pressed either for a specific application or a more gen-
eral application class. The difference between general and
application-specific knowledge is mainly one of tuning in the
adopted strategy; general information is used to define a mem-
ory model’s basic strategy whereas application-specific infor-
mation is used as a parameter to refine this strategy. Gen-
eral and application-specific information can be further de-
composed into local and global information. In this case,
the difference is the granularity for which the information is
specified. At one extreme, fine grain allocation and deallo-
cation using malloc() and free() operators is local informa-
tion. At the other extreme, the information in the parameters
described for real-time collectors are global to the whole pro-
gram. Coarse grain models such as memory pools lie between
these two extremes with aggregates being specified to define
the lifetime of objects.

In order to justify a particular choice of expressing infor-
mation of memory usage, a quantifying relationship would be
desirable. The case for application-specific information being
preferred over general information is clear when the worst
case has to be considered; an application that does not fit a
general model is often easy to develop and such an applica-
tion will perform poorly. Nevertheless, the majority of the
research into memory management has gone into identifying
optimisations for the common case of the “average” applica-
tion. For example, in Section 2.1, the term “strategies” was
shown to have been coined by Neely and Johnstone [25, 16] to



describe how minor modifications to policy such as when co-
alescing occurs and choosing the block size could be used to
significantly improve the average performance of a DM algo-
rithm. The case for local as opposed to global information is
more difficult to argue than that for application-specific versus
global information as this implies a significant development
burden. It would also be beneficial to be able to quantify the
relationship between the same type of information. For exam-
ple, it would be useful to be able to state that the accuracy of
one example of global and application-specific information
(for example the maximum allocation rate) is more impor-
tant than another (for example the average object size). This
would allows developers to identify the strategies required to
satisfy the space and time restrictions of their application. Al-
though no attempt is made in this paper to identify all possible
ways of expressing information, a quick analysis can pinpoint
the better options that address the major disadvantages of the
fine grain explicit and automatic memory models identified
in the previous chapter. The merits of coarse grain memory
models can be argued by the development complexity of cap-
turing the information required by these models and the space
and time overheads achievable using this information.

Approximating development cost to the burden of express-
ing information about memory-related behaviour blurs the
distinction between man-hour costs incurred through man-
ually expressing this information and the time and mone-
tary cost of tools that discover this information automati-
cally. In most cases, automatic techniques are used for gath-
ering application-specific information at compile-time.This is
favoured by the developer as the development cost (by the def-
inition given above) is offloaded from a man-hour cost into the
cost of the tools. Tools for automatically calculating global
parameters for fine-tuning garbage collectors are also com-
mon [23]. The most common automated way of obtaining
local and application-specific information is through escape
analysis [12]. This is typically used to supplement automatic
fine grain models by reducing the heap size and therefore the
time for a collection. Automated approaches for collecting
information could be equally useful in developing real-time
applications as in non real-time ones. As a pre-deployment
investment, they can provide benefits insofar as they output
conservative results that encompass the worst case. It is noted
in passing that in some cases, the available information can
be used to derive other information. For example, the max-
imum allocation rate of an application – a global piece of
information – can be derived using analysis of the locations
of explicit allocation and deallocation calls – a local piece of
information.

Another consideration is that some information of memory
usage may only become available at runtime. For example, it
may be the case that although the exact lifetime of an object
may not be known at compile time, this information becomes
known at the time the object is allocated at runtime. In this
particular example, it is known that this information is of lit-

Bench m s TGC TI TR TM TS TD

javac 86 172 2.21 0.001 0.061 1.973 0.137 0.124
db 82 137 2.63 0.001 0.043 2.408 0.148 0.163
jack 82 146 1.73 0.001 0.042 1.076 0.094 0.047
mtrt 80 122 1.59 0.001 0.046 1.386 0.115 0.078
jess 73 126 0.63 0.001 0.186 0.554 0.046 0.031
fragger 72 151 3.20 0.001 0.147 1.700 0.175 1.295

Table 1. Time and Space Overheads at 50%
Utilisation in Metronome (Taken from [3])

tle benefit to an allocation strategy as it can be shown that
any allocation strategy that attempts to use this information is
guaranteed to perform almost as bad as an allocation strategy
where this information is unknown [18]. However, this result
can not be generalised to all types of information.

3.3 The Metronome Collector

The Metronome collector is a time-based collector that
uses a best-fit policy implemented with a segregated free list
mechanism in its DM algorithm and an incremental mark-
sweep collector that defragments when required. A read bar-
rier is implemented to ensure moved objects are properly ref-
erenced by the application. In motivating the time-based ap-
proach of the Metronome collector [1, 3, 2], Bacon et. al.
derive an analysis that allows a guarantee of the minimum
mutator time. For a given time period in the application, the
mutator and collector have two properties specified: for the
mutator, the allocation rate over a time interval and the max-
imum live memory usage and; for the collector, the rate at
which memory can be traced. By defining the frequency of
invocation of the collector, the memory required for a given
utilisation requirement is derived. Alternatively, the maxi-
mum available memory is specified and the minimum guar-
anteed utilisation is derived.

The results from Metronome are of particular use to this in-
vestigation as the cost of each of the four processes of garbage
collection are broken down and quantified. Ignoring allo-
cation costs, collection overheads are broken down into the
costs of initialisation and termination of the collector (TI ),
root scanning (TR), marking (TM ), sweeping (TS)and defrag-
mentation (TD). For a 50% utilisation across the selection
of applications from the SPECjvm98 benchmarking suite, the
time overheads (in seconds) are reproduced in Table 1 where
the amount of live memory (m) and the maximum heap size
(s) in Mb are also shown. It is interesting to note that the
majority of the collection cycle is spent tracing, with the time
taken for defragmentation being significant only in the “frag-
ger” application.

The results from the research for Metronome initially ap-
pear promising. By requiring the user to specify information
about the pattern of object usage, the space and time over-



heads are significantly smaller than those shown to hold in
the worst case for an explicit model using a DM algorithm.
The information that needs to be specified includes the av-
erage object size and locality in the size. These parameters
are used to reduce the pessimism in the worst case overheads
incurred during tracing and defragmentation. Tools for auto-
matically calculating these parameters for fine-tuning garbage
collectors are becoming more common [23]. The magni-
tude of the overheads of the DM algorithm due to fragmenta-
tion described in the last section in comparison to the results
achieved here require further investigation in relation to the
Entropy Hypothesis. The space overheads are as little as two
and half times the amount of live memory. This is achieved
by capturing the pessimism of the worst-case fragmentation
through a factor λ that specifies the locality of size of objects.

Although the cost of tracing and using an incremental ap-
proach are still significant, Metronome’s λ factor appears to
address the fragmentation problem for its DM algorithm. This
research therefore provides not only a real-time collector with
tighter space and time overheads but, more importantly, a so-
lution that can be applied to explicit fine grain models for use
in more resource constrained environments. This could there-
fore fill the gap between the environments real-time collectors
address and the those addressed by the static approach. The λ
factor allows the developer to capture Johnstone’s thesis that
fragmentation in real-world systems is negligible. However,
there are two problems with this approach: firstly, identify-
ing the λ factor for an application is non trivial; secondly, the
analysis does not capture the possible variance of this value
during the application’s lifetime. Therefore, the chosen λ fac-
tor will always be the smallest value during the entire lifetime
of the application. This leads to a number of assumptions in
the derivation of the worst-case space requirements for a given
minimum mutator utilisation that inhibit a true calculation of
the worst case space requirements. Crucially, the space-time
relationship between heap size and utilisation is not well de-
fined due to the interdependence of parameters leading to un-
desirable recursive functions. In particular, the amount of ex-
tra space required depends on the time needed for a collection
cycle which in turn depends on the amount of heap space. The
chosen or derived heap size is based on an “expansion factor”
of the maximum amount of live memory that is chosen to be
around 2.5 based on experimentation. In the absence of the
pessimistic values that would be obtained from a recursive re-
lationship, the results given in [1, 3] are essentially observed
rather than analytical quantities.

4 The Case for Coarse Grain Memory Models

Whereas it could be argued that existing fine grain
models that guarantee space and time bounds fulfil real-time
requirements, the overheads of these approaches may make
this prohibitive in resource-constrained environments. From
the evaluation of fine grain approaches in Sections 2 and 3.3,
it is immediately apparent that the most urgent information

required is that which addresses fragmentation and the
cost of tracing. The Metronome collector may fail in the
former case only because most applications have fluctuating
characteristics such as allocation and fragmentation rates
that are not well captured as global information. It fails
in the latter case because it does not allow the user to
express where objects are known to have become garbage.
Furthermore, the specification of the lifetime of objects by
the developer at a coarse granularity becomes feasible where
this is increasingly less practical in fine grain models. It
thereby becomes possible to leverage the benefits of existing
work on offline allocation strategies as well as to consider
new strategies such as the scoped ordering proposed in the
RTSJ. Therefore, the solution to the memory management
problem for resource-constrained real-time systems could lie
in an explicit model (thereby eliminating the need for tracing)
and directing research at a more local characterisation of the
application’s information, particularly fragmentation. The
Entropy Hypothesis argues the case for more information to
be expressible and for this information to then be used by that
model. The key problem is identifying what this information
is and how it can be captured. Rather than arguing for
similar global, application-specific information to be used
in these models, a case for more localised information can
be made. For example, global parameters could be made
more localised in Metronome by being sensitive to the
program’s flow. Therefore, rather than there being just one
integer λ factor, a number of values could be assigned that
depend on the current execution trace. These values become
points on the flow graph of the application and new analysis
would be required to identify how the transition between
these points changes the behaviour of the collector. The
feasibility of such a characterisation is unclear, both in terms
of identifying this function as well as how this fits into the
scheduling model. Until such research is available, an alter-
native is available in the form of coarse grain memory models.

Explicit Coarse Grain Models as a Solution to Fragmen-
tation and Tracing

The cause of fragmentation in DM algorithms that adopt on-
line allocation policies is the irregular arrival pattern of al-
location and deallocation requests [17]. The assumption of
a random arrival pattern results in worst case space require-
ments that are often too large for constrained real-time and
embedded systems [29, 30, 28]. However, Johnstone’s re-
search [16, 17] shows that regularities in arrival patterns are
often implicit in most applications. Coarse grain models pro-
vide a mechanism to capture this phenomenon in such a way
that deterministic guarantees can be provided on the space
and time requirements of the application while taking advan-
tage of reduced overheads demonstrated in the observed case.
In particular, coarse grain models take advantage of the phe-
nomenon that it is often possible to aggregate objects accord-
ing to their lifetime based on some boundary criteria. For ex-



ample, objects that are created close together typically have
similar lifetimes due to spatial locality of reference [6]. For a
real-time environment, a more application-specific and local
approach is required as accuracy and precision are necessary
to provide the required guarantees with low pessimism.

The benefits of a coarse grain approach are leveraged when
the aggregation of object lifetime can be captured without
additional development complexity. Therefore, since coarse
grain models involve first specifying the boundaries of aggre-
gates, the identification of these boundaries must not be pro-
hibitively complicated. For example, if a memory pool is used
whereby every object is explicitly placed in a pool based only
on knowledge of the exact lifetime of that object and without
any discernable underlying pattern, then targeting this model
provides little advantage in terms of development complexity
over using an offline algorithm that requires the exact lifetime
of individual objects to be specified.6 This is an example of an
application targeting the wrong memory model as discussed
in Section 3.1.

Coarse grain models are not by definition explicit memory
models as the deallocation point of regions could also be
identified by automatic techniques. However, the reduced
number of elements that need to be contended with in
comparison to a fine grain model means that an explicit
approach to specifying the lifetime of regions is a feasible
option. In this case, tracing is therefore no longer required to
identify objects that can be deallocated, thereby elimination
the overheads of this operation. However, an explicit memory
model has repercussions on the safety of an application in the
event that the lifetime of an object specified at compile-time
does not match that of the object at runtime. The garbage
collection approach is to guarantee that this problem never
occurs. The RTSJ’s approach is to employ the scoped
reference rules to ensure no reference can be created that
could later lead to a dangling pointer. An alternative solution
is to eliminate the runtime overheads of these two approaches
and provide a failure mechanism in the event that an object
is prematurely deallocated when the information specified
on the lifetime of that object is discovered to be incorrect
at runtime. A mechanism that achieves this in the RTSJ is
described in [9].

Making Use of the Relative Lifetime of Regions
Information available at compile-time on object lifetimes is
rarely taken advantage of in explicit, fine grain memory mod-
els. Indeed, most compilers go through great lengths to op-
timise for performance but few optimise for space [14, 13].
The results of research into polynomial offline algorithms are
rarely carried over to real-world compile-time optimisation,
firstly because, as noted by Johnstone, such optimisation is
rarely necessary and secondly because specifying the lifetime
of every object allocated in the application is complex in prac-

6In practice, the choice of a memory pool model could also be based on
cache considerations.

tice and undecidable in general by analysis techniques [12].
However, the results of this research could prove beneficial
to real-time applications if capturing this information is made
more practical. A coarse grain memory model can leverage
these benefits as specifying the lifetime of coarse grain en-
tities incurs a burden on the developer that is significantly
smaller than in a fine grain model. This reverses the current
trend away from explicit models and towards automatic ones
that incur high time overheads.

4.1 The RTSJ Memory Model: Criticism

The RTSJ adopts a novel approach to memory manage-
ment with the introduction of scoped regions. This model
is essentially a coarse grain model that aggregates object
lifetime based on program flow. The main criticisms of this
model are broadly as follows:

The model is complex to use:
The complexity of the RTSJ model could be partially argued
to be a failure of developers to target the model. As argued
in Section 3.1, developers must target a memory model
rather than apply an orthogonal abstraction to the chosen
model. Since the RTSJ defines object aggregates based on
locality in the program flow, developers must express lifetime
information around this abstraction. However, it is often the
case that the real-world pattern of memory usage does not
follow this approach. For example, applications that employ
a producer/consumer pattern of memory usage are hard to
describe in the RTSJ as the implicit information in this appli-
cation is not well captured by the scoped memory abstraction.

Reference rules inhibit the expression of object lifetime:
A second source of the complexity in using the RTSJ’s mem-
ory model comes from the model’s reference rules. Despite
an object’s lifetime clearly belonging to some aggregate,
these rules require a change in the lifetime of objects based
on the reference graph. Restricting the flexibility of how
aggregates are defined is an example of a memory model
unnecessarily restricting the expression of known lifetime
information.

The possibility of reusing code is limited:
The reuse problem of RTSJ code is caused by the embedding
of memory concerns within application code. The absence
of an interface that captures how the memory model is used
in existing classes means that there is no way to export the
lifetime of objects created in this code.

Lifetime information is poorly utilised:
Although the RTSJ specifies when the backing store of re-
gions are allocated and freed in the runtime, no constraints
on the underlying DM algorithm is specified. In particular,
most implementations do not take advantage of the scoping



order. Also developers are often unaware of the implications
of where aggregate boundaries are applied.

4.2 The RTSJ Memory Model: Solutions

The model is complex to use:
In order to address this problem, researchers have provided
solutions that are orthogonal to the RTSJ scoped memory
model only because the model fails to allow these patterns
to be expressed. For example, Pizlo [26] proposes “wedge
threads” that are used to keep a scoped region alive when
its reference count would have otherwise dropped to zero.
Although the introduction of these patterns highlights the
complexity of using the scoped memory model, forcing a
solution on top of the existing RTSJ model has earned them
the term “anti-patterns”. There are two possible conclusions
that can be drawn from this: either the RTSJ needs to be
extended to allow these patterns to be expressed as an integral
part of the model or the way the model should be targeted
is still not understood. The second possibility is improbable
as the model’s rationale is intuitive. Earlier work we have
carried out [11, 10, 8] shows that in translating the same
information present in an explicit coarse grain model to a
scoped model results in a tradeoff space that can reduce
space and time overheads is some cases but can lead to
potentially unbounded space requirements in others. This
conclusion is important as it makes a strong case for the
RTSJ to provide alternative memory models in addition to
scoped memory that allow these patterns of object lifetime to
be expressed. The RTSJ scoped memory model can express
some patterns of object lifetime better than other models
and is therefore useful when these patterns are manifested
in the real-world. When this is not the case, the RTSJ must
provide other approaches that allow the expression of object
lifetimes that the patterns such as those described in [26]
address. Describing these patterns as an abstraction on top
of the RTSJ scoped model is a poor approach. In conclusion
therefore, the Entropy Hypothesis can be used to argue that
the RTSJ model is complex only when it is used to express
information that is poorly captured by its abstraction. The
solution is therefore not an alternative model but an extended
model that allow a wider range of patterns of memory usage
to be expressed.

Reference rules inhibit the expression of object lifetime:
The problem of expressing some aggregate lifetime patterns
in the RTSJ as described above is compounded by the RTSJ
making it harder to define these aggregates. We have devel-
oped reference objects [9] in order to address this. Using a
reference object rather than a normal reference achieves a
compromise between maintaining the safety of objects and
allowing this lifetime information to be expressed. Reference
objects carry lifetime information that is looser than that
specified by a regular reference. In the RTSJ, if an object
A holds a reference to an object B then B must live as long

as A. However, if A holds a reference object to an object B
then B can live as long as A but the reference object must
throw a caught exception if this is shown not to be the case
at runtime. Reference objects are an example of allowing the
developer to specify lifetime information in order to reduce
space overheads.

The possibility of reusing code is limited:
This issue comes back to the question: “What is the best
way of allowing known information to be expressed without
placing unnecessary burden on developers?” If a memory
model can allow an equivalent expression of this information
externally to application code then code reuse is again
possible. We have developed a solution to this problem as
part of our work [11, 10, 8] that is based on extracting the
cross-cutting memory management concern as a separate
aspect. This is achieved by defining the boundaries and life-
time of aggregates on the program’s control flow graph. An
algorithm then finds the optimal scoping order and annotates
the application to enter and exit regions when specified.

Lifetime information is poorly utilised:
The second role of the memory model, taking advantage of
expressed memory usage, is also under-specified in the RTSJ.
The underlying DM algorithm allocates and frees regions in a
similar way to explicit allocation and deallocation, thereby
resulting in similar fragmentation problems. In particular,
the advantage of reduced fragmentation due to scoping is lost
in multithreaded environments as the lifetimes of aggregates
across different threads of control are unspecified. A solution
to this problem is to have separate partitions for each branch
of the scope stack when this can be statically determined to
be possible. When this is not possible, the model experiences
similar fragmentation to fine grain models if the variance in
the sizes of regions is large. This therefore partly eliminates
the rationale for a scoped approach. Again, the inability to
define separate partitions for scope stacks is an example of
how, unavailable information leads to higher overheads. In
this case, a simple analysis of the variance of region sizes can
be used to merge regions of similar lifetime so that fragmen-
tation can be reduced.

5 Conclusion

The search for suitable memory models that address the
requirements of complex embedded real-time systems con-
tinues to gain momentum. The choice of a suitable memory
model for the RTSJ is viewed as a contentious issue by many,
particularly where a choice between real-time GC and scoped
memory must be made. The Entropy Hypothesis shows that
an argument for some memory model is not absolute to a par-
ticular domain, whether that domain is defined in terms of
allowable space and time overheads or development costs.
Rather, a memory model is suitable for a given application
only in the degree to which it can capture information of



memory usage in the application. The goal of future research
must therefore lie in identifying this information and provid-
ing ways of allowing this information to be expressed in order
for the underlying memory subsystem to make use of it. This
is a significant shift from current research directions that de-
liver only marginal improvements due to the implicit assump-
tion that expressing lifetime information implies unnecessary
burdens on application developers.
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