
A Co-design Strategy for Embedded Java Applications
Based on a Hardware Interface with Invocation Semantics ∗

Andrew Borg, Rui Gao and Neil Audsley
University of York, UK

{aborg,rgao,neil}@cs.york.ac.uk

ABSTRACT
As programmable hardware technology gathers momentum,
the partitioning of applications into hardware and software
will prove to be an increasingly important research area.
Co-design technologies that achieve this partitioning typi-
cally adopt a strategy in which a high level specification is
used to synthesise both hardware and software. This pa-
per proposes an alternative approach by which equivalen-
cies between hardware and software components are defined,
thereby providing a common interface between them. This
allows logic to be moved between hardware and software
while retaining the functional properties of the application.
An investigation is carried out to derive equivalencies be-
tween software elements of the Java language and hardware
components by appropriate wrapping of the latter. By de-
veloping a framework that captures these equivalencies, this
paper shows how hardware/software partitioning of a sys-
tem can be relegated to a late stage of system development
and include both application and virtual machine logic.

Keywords
Java, co-design, JavaMen

1. INTRODUCTION
The Java programming model has become established in
mainstream software development as a platform for general-
purpose applications. Today, Java is penetrating into more
niche markets, including that of small embedded devices

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

This work is funded by the Next Wave Technologies
Program (UK Government DTI) in conjunction with Sun
Microsystems.

JTRES ’06, October 11-13, 2006 Paris, France
Copyright 2006 ACM 1-59593-544-4/06/10...$5.00

such as mobile phones. In particular, the Micro Edition
of the Java 2 Platform (J2ME) provides an application de-
velopment environment that specifically addresses the needs
of embedded devices such as personal digital assistants and
set-top boxes. Broadly speaking, the J2ME gives a sub-
set of the full Java standard edition with cut-down func-
tionality in the virtual machine and a smaller set of core
and application libraries. As with standard Java (J2SE),
the implementation of J2ME typically takes the form of an
implementation of a virtual machine that runs as a pro-
cess of a native operating system and interprets or JIT’s
Java bytecode. Alternative execution models include direct
compilation to native code using compilers such as GCJ [1]
and, more recently, hardware execution by means of Java
co-processors and processors. Direct compilation overcomes
the performance barrier of interpretation or JIT compilation
in software virtual machines at the cost of cross-platform
portability and a significantly larger code size. This latter
overhead occurs because the runtime semantics must be em-
bedded in application code. On the other hand, hardware
execution preserves cross-platform portability of code while
maintaining high performance, but at the cost of more ex-
pensive hardware.

As optimisation of software application and virtual machine
logic reaches its peak, hardware support for these types of
logic becomes necessary. Hardware support for virtual ma-
chine logic typically involves the execution of Java bytecodes
in hardware and/or hardware support for higher level oper-
ations such as thread scheduling, class loading and garbage
collection. Hardware support for application logic is not sup-
ported within a standard Java framework. This results in
ad hoc solutions being provided for accessing available hard-
ware with limited flexibility in specifying the hardware/soft-
ware boundary.

This paper proposes a novel framework, called the JavaMen
framework, that delivers two contributions: firstly, it pro-
vides a standard hardware interface for using hardware com-
ponents in a Java environment; secondly, it allows the de-
veloper to decide at deployment whether to use hardware
or software components to execute logic. Developing this
framework requires an investigation into the equivalencies
between the semantics of software elements (objects and
methods in particular) and the semantics of hardware as
well as an investigation into how these equivalencies can be
achieved. A standard hardware interface is proposed that
allows hardware developers to wrap their devices with the

58

Figure 1: Hardware Architecture Targeted by the JavaMen
Framework

appropriate logic required to interface with the JavaMen
framework. Functionally equivalent software logic is also
provided as regular Java code to achieve the co-design strat-
egy.

The rest of this paper is set out as follow: Section 2 gives the
background to this work and the contributions the JavaMen
framework aims to deliver. Section 3 investigates two possi-
ble interfaces for hardware components within the JavaMen
framework: a method interface and an object interface. Sec-
tion 4 compares these two approaches within the context of
a simple example, a hardware Booth multiplier. Section 5
introduces the API and semantics for hardware invocation
in an implementation in which hardware components are
wrapped within a method interface. An outline of a pro-
totype implementation we have developed and a key com-
ponent of this architecture called the “object manager” are
described. Finally, Section 6 identifies future work and Sec-
tion 7 concludes.

2. BACKGROUND
Programmable logic devices such as FPGAs provide an op-
portunity for application developers to offload computation-
ally expensive execution to dedicated hardware that is rel-
atively cheap and highly flexible. The architecture targeted
by this work is one in which a Java processor is available
as a softcore within an FPGA and in which the remain-
ing real estate on the FPGA can be taken up by softcores
specific to a particular application or domain. This arrange-
ment is depicted in Figure 1. Examples of softcores may in-
clude encoders, decoders, signal processors and encryption
and decryption cores. For a given application, the goal is
to provide a framework by which softcores can be added to
the FPGA as necessary to improve performance of the ap-
plication through serial speedup or parallel execution. The
JavaMen framework seeks to leverage the advantages of low
cost programmable hardware by providing hardware sup-
port for Java at both the virtual machine and application
levels within a co-design strategy.

2.1 Hardware Support for Java
The functionality of embedded devices is often highly spe-
cialised and, unlike their general-purpose counterparts, this

often allows optimisations based on the application or do-
main particularities. Indeed, these optimisations are in some
cases necessitated by the constrained nature of these devices.
Specialisation can occur at two levels:

• The processor level: The specialisation of Java proces-
sor platforms can be based on an analysis of the ap-
plication or domain. For example, LavaCore [2] pro-
vides a tool that can be used to identify the subset
of used bytecodes, thereby eliminating the hardware
structures or microcode of those bytecodes that are
not used. FemtoJava [10] allows an analysis of the
application to be carried out in order to fine-tune the
hardware generated, thereby providing an application-
specific hardware solution.

• The application/virtual machine level: Specialisation
at the application level would typically involve the
adoption of a mixed hardware/sofware solution of ap-
plication logic and virtual machine logic that is driven
by a co-design strategy. In this approach, the proces-
sor core and microcode set do not change but this logic
is moved between software and hardware components
external to the core.

Recent research into hardware support for Java generally
targets virtual machine functionality and, primary, bytecode
execution. There are two ways of improving bytecode execu-
tion using hardware. The first is to use a co-processor that
works in conjunction with a general purpose CPU by either
providing a fast bytecode translation to that CPU’s native
instruction set or by executing simple bytecode itself [3, 4].
The second option is to provide a Java-specific processor
which is therefore limited, but specialised, to Java appli-
cations [5, 6, 12, 13]. In essence these latter architectures
are similar; they implement a stack machine architecture
with simpler bytecodes being executed in a small number
of cycles and more complex ones executed in microcode or
software. In addition to Java bytecode, hardware support
for other virtual machine operations that are not defined at
the bytecode level can also be provided. For example, the
aJile Java processor [6] provides simple synchronisation and
scheduling primitives in microcode.

Hardware support for low-level virtual machine logic
(namely the bytecode interpreter) provides a solution that
leverages the advantages of hardware execution without
compromising Java’s cross-platform capability. However,
the highly specialised nature of embedded systems also mo-
tivates hardware support for application logic and higher
level virtual machine logic. The absence of hardware con-
cepts in Java means that abstraction is built into software
in order to hide the complexities of low level hardware oper-
ation. This abstraction adds an overhead to execution that
can be reduced if implemented in hardware.

2.2 Co-Design
Designing embedded systems often requires satisfying or op-
timising for a variety of constraints. Amongst others, these
constraints include cost, power consumption and perfor-
mance. The boundary of the hardware/software partition

59

plays a large part in defining these constrains. This bound-
ary is often decided upon at the early stages of development
and it is then hard to move this boundary at later stages.
The motivation behind hardware/software co-design is to
allow a unified development of these two parts of the sys-
tem that delays the fixing of these partitions until a bet-
ter understanding of the system emerges at later stages of
development. Moving the boundary as further properties
emerge is also simplified by the supporting tools. The co-
design field has several niche research areas that range from
finding suitable unified abstractions for specifying systems
that can then be transparently mapped to either hardware
or software to algorithms that automatically search the so-
lution space of partitions for a particular partition that best
satisfies a set of user-specified requirements and system con-
straints.

The methodology for co-designed applications generally in-
volves a single specification of the application that is then
decomposed into hardware and software parts. For exam-
ple, SPARK [9] and SystemC [8] use a variant of a high-
level language (such as C) in which the behavioural seman-
tics of the application are described. Software and hard-
ware synthesis is then performed on this specification and
the software/hardware partition is thereby defined. The
JavaMen approach adopts a different strategy to traditional
co-design but with a similar goal of allowing delayed decision
of the software/hardware partition. This strategy involves
the specification of hardware interfaces that creates a layer
of abstraction over application functionality and whether it
is implemented in software or in hardware. The framework
specifies this abstraction and defines how data and control
flows are maintained across software and hardware. Since
Java is an object-oriented language with control and data
flow based on method invocation, the JavaMen framework
specifies how this model is maintained at the hardware level
through the specification of an invocation interface. This
interface makes hardware components object-aware, mean-
ing that they communicate with each other and software
components in the same way as regular Java objects.

The virtual machine carries a significant amount of function-
ality such as support for the object model, memory manage-
ment and multithreading that is external to the application.
Limiting the solution space of a hardware/software parti-
tioning to application logic may therefore result in a sys-
tem in which the virtual machine’s functionality becomes
the constraining factor in a suitable performance/hardware-
cost tradeoff. This problem can be addressed by breaking
down the monolithic virtual machine into components that
can cross the hardware/software partition in the same way
as application logic within the proposed framework. Al-
though a componentisation of the JVM is not investigated
in this paper, the framework does not differentiate between
virtual machine and application logic. Therefore, runtime
functionality such as the scheduler or garbage collector can
be implemented and interfaced in hardware in the same way
as will be described for application functionality.

2.3 Summary of Contributions
The contributions in this paper address the two issues intro-
duced in the previous two subsections, namely the absence of
a standard hardware interface for adding hardware compo-

nents to a Java-based system and the desire to choose hard-
ware and software functionality within a co-design strategy.
To this end, this paper provides two contributions. The first
contribution of this paper is an investigation into two possi-
ble wrappings of hardware components the framework could
provide in order to export object-oriented behaviour. These
wrappings provide an interface between the hardware and
software worlds that is absent in Java. Implementation con-
siderations raised in providing these abstractions are also
addressed. The second contribution of this work is to show
how pairing of hardware components with software elements
provide a co-design framework for embedded Java applica-
tions. The wrapping of hardware with object-oriented be-
haviour allows equivalences to be defined between the se-
mantics of the Java language and the semantics of the inter-
face of hardware components. This provides a framework in
which hardware and software functionality can replace each
other with minimal code modification.

3. ACHIEVING HARDWARE/SOFTWARE
EQUIVALENCY

The approach taken to providing a standard hardware inter-
face in JavaMen is to define an equivalency between hard-
ware components and Java language components. This
equivalency also provides a co-design solution as pairings
of hardware and software allow migration of functionality
between hardware and software. During development and
testing, the application can use the software version of these
components. If at deployment it is deemed necessary (for ex-
ample for performance reasons) that the hardware version
of that component is required, then this can be achieved
without requiring any modification to the application. The
first challenge is therefore to identify the Java-specific se-
mantics in which hardware components are to be wrapped.
Two possible solutions are to wrap hardware components as
functional, stateless components, thereby allowing them to
carry method-like1 semantics or to allow these components
to have state, thereby allowing them to carry object-like se-
mantics.

3.1 Hardware Components as Methods
If all hardware components to be used were stateless, then
they could be described as individual methods. In this so-
lution, communication with hardware objects from software
is carried out by invocation in a similar way that native
methods are used to communicate with hardware in stan-
dard Java. Similarly, the communication protocol between
hardware components is also based on invocation. However,
hardware components are similar to software objects in that
they encapsulate both state and function. Although the in-
tuitive approach would therefore appear to be to define the
equivalency between software objects and hardware at the
object level, there are a number of key differences that must
be considered. In particular, the encapsulation of function
and state in Java through the object model is separated at
runtime with static class information and the Java bytecode
of methods held in the class information structures (such as
the constant pool) and instance information (state) held on
a per-object basis.

1Note that using the term “method-like” rather than
“function-like” implies an association with object-oriented
semantics. This is discussed further in Section 3.1.

60

The wrapping of hardware components as methods can be
achieved by maintaining the same separation between func-
tion and state but with an augmentation of invocation se-
mantics. Hardware components therefore take on the purely
functional form of bytecode: they are themselves stateless
but on invocation are sensitive to the state of the system.
This state at invocation can be obtained from two sources. If
the hardware component implements a static method, then
the state is that of a corresponding class; if it implements a
virtual method, then the state must be provided to reflect
the associated object instance. In either case, invocation
of hardware components is defined as a two-stage process.
The state of the hardware must first be updated to reflect
the context of the object or class instance and the invoca-
tion is then carried out. If no hardware component is avail-
able, equivalent software logic can be used instead to pro-
cess the method request. Although these components can
therefore be viewed as “functions”, parameters passed at in-
vocation are required to always include an object reference
or class reference, hence augmenting the invocation process
with object-oriented semantics.2 Although the semantics of
invocation are therefore those of Java, the framework could
be implemented in other object-oriented languages as long
parameters are passed by value. Note that, crucially, the
equivalency defined here requires parameter passing at in-
vocation to be the same as that in software. For this reason,
no serialisation or deserialisation is allowed - object refer-
ences passed to a hardware component can be used by that
component to invoke other hardware or software components
within the same flow of control. The decision as to whether
the invocation is handled in hardware or software is defined
by the invocation protocol described in Section 5.

3.2 Hardware Components as Objects
If a single hardware component defines a set of methods that
are then encapsulated as a single instance of an object, then
the state of the object might be stored in the hardware com-
ponent itself. Similarly, a number of hardware components
could be grouped to define a class for which an instance
of that class is related to one of these groups of compo-
nents. With this approach, the static functionality of the
object and the state of the object are combined and there
is a one-to-one mapping between an object instance and the
hardware implementing the functionality of the methods. In
contrast to the first solution above, a hardware component
can only be used for a single instance of an object. For
example, if two objects O1 and O2 of the same type have
an integer instance variable (i:int) that is used in executing
some method (m), and if a hardware implementation of (m)
is available that makes use of the instance variable (i), then
only one of O1 and O2 can use this hardware component.
This approach therefore restricts the ability to use available
hardware throughout the application in the same way that
bytecode is separated from object instances. Nevertheless,
this approach affords a more transparent model to the de-
veloper while still allowing control over whether a hardware
component or its software equivalent are used at runtime.
This is achieved through Java’s type system as described in
the forthcoming example.

2Note that in the current design of the JavaMen framework,
class references cannot be passed. Hence all invocation is
equivalent to virtual invocation.

Listing 1: The Calculator Class

2 public c lass Calcu la to r {
private int A;

4 private int B;

6 public Calcu la to r () {
this .A=0;

8 this .B=0;
}

10

public void setA (int a) {
12 this .A = a ;

}
14 public void setB (int b) {

this .B = b ;
16 }

18 public int add () {
return this .A + this .B ; ;

20 }
public int mult ip ly () {

22 return this .A ∗ this .B;
}

24 // other methods
}

4. COMPARING THE TWO APPROACHES
In order to demonstrate the differences between these two
approaches from a developer’s perspective, consider a class
Calculator as described in Listing 1. Instances of this class
have state in this case in the integer values A and B. On
instantiation of a Calculator object, a space is allocated in
the heap in order to save this state. On invoking setA() and
setB(), a putfield bytecode together with an index into the
constant pool is received in the bytecode stream with the
stack containing a reference to the object instance and the
integer parameter passed to the method. This is used by
the runtime to find the location in memory where the given
value is to be stored. On invoking add() (or multiply()), the
values of A and B are retrieved from the heap through the
getfield bytecode. The bytecode iadd (imul) is received
in the bytecode stream and the multiplication (addition) is
carried out by the runtime, the result of which is placed on
the stack. This value becomes the element on the top of the
stack on invocation return.

Consider that the implementation of these virtual machine
semantics must now take advantage of an available hard-
ware multiplier. A high-level view of the architecture of this
system is illustrated in Figure 2. The constant pool infor-
mation is stored in an area of memory accessible by the Java
processor.3 The heap is located in another area of memory
which is initialised on booting. The VM runtime carries out
logic such as scheduling and garbage collection that is imple-
mented as standard Java code. The role of the multiplier is
trivial in this case - on a multiplication occurring, the state
of the calculator object must be passed to the multiplier unit
and the result returned to the runtime to be placed as the
top element on the stack. Consider the following program
fragment:

{
Calcu la to r C = new Calcu la to r () ;
C. setA (4) ;
C. setB (6) ;

3This architecture is similar to that of JOP [12, 13], the
Java processor we are using in this research.

61

Figure 2: An Outline of the JavaMen Architecture

Figure 3: The Multiplier Example in a Model Defining an
Equivalency Between Hardware and Objects

System . out . p r i n t l n (C. mult ip ly ()) ;
}

If the second of the two approaches listed above were
adopted (§ 3.2), that is that the multiplier were consid-
ered to be an object, then the class structure of the ap-
plication would have to be changed. In particular, the cal-
culator object C would need to maintain a reference to an
object of a new type (Multiplier) which has a state that
is updated every time the state of C changes. Instantia-
tion of a Multiplier object would return a virtual handle
to either a hardware or software component. This trans-
parency can be achieved by using Java’s type system. In
a simple prototype implementation we have developed, an
interface MultiplierInterface defines the four methods
of this class. Three classes are then defined that imple-
ment this class: MultiplierSoftware, MultiplierHardware
and Multiplier (see Figure 3). This latter class acts as a
delegate for passing invocations to either the software or
hardware versions of the multiplier functionality. It also
extends a class JavaMenComponent that identifies it as a
JavaMen framework class and exposes specialised function-
ality (for example whether this instance is a hardware or
software version). On instantiation of a Multiplier ob-
ject, the JavaMen framework checks to see if a hardware

Figure 4: The Multiplier Example in a Model Defining an
Equivalency Between Hardware and Methods

component is available. If it is, then a virtual handle to
a MultiplierHardware instance is created and to which
all invocations of the Multiplier instance are forwarded.
The methods setA() and setB() therefore set the hardware
registers of the multiplier with the appropriate value. Fi-
nally, the invocation of multiply() would start the multi-
plier and the result would be placed on the stack of the
Java processor. The control and data flow of these oper-
ations would be handled by the JavaMen framework in a
similar way to that described in Section 5. On the other
hand, if no hardware component is available, a software in-
stance of MultiplierSoftware is created and all invocations
on the Multiplier instance are delegated here. In adopt-
ing this approach, a developer wishing to target this frame-
work would therefore be required to deliver three classes:
the software class, the hardware wrapper class and the in-
terface that defines the equivalency between the former two
classes. It is noted in passing that this approach requires
consideration of non-availability of a hardware component
at object instantiation as well as the “garbage collection” of
these components when they are no longer referenced.

The first of the two approaches listed above (§ 3.1) is that
adopted in our latest implementation of the JavaMen frame-
work. Therefore, in this example and henceforth in this pa-
per, the hardware component takes the form of a method for
which the state of the instance C is stored in the heap. The
instantiation of a Calculator object returns a handle to the
representation of this object in the heap and the methods
setA() and setB() modify this data. The developer of the
Calculator class must provide the logic that attempts to
find a suitable hardware/software pair deployed when mul-

62

tiply() in invoked. The JavaMen API is used to enquire as
to whether such a pairing (with associated information on
available hardware and equivalent software) is available. If
it is, then the data values of the multiplication are handed
over to this wrapper which will use the framework to de-
cide whether a hardware multiplier is available at that time
or whether the equivalent software will be executed. If
no component of the requested type is available, then the
Calculator class developer can provide custom logic for this
method, including failure behaviour. Once again, this is a
high-level description of this operation; the invocation pro-
tocol and low-level mechanism connecting the core to the
hardware components is described further in Section 5.

The distribution of a JavaMen compatible hardware com-
ponent in this case is composed of five classes. The
first is an interface describing the method that the
hardware/software JavaMen component implements (the
MultiplierInterface class in this example).4 All in-
terfaces that describe this hardware/software wrapper al-
ways contain a single method definition. For example,
MultiplierInterface contains only the method signature
for multiply(int a,int b). The second class in the distri-
bution of a JavaMen compliant component is the wrap-
per class (the MultiplierWrapper class in this example)
that implements this interface and provides the logic for
interfacing with the JavaMen API to access JavaMen hard-
ware/software component pairs. This class is essentially a
stub that can be generated automatically based on the ver-
sion of JavaMen framework it is to target.5 This wrapper
maintains a reference to an instance of JavaMenComponent

which in turn contains a list of handles to hardware com-
ponents (through instances of HardwareComponentHandle

as described below) and a reference to an instance of
JavaMenSoftwareComponent. The next two classes are wrap-
per classes for the parameters passed to the object compo-
nent and the results returned. In this example, these classes
are called MultiplierParameters MultiplierResult re-
spectively. By defining types for these parameters, the
framework allows validation of this data. The fifth and
final class that must be provided by a distribution of
a JavaMen component is the software logic in a class
that implements JavaMenSoftwareComponent and the com-
ponent’s interface. In the multiplier example, the class
MultiplierSoftwareComponent contains the software logic
for the multiplier in the method multiply() which it is re-
quired to implement. The class diagram for the multi-
plier encapsulated as a JavaMen component is depicted
in Figure 4. Note that the Calculator instance obtains
(and may maintain) a reference to the singleton instance of
MultiplierWrapper. It also contains the logic for the con-
structor and all other methods of the class, in particular
setA() and setB() that modify the state of Calculator in-
stances and passes this state to the multiplier only at the
point of invocation.

4We have investigated the use of
java.lang.reflect.Method to describe the interface
but decided to avoid this approach in order to remove the
requirement of reflection classes in the distribution.
5A similar stub generation mechanism to that used to gen-
erate RMI stubs could be used - currently these stubs are
developed manually.

Finally, it is noted that defining an equivalency at the
object level means that the invocation of hardware is
implicitly distinguishable from that of a software invo-
cation due to the different runtime type of the object
to which the Multiplier class holds a reference. This
time, however, there is no application-accessible class
that encapsulates the hardware in a similar way to the
MultiplierHardware class described above and that is
therefore distinguishable from MultiplierSoftware by its
runtime type. Instead, the handles to hardware components
through HardwareComponentHandle are encapsulated in a
JavaMenComponent and hidden from the developer. Defin-
ing an equivalency at the method level means that it may
not be possible to determine at runtime whether a method
invocation will be handled in hardware or in software. Al-
though there are a number of ways in which either approach
can be “forced” at runtime, the current invocation proto-
col of JavaMen components simply checks to see whether a
hardware component for a method is available and uses its
software equivalent only if it is not.

5. AN API AND SEMANTICS FOR HARD-
WARE INVOCATION

The JavaMen framework defines a two-level abstraction.
The first level of this abstraction specifies the invocation
semantics of JavaMen components. The second abstraction
level defines the communication mechanism that connects
the processor core to the hardware versions of these compo-
nents. In this way, changes can be made to the underlying
physical communication without changes being required to
the hardware wrappers and while maintaining consistent in-
vocation semantics across implementations. In practice, this
means that developers of Java components do not need to
create different wrappers for every possible communication
mechanism.

5.1 Level 1: The Invocation Abstraction
The first level of abstraction is a Java-level abstraction
that describes the invocation semantics of methods im-
plemented in hardware. The JavaMen package provides
classes that are used to specify the current deployment of
the system (that is what JavaMen components are avail-
able) and to provide the functionality used by these com-
ponents. This includes methods used by the framework
to implement a simple invocation protocol that is inde-
pendent of the physical connection between components
and the Java runtime. The class JavaMen.Deployment de-
scribes the current deployment of the system. Although
the class can be generated automatically, for example
from an XML description of the deployment, it is cur-
rently created manually. The class Deployment maintains
a static reference to an array of JavaMenComponent ob-
jects. An instance of JavaMenComponent consists of three
fields: the first is a string identifying the interface describ-
ing the component as above, the second is an array of
HardwareComponentHandle instances and the third is a sin-
gleton instance of JavaMenSoftwareComponent that is cre-
ated at boot time. HardwareComponentHandle describes the
second abstraction level as discussed further below; it is
an interface that describes the functions that the imple-
mented communication mechanism must implement. As
an example, consider that two hardware multipliers are

63

available to be used by the application. In this case, the
Deployment class indicates that two hardware multipliers
exist, both of which implement the method specified in
MultiplierInterface:

public c lass Deployment {
public f ina l stat ic JavaMenComponent []

JavaMenComponents = new JavaMenComponent []
{

new JavaMenComponent (
‘ ‘ c a l cu l a to rpackage . Mu l t i p l i e r I n t e r f a c e ’ ’ ,
new ca l cu l a to rpackage .

Mu l t i p l i e rSo f twar e () ,
new HardwareComponentHandle [] {

new HardwareComponentHandle (1) ,
new HardwareComponentHandle (2)

})
} ;
// . . .

The class Deployment also maintains a reference to all wrap-
per classes which can be forwarded to applications through
the method getWrapper(). As shown in Figure 4, this
method takes a string parameter describing the fully qual-
ified class name of the interface describing the required
method. Since the wrapper class implements its associated
interface, this method can be invoked by using the same
signature. The invocation semantics of a JavaMen compo-
nent are defined for the invocation of the single method of
the wrapper class. Therefore, in the case of the multiplier,
JavaMen invocation semantics are defined for the invoca-
tion of multiply() of the class MultiplierWrapper. These
semantics have been kept as simple as possible at this stage.
Briefly, the associated JavaMenComponent instance associ-
ated with this wrapper is queried using HW reserve() in
order to identify whether a hardware component is avail-
able. The returned integer encodes the hardware identifier
of the reserved hardware component (if one was found) and
a reservation number that must be passed with the subse-
quent invocation. In the event that a hardware component is
available, a HardwareComponentHandle can be obtained us-
ing this integer to query the hardware and, ultimately, start
the invocation. If no hardware component is available, then
a handle to the software version of the JavaMenComponent

instance is used to handle the invocation.

The JavaMen framework requires object references to also
be passed as parameters, meaning that these object refer-
ences are received by the hardware. As with a reference in
standard Java, the value of this reference is implementation
dependent. The hardware components can obtain the
data associated with these objects by invoking methods of
an “Object Manager” that forms part of the framework
specification and is described in Section 5.3. The object
manager is in effect a front end to memory that exports
new, putfield and getfield bytecode functionality as well
as other methods, thereby providing an interface to physical
memory in a similar way to that provided by the Java
language. In this way, the parameter passing semantics of
software invocation (pass-a-reference-by-value for reference
types and pass-by-value for primitive types) are maintained
for hardware invocation. Currently, hardware handles
cannot be passed between hardware components. This
means that any invocation between hardware components
must first pass through the software level. This will be
addressed in future by providing equivalent hardware
logic to that of JavaMen’s invocation protocol currently

implemented in software.

5.2 Level 2: The Communication Abstraction
Java does not provide any mechanism for direct access to
hardware. Therefore, interfacing with hardware is usually
achieved by using native methods that target a particular
platform. In a hardware processor, accessing hardware is
often achieved by ad-hoc techniques that would incur a sig-
nificant burden at deployment if functionality is to be moved
between software and hardware. For example, aJile [6] al-
lows access to external hardware through user-defined ex-
tended bytecodes. This allows Java applications to access
this hardware, but the interface is specific to each compo-
nent and defined at a low level. JOP [12, 13] allows the logic
for expensive bytecodes to be implemented in hardware or in
Java. Although a common interface such as Wishbone [11]
may connect hardware components, this interface is not ex-
posed at the virtual machine level. In particular, this re-
stricts parallelism and changes some Java semantics such as
locking.

The JavaMen framework provides a communication mecha-
nism between hardware and software through the invocation
protocol described in Section 5.1. Since this protocol can be
implemented by any physical communication, a second ab-
straction layer is introduced to allow pluggable communica-
tion mechanisms. This is achieved by separating the thread-
ing mechanism that deals with invocation from the logic
that reads and writes to the hardware registers of JavaMen
components in order to implement the invocation protocol.
This second abstraction is defined at the Java level by a set
of abstract classes and interfaces that are implemented by
developers of different communication mechanisms and at
the hardware level by defining a fixed wrapper for hardware
components.

The Java class structure that describes this sec-
ond abstraction level is given in Figure 5. The
Deployment class maintains a reference to an instance of
CommunicationAbstraction that is extended by the class
that actually implements the communication protocol. For
example, the class WishBoneCommunication is specified as
the deployed runtime communication mechanism as follows:

public f ina l stat ic CommunicationAbstraction
CA =WishBoneCommunication . g e t In s tance () ;

CommunicationAbstraction is an interface that de-
scribes the methods that the physical communication
must provide. In particular, CommunicationAbstraction

requires subclasses to implement the HW reserve()
method that returns a handle to a physical hard-
ware component. The runtime type of this handle
in this case is WishboneHardwareComponentHandle, an
instance of the superclass HardwareComponentHandle.
The methods setStateandStart(), checkResultReady()
and ReadResult() must also be implemented in
WishboneHardwareComponentHandle. The logic in
invoke() in HardwareComponentHandle uses the spec-
ified communication mechanism in the deployment
(WishboneHardwareComponentHandle in this example) to
forward these three method calls to the runtime instance of
type WishboneHardwareComponentHandle.

64

Figure 5: Realising Communication Abstraction through
Wishbone

5.3 Prototype Implementation
In order to demonstrate the functionality of the framework,
we implemented a Booth multiplier wrapped in the frame-
work’s method abstraction. As shown in Figure 6 the mul-
tiplier has two independent main components: a JavaMen
hardware component wrapper and a standard Booth mul-
tiplier. The JavaMen hardware component wrapper is fur-
ther divided into two parts: a bus protocol interface and an
invocation/communication protocol interface. The bus pro-
tocol interface handles the bus-level data traffic, such as bus
read, bus write, acknowledgment, etc. It uses technologies
such as Finite State Machines (FSM) to translate incom-
ing data stream parameters stored in registers, which are
meaningful for the invocation/communication interface. In
our implementation a Wishbone Bus is used to achieve the
low-level communication. Hence a Wishbone bus controller
is used here as the bus protocol interface. On top of the
bus protocol, the invocation/communication interface im-
plement the semantics of JavaMen invocation and communi-
cation. The modular design of the communication interface
means that only minimal change is required when migrat-
ing to a new bus interface. The functional core here uses a
standard Booth multiplier to efficiently carry out multipli-
cations. Data and control signals between functional core
and the hardware wrapper are exchanged via registers.

Handling of a hardware invocation following determination
of available hardware proceeds as follows. Initially, a virtual
reference, which represents the location of an object that
contains the data to be calculated, is written to the hard-
ware wrapper from the Java processor. Subsequently, the
wrapper fetches data from the program heap via an object
manager, which resolves the reference. Once the calculation
is complete, the wrapper creates a new object in the heap
of the return type (in this case Multiplier result) via the ob-
ject manager and writes the result to the object. Finally,
a virtual reference pointing to the object that contains the
result is created polled for by the Java runtime.

A key goal of the JavaMen framework is to allow co-design of

Figure 6: The Multiplier Architecture

Figure 7: The Object Manager Architecture

65

the JVM as well as applications. The functionality of the ob-
ject manager is an example of this as it defines logic in hard-
ware that can also be implemented in software. Therefore,
as with all JavaMen components, the object manager also
has two parts: a hardware wrapper and the object manger
core. Physically, the object manager core is made up of two
parts: a front-end and a back-end. At the front end, the
object manager provides both direct access 6 as well as in-
direct access through bytecodes such as new, putfield and
getfield to access the heap as well as other calls from higher
level virtual machine routines such as the garbage collector.
This architecture is depicted in Figure 7. These operations
are specified as JavaMen components and encoded into a
sequence of logic operations and RAM accesses which are
handled by the back-end to talk to the RAM module.

The hardware object manager does exactly the same job as
an existing software method. For example, it initialises the
program heap at boot time and manages the objects in the
heap. Typically, when a request, is received (for example for
the creation of a new object) the object manager will create
a virtual reference for the object and access the program
memory to obtain related information, such as size of the
object, for the reference. Subsequently, the object manager
will locate sufficient amount of memory for object in the
heap. Finally, a reference of the object is returned to the
device, which made the request.

6. FUTURE WORK
The JavaMen framework introduced in this paper is a novel
approach to co-design as it introduces a common interface
between hardware and software. Rather than moving from
a high-level specification of a system and deriving a soft-
ware/hardware partition through synthesis, our approach
acknowledges that the integration of existing hardware (soft
or hardcores) is an equally valid approach to achieving the
benefits of codesign. The JavaMen framework attempts to
simplify this integration by the specification of a common in-
terface between the hardware and software partitions. How-
ever, forcing a Java interface onto all hardware requires an
overhead in terms of hardware logic. Components that we
have implemented which are more complex than the multi-
plier described int this paper are have proven relatively easy
to implement. Another type of overhead involved is the tem-
poral overhead incurred by the framework. The framework
prototype is still being refined and exact cycle counts might
prove to be over-optimistic at this stage. However, to give
the reader a general idea of this overhead, it is noted that
this overhead is minimal: On occasions in which the bus is
not busy, the time required to carry out an invocation is of
the order of tens of cycles. The granularity of the polling
thread on a hardware’s status is in fact the greatest overhead
as this involves thread context switching. The checking of
available hardware and the start of an invocation requires
only a few low cost bytecodes in JOP and (currently) two
method invocations. For the simplest of hardware compo-
nents (such as a multiplier) this overhead may be compara-
ble to a software invocation of a multiplication. It is believed
that hardware support for any operations at least as com-

6This is mainly required in order to allow programs to be
downloaded to the physical RAM at boot time. A second
use of this feature would be to allow the implementation of
RTSJ-like physical memory classes.

plex as this can therefore benefit from hardware invocation
as supported by the framework.

In the future development of the JavaMen framework, a key
requirement will be to understand the implications of hard-
ware invocation on Java’s concurrency model. In particular,
the effect on locking behaviour of crossing the hardware/-
software boundary in the same control flow and the lever-
aging of parallel execution had to be considered. In Java,
all invocation is considered synchronous. Blocking invoca-
tions (such as blocking on a socket read) are hidden from the
Java developer with context switching typically being han-
dled by the underling operating system. In JavaMen, the
available hardware components motivate a model of asyn-
chronous invocation whereby the core can continue execut-
ing other threads while a thread waits for the result of an
invocation. Once a hardware handle has been obtained from
HW reserve(), the invocation of hardware is carried out in
three phases: passing the parameters and starting the in-
vocation, testing whether a result is available and finally
retrieving the result. Each hardware component must pro-
vide input and output signals that provide this information.
Our current implementation uses a simple polling mecha-
nism in the invoking thread to check when a hardware in-
vocation is ready. Since JavaMen requires that hardware
also invoke software objects, two possible solutions could
have been adopted: an event mechanism in which a dif-
ferent thread handles a software invocation from hardware
(similar to an interrupt model) and a “distributed” thread
model in which a thread ID is passed at each invocation so
that the same thread handles an invocation from hardware
to software if it is part of the same flow of control. The latter
approach is that chosen for JavaMen as it had the advan-
tage of maintaining locking semantics. For this reason, all
invocations must also forward a thread ID which is carried
across the hardware/software partition and which is used
by the JavaMen runtime to identify which thread to use to
handle an invocation. The result of an invocation on a soft-
ware element from hardware is written to a specified address.
Currently, software invocation from hardware is limited to
specific methods associated with each JavaMen component.
The polling thread therefore also checks whether the current
hardware invocation is requesting the invocation of one of
these methods in which case that thread is used to carry out
the invocation. In a future version of the framework, refer-
ences passed at invocation can be used for direct invocation
from hardware.

There has recently been innovative research into the gener-
ation of hardware from software languages such as Ada [14].
An similar approach for Java has also been investigated [7].
JavaMen does not preclude the use of such techniques as
the way that hardware is generated (be it from traditional
hardware languages or higher level languages such as Java)
is orthogonal to the framework. It is acknowledged however
that these technologies can prove useful in quickly generat-
ing the hardware and software equivalencies of the JavaMen
components and would therefore be a useful addition within
the general co-design approach.

Finally, the equivalency described in this paper is based on
functional equivalency. In essence, hardware components re-
place software component in order to provide speedup and

66

therefore an improvement in performance. However, the
real-time properties of the system are changed in the frame-
work. Providing a schedulability analysis tool that considers
the migration across partitions of functionality is a future
goal of this work.

7. CONCLUSION
This paper has introduced the JavaMen framework, a novel
approach to developing Java applications for embedded sys-
tems based on the definition of functionally equivalent hard-
ware and software pairings. These paired entities (JavaMen
components) allow the decision of whether hard ware or soft-
ware elements are ultimately used to be delayed until just
before deployment. Two approaches to defining this equiv-
alency were proposed and a method based equivalency was
adopted. A simple semantics for invocation of these com-
ponents was defined together with a specification of how
these semantics are implemented across arbitrary commu-
nication protocols. Although the full invocation cycle has
been successfully implemented and tested on a simple mul-
tiplier, more complex components are being implemented to
evaluate our approach. The next phase of this research is to
define a fully componentised JVM that will allow as much
functionality as possible to be defined as hardware/software
pairing in a JavaMen component. In this way, deployments
may range from “high-software” deployments in which the
central core specifies a minimum stack machine to “high-
hardware” deployments in which almost all virtual machine
and software logic can be implemented entirely in hardware.
Finally, we acknowledge that the equivalency between soft-
ware and hardware invocation is valid only insofar as no
real-time requirements are specified. An investigation into
the real-time implications of our strategy is left for future
work.

8. REFERENCES
[1] The GNU Compiler for Java. Available at:

http://gcc.gnu.org/java/.
[2] Product specification available at:

www.xilinx.com/products/logicore/alliance/
dsi/dsi java proc.pdf.

[3] Information and white papers available at:
www.arm.com/products/solutions/Jazelle.html.

[4] Information available at: www.nazomi.com.
[5] picoJava Microprocessor Core Overview. Available at:

www.sun.com/microelectronics/picoJava/overview.html.
[6] Real-Time Objects on the Bare Metal: An Efficient

Hardware Realization of the Java Virtual Machine. In
ISORC ’01: Proceedings of the Fourth International
Symposium on Object-Oriented Real-Time Distributed
Computing, page 53, Washington, DC, USA, 2001. IEEE
Computer Society.

[7] P. Andersson and K. Kuchcinski. Java to Hardware
Compilation for non Data Flow Applications. In
Proceedings of the 8th Euromicro Conference on Digital
System Design (DSD ’05), pages 330–337, Washington,
DC, USA, 2005. IEEE Computer Society.

[8] F. Ferrandi, M. Rendine, and D. Sciuto. Functional
Verification for SystemC Descriptions Using Constraint
Solving. In Proceedings of the conference on Design,
automation and test in Europe (DATE ’02), page 744,
Paris, France, 2002. IEEE Computer Society.

[9] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A
High-Level Synthesis Framework For Applying Parallelizing
Compiler Transformations. In Proceedings of the 16th
International Conference on VLSI Design (VLSID ’03),
page 461, New Delhi, India, 2003. IEEE Computer Society.

[10] S. A. Ito, L. Carro, and R. P. Jacobi. Making Java Work
for Microcontroller Applications. IEEE Design and Test,
18(5):100–110, 2001.

[11] OpenCores.org. WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores, b.3
edition, September 2002.

[12] M. Schoeberl. JOP: A Java Optimized Processor. In Z. T.
R. Meersman and D. Schmidt, editors, On the Move to
Meaningfull Internet Systems 2003: Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES 2003), volume 2889 of Lecture Notes in Computer
Science, pages 346–359, Catania, Italy, November 2003.
Springer.

[13] M. Schoeberl. Design and Implementation of an Efficient
Stack Machine. In Proceedings of the 12th IEEE
Reconfigurable Architecture Workshop (RAW2005),
Denver, Colorado, USA, April 2005. IEEE.

[14] M. Ward and N. C. Audsley. Hardware Compilation of
Sequential Ada. In Proceedings of the 2001 International
Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES 2001), pages 99–107, Atlanta,
GA, USA, November 2001.

67

