
Probabilistic Analysis of CAN with Faults

Ian Broster, Alan Burns
University of York

UK
{ianb, burns}@cs.york.ac.uk

Guillermo Rodrı́guez-Navas
Universitat de les Illes Balears

Spain
vdmigrg0@clust.uib.es

Abstract

As CAN (Controller Area Network) is increasingly used
in safety-critical applications, there is a need for accurate
predictions of failure probability. In this paper we provide
a general probabilistic schedulability analysis technique
which is applied specifically to CAN to determine the effect
of random network faults on the response times of messages.
The resultant probability distribution of response times can
be used to provide probabilistic guarantees of real-time be-
haviour in the presence of faults. The analysis is designed to
have as little pessimism as possible but never be optimistic.
Through simulations, this is shown to be the case. It is easy
to apply and can provide useful evidence for justification of
an event-triggered bus in a critical system.

1 Introduction

To be able to argue about the dependability of a sys-
tem, one must be able to determine the dependability of its
components. In a distributed system, determining the de-
pendability of the communication channel is of particular
importance, especially when this component is susceptible
to electromagnetic interference (EMI). Therefore in safety-
critical systems it is vital to define a mechanism able to de-
termine how the system dependability is affected by faults
on communication.

This paper deals with a specific bus: CAN [3, 8] because
of its increasing use in safety-critical systems. The error
detection and recovery features of CAN provide a high tol-
erance to network faults. However, as the recovery mech-
anism of CAN involves retransmitting any corrupted mes-
sages, network faults cause extra overhead and can delay
messages on the bus, so analysis techniques to deal with the
effect of faults are required.

It is standard practice to assume an upper bound on the
effect of faults, this allows worst case response time analy-
sis to be performed [18]. However, network faults are diffi-
cult to predict because there is often no way to know what
external influences the system will be exposed to during its
lifetime. It is more useful to move to a probabilistic scheme

where events such as faults are modelled using probabili-
ties. Design decisions can then be made based on probabil-
ities and consequences of failure. In order to do this, analy-
sis is required that can deal with probabilistic fault models
without excessive pessimism.

This paper introduces an analysis technique that can pro-
duce a distribution of worst case response times when there
are probabilistic events in the system. It is applied specif-
ically to CAN [3, 8] to determine the reliability of the bus
with respect to deadline failures in the presence of random
network faults (modelled as a Poisson distribution).

The motivation for this research is to determine whether
and how an event-triggered bus such as CAN may be used
in a critical system with faults. The analysis presented in
section 3 allows the probability of timing failures to be de-
termined, and a case study in section 4 is used to illustrate
the analysis. On the basis of this and other research, we be-
lieve that the flexibility of an event-triggered bus (such as
CAN) can be exploited to provide fault tolerance and pro-
duce highly reliable and predictable real-time systems.

2 Previous work

CAN’s successful history in the automotive industry as
a flexible embedded bus has driven its use in other appli-
cations such as factory-control networking, elevator control
systems, machine tools, photo-copiers and many more. The
advantages of using a bus such as CAN may include: re-
duced design time (readily available components and tools)
and lower connection costs (lighter, smaller cables and con-
nectors) [17].

However for use in safety-critical avionics applications,
CAN is still not considered to be sufficiently reliable and
predictable. In such systems, guaranteeing the performance
of the bus is crucial to certification. Nevertheless there
is mounting evidence that CAN is able to support safety-
critical avionics applications, many papers have investi-
gated possible failures of CAN, shown its weaknesses and
proposed solutions to those weaknesses [6, 9, 12, 19]. In
this paper we are concerned with one particular aspect of
CAN in critical systems: the effects of network faults on
the real-time properties of the bus. It will be assumed that



other possible weaknesses of CAN such as the “last but one
bit” problem [12, 13] and error-passive mode problem [15]
are otherwise solved.

A method to analyse worst case real-time behaviour of
a CAN bus was produced by Tindell and Burns [18]. They
showed by applying processor scheduling analysis to the
CAN bus, that in the absence of faults the worst case re-
sponse time of any message is bounded and can be accu-
rately predicted. Moreover, the analysis can be extended in
order to handle the effect of errors in the channel.

The error recovery mechanism of CAN involves retrans-
mitting any corrupted messages. An additional term can
be introduced into their analysis, called the error recov-
ery overhead function, which is the upper bound of the
overhead caused by such retransmissions in a time inter-
val. A very simple fault model is used [18] to show how
the schedulability analysis is performed in the presence of
errors in the channel. The model is based on a minimum
inter-arrival time between faults. The authors note that the
error recovery function can be more accurately determined
either from observation of the behaviour of CAN under high
noise conditions or by building a statistical model.

Punnekkat [14] extends the work of Tindell and Burns
by providing a more general fault model which can deal
with interference caused by several sources. Punnekkat’s
model assumes that every source of interference has a spe-
cific pattern, consisting of an initial burst of errors and then
a distribution of faults with a known minimum inter-arrival
time. Except for the more general fault model, the rest of
the schedulability analysis is performed like [18].

Both Tindell’s and Punnekkat’s analyses are useful be-
cause they illustrate how to perform schedulability analysis
of CAN under fault conditions. However, they use models
based on a minimum inter-arrival time between faults, and
therefore assume that the number of faults that can occur in
an interval is bounded.

In the environment where CAN is used, faults are caused
mainly by Electromagnetic Interference (EMI) which is of-
ten observed as a random pulse train following a Poisson
distribution [5]. Therefore the assumption made by the
bounded model may not be appropriate for many systems
because there is a realistic probability of faults occurring
closer than the minimum inter-arrival time.

Unlike Tindell and Punnekkat, Navet [10] proposes a
probabilistic fault model, which incorporates the uncer-
tainly of faults caused by EMI. The fault model suggested
by Navet is modelled as a stochastic process which consid-
ers both the frequency of the faults and their gravity. In that
model, faults in the channel occur following a Poisson law
and can be either single-bit faults (which have a duration of
one bit) or burst errors (which have a duration of more than
one bit) according to a random distribution. This allows the
interference caused by faults in the channel to be modelled
as a generalised Poisson process.

Note that if the occurrence of faults in the channel fol-

lows a Poisson law, the maximum number of transmis-
sion errors suffered by the system in a given interval is
not bounded, so the probability of having sufficient inter-
ference to prevent a message from meeting its deadline is
always non-zero; therefore every system is inherently un-
schedulable. Hence Navet’s analysis does not try to deter-
mine whether a system is schedulable (as [18, 14]), but it
calculates the probability that a message does not meet its
deadline. Obtaining such a probability, named Worst Case
Deadline Failure Probability (WCDFP), gives a measure of
the system reliability, because a lower value of the WCDFP
implies a high resilience to interference. The method pro-
vided by Navet for estimating the WCDFP of a message is
now briefly presented.

As shown in [18], a message can be guaranteed to meet
its deadline even if it has to be retransmitted because of er-
rors in the channel. Nevertheless, as the response time of
a message increases with the number of retransmissions,
meeting its deadline can only be guaranteed up to a given
number of retransmissions. Therefore, determining such a
number of tolerated retransmissions is the first step to cal-
culate the probability of missing a deadline.

Navet’s analysis uses the scheduling analysis of Tindell
to calculate the maximum number of faults that can be tol-
erated for each message before the deadline is reached. This
number is called Km, and only depends on the characteris-
tics (length, priority, period, etc.) of the message set. The
worst case response time that Km faults would generate is
called Rmmax

. Once Km and Rmmax
are obtained, they are

used with the fault model to find the probability that a mes-
sage may miss its deadline. Navet defines the WCDFP of
a message m as the probability that more than Km errors
occur during Rmmax

. This probability can be analytically
calculated as the fault model assumed by Navet is a gener-
alised Poisson process.

The main drawback of the analysis is that it includes two
inaccuracies which increase the pessimism in the estimation
of the WCDFP. The first source of pessimism is implicit in
the definition of WCDFP. The definition of WCDFP does
not properly reflect the conditions in which a message can
miss its deadline. In order for a message to miss a deadline,
faults in the channel are required to occur while the mes-
sage is queued or in transmission; a fault occurring after
the message has been received cannot delay the message.
This condition is more restrictive than the condition used in
[10], which is that Km errors occur at any time during the
maximum response time of the message, independently of
whether the message has already been received.

The second source of pessimism is an overly pessimistic
assumption about the nature of burst errors where a fault
causes a sequence of bits to be corrupted. In Navet’s analy-
sis, a burst error of duration u bits is treated as a sequence
of u single bit faults [10, eqn. (7)], each causing a maximal
error overhead (an error frame and the retransmission of a
frame of higher or equal priority). This assumption allows



consideration of the fault model as a generalised Poisson
process and facilitates solving the WCDFP equation. How-
ever, this assumption is inconsistent with the CAN protocol
specification [3, 8] since in reality a burst error can only
cause retransmission of one frame because no message is
sent again until the effect of the burst is finished. This
causes pessimism of several orders of magnitude.

A different method to calculate probability of deadline
failure in CAN under fault conditions is proposed in [7].
This work points out that errors happening during bus idle
do not cause any message retransmission, and therefore
those errors cause an interference lower than the interfer-
ence typically considered in scheduling analysis. To avoid
this source of pessimism when performing scheduling anal-
ysis, the effect of errors is modelled with a fixed pattern
of interference which is a simplification of the fault model
presented in [14]. Due to this determinism, interactions be-
tween messages and errors can be analysed through sim-
ulation and then the probability of having a message that
misses its deadline can be determined. Nevertheless, this
method has important drawbacks. First, an interference pat-
tern for every possible error source is hard to be determined.
And second, combination of several error sources increases
the complexity of the analysis to such an extent that it be-
comes infeasible, so random sampling is used.

We believe that modelling arrivals of errors with a ran-
dom distribution, as done in [10], allows a more gener-
alised solution. In this paper we propose an analysis that
provides an accurate probability of deadline failure without
excess pessimism, based on the assumption that faults are
randomly distributed.

3 Analysis

In this section, an analysis is developed which provides a
probability distribution of worst case response times under
a random arrival fault model. This in turn may be used to
determine an accurate probability of deadline failure.

3.1 Pessimistic Approach

In the context of this work (critical real-time), an analysis
should never be optimistic — there must be no opportunity
for the analysis to give a lower response time or higher cu-
mulative probability than the system it is modelling. There-
fore, in each stage of the analysis, there must be no opti-
mistic assumptions. The aim is to have a pessimistic solu-
tion, but with as little pessimism as possible.

Therefore, the analysis presented in this section starts
with the strict worst case analysis and removes sources of
pessimism where possible. There are several areas in the
analysis where a worst case is still assumed. It would be in-
appropriate to assume for example a mean or other expected
value for any parameter, otherwise it would risk being opti-
mistic. In particular, the analysis always considers:

• the first invocation after a critical instant where there
is the maximum possible queueing delay due to other
frames/tasks, other invocations in the hyperperiod are
not considered;

• that faults always have the maximum possible im-
pact — most of the time this will not occur, but we
show later that it does not lead to an excessive level of
pessimism.

3.2 Response Time

The analysis considers the critical instant where all
higher priority messages are simultaneously queued (im-
posing maximum interference) and the longest lower prior-
ity message has just started (imposing maximum blocking).
This is the known worst case scenario.

We may begin with the usual worst case response time
equations for CAN [18]. The equations here are slightly
modified [4] by separating the inter-frame space from the
data frame. This removes a small source of pessimism by
considering that the frame is available as soon as the last
bit has been received, rather than only after the inter-frame
space that follows it has finished.

Ri = Bi + Ci + Ii(Ri) + Ei(Ri) (1)

Where

• Ci is the worst case transmission time [14, 11] (the
time it takes, in the worst case to send frame i) assum-
ing no errors, maximum bit stuffing and not including
the inter-frame space that follows the frame:

Ci =

(

44 + 8b +

⌊

34 + 8b− 1

4

⌋)

∗ τ (2)

where τ is one bit-time and b is the number of data
bytes in the frame (0 to 8).

• Bi is the worst case blocking time, this is the maxi-
mum time a message may need to wait due to a lower
priority message on the bus:

Bi = max
∀k∈lp(i)

(Ck) + S (3)

where S is the inter-frame space (3 bit-times) and
lp(i) is the set of messages with lower priority than i:

• Ii(t) is the worst case interference that message i may
receive in t time units:

Ii(t) =
∑

j∈hp(i)

⌈

t − Ci + Jj + τ

Tj

⌉

(Cj + S) (4)

where hp(i) is the set of messages with higher priority
than i and
Jj is the worst case release jitter of frame j. The τ is



used to eliminate ‘edge effects’ where a high priority
frame becomes ready as a medium priority one com-
pletes [2].

• Ei(t) is some function which returns the overhead due
to faults in period t, this will be explained in sec-
tion 3.3.

Equation (1) may be solved iteratively

tn+1
i = Bi + Ci + Ii(t

n
i ) + Ei(t

n
i ) (5)

with t0i = Ci. Iteration terminates when tn+1
i = tni pro-

vided tni
�

Ti − Ji. The final value of ti is the worst case
response time of frame i:

Ri = tni + Ji (6)

The above equations are developed in the following sec-
tions.

3.3 Fault Model

We shall consider a simple fault model and define the
error overhead function Ei(t) accordingly.

The simple fault model used is that faults arrive ran-
domly, with a Poisson distribution F ∼ Po(λ). Therefore,
the probability of exactly m faults occurring in any time
interval t is:

pt(F = m) =
e−λt(λt)m

m!
(7)

To avoid optimism, it is assumed that each fault causes
the maximum length error frame (Emax) and occurs on the
last bit of the longest frame, such that the additional over-
head due to one fault is equal to one error frame and one
retransmission of a higher priority message:

Mi = Emax + max
j∈hep(i)

Cj (8)

where hep(i) is the set of messages with higher or equal
priority to i.1

Therefore the error overhead function, Ei(t), is a random
distribution:

Ei(t) =



















0 with probability pt(F = 0)
Mi with probability pt(F = 1)
2Mi with probability pt(F = 2)
3Mi with probability pt(F = 3)
· · · · · ·

(9)

or more generally:

Ei(t) = mMi with probability pt(F = m) (10)

1Note that even though a fault can occur in a lower priority frame, a
frame with lower priority than i cannot be retransmitted while frame i is
queued for transmission, so we use hep(i).

It should be noted that this error function is always pes-
simistic — Ei(t) is always at least as great as would occur
in a real bus.

There are an infinite number of values for Ei(t) since
m ∈ 0..∞. However, we can neglect values of m where
pt(F = m) < ε, where ε is some suitably small probability
that is so small that designers consider the risk acceptable,
for example ε = 10−18.

Therefore we may enumerate all significant values of
m and consider each case individually, with its associated
probability.

3.4 Search Space

When equation (5) is solved iteratively, it gener-
ates a monotonically increasing set of values of ti

and therefore a set of non-overlapping intervals exists:
{(0, t0i ], (t0i , t

1
i ], (t1i , t

2
i ], · · · (tki , tki ]}. Within each inter-

val, the error overhead function, Ei(t), is evaluated for each
significant value of Ei(t

n
i − tn−1

i ).
In order to do this, a probability tree is used. An example

is shown in Figure 1 which is used in the following walk-
through.

t0

t1 2t

1

2

3

0

0

1

0

0

1

0

1

0

1

0

0

2

1

1

0 faults

t3

0

1st iteration 2nd iteration 3rd iteration

...

Start

Figure 1. Example Probability Tree for Simple
Fault Model

Using equation (5) and the initial value t0i = Ci we con-
sider the set of all possible numbers of faults in the interval
(0, t0i ] for which there is a significant probability.

At0
i

= {f |p(t0
i
−0)(F = f) � ε} (11)

Each member of At0
i

is used to derive a set of possi-
ble values for t1i with an associated probability p(t1i ) =
p(t0

i
−0)(F = f). In the example there are four significant

possibilities: in the interval there could be 0, 1, 2 or 3 faults,
(the probability of more than 3 faults is less than ε) so we



derive four branches of the tree with 4 different values of t1i
and associated probabilities.

Following the first branch (0 faults), we next consider
the interval (t0, t1] and apply the Poisson equation (7) to
the interval (t0, t1]. (We may do this because the prob-
ability of any number of faults in an interval is indepen-
dent from the history of faults before the start of the in-
terval.) Therefore we apply equation (7) to determine that
there are three significant possibilities: there are 0, 1 or 2
faults in the interval (t0, t1]. So the three branches pro-
vide three possibilities for t2i and associated probabilities
of p(t2i ) = p(t1i ) · p(t1

i
−t0

i
)(F = f).

We continue to recursively explore the tree. For subse-
quent iterations of equation (5), the error overhead function
must be applied with care. At each branch in the tree, the
path to the root of the tree has been fixed, therefore when
Ei(t) is evaluated, it must only consider the time between
tni and tn−1

i . Yet it must not neglect the previous error over-
head. We may write:

tn+1
i = Bi + Ci + Ii(t

n
i ) +

n−1
∑

j=0

Ei(t
j+1
i − tji ) (12)

However, equation (12) is easier to understand and im-
plement if written as:

tn+1
i = Bi + Ci + Ii(t

n
i ) + En

i (13)

and En
i is the total error overhead for the previous iterations

in the path to the root of the tree, plus the overhead added
this iteration:

En
i = En−1

i + Ei(∆t) (14)

where ∆t = tni − tn−1
i

Evaluation continues until all significant branches are ex-
plored. The base cases for recursion are:

• tn+1
i = tni . This occurs when we consider the proba-

bility of finding 0 faults and there is no further inter-
ference to consider. In this case, tn

i represents a pos-
sible value for Ri with a known probability. The pair
〈tni , p(tni )〉 is recorded.

• p(tni ) < ε. A path is so unlikely to occur that it is
insignificant, in which case we may ignore this path.

• tn+1
i > Ti − Ji. Any analysis based on equation (5)

cannot handle the possibility that the response time is
greater than the period of a message. Therefore, when
this occurs, we must record the probability that the
message set is unschedulable.

3.5 Interpretation of Distribution

The immediate result of the analysis is a set of pairs
Ri = 〈ti, p(ti)〉. More usefully, a cumulative probability

distribution can be plotted.
The nature of the analysis means that we can expect

some very small probabilities down to ε, as well as larger
values; we are interested in all values. On a linear scale
we would not expect to see the smaller probabilities, so a
logarithmic scale is appropriate (indeed, on a linear scale,
a graph shows very little of interest). However, in or-
der to plot a cumulative distribution, the graph must dis-
play (1− cumulative probability) to ensure that the small
changes in probability are close to 0 rather than close to 1.
The values on this axis can be interpreted as an upper bound
on the probability of the response time exceeding the corre-
sponding value on the horizontal axis.

Unfortunately, these transformations can be difficult to
visualise, leaving a somewhat counter-intuitive plot. So by
means of an illustrative example in Figure 2, a typical out-
put of the analysis is shown in the same form as it is in the
rest of the paper.

0 10 20 30

1.0

t

1 
−

 C
um

ul
at

iv
e 

P
ro

ba
bi

li
ty

Analysis

0.1

0.01

0.001

Deadline

Figure 2. Interpretation of Results

Care must be taken when interpreting the graph as it rep-
resents discrete data, not a continuous function. The correct
way to join the points is as shown in Figure 2 so that the
resulting line represents an upper bound on the results.

With reference to the graph, one can infer for example
that:

• p(t � 10)
�

0.1
The analysis records that p(t � 10) = 0.1, but the
analysis is pessemistic, therefore the probability of a
real frame having a response time longer than 10 is
less than or equal to 0.1.

• p(t � 19)
�

0.1

• p(t < 10) > 0.9

• the probability of a given message being delayed be-
yond the deadline is less than or equal to 0.01. This is



equivalent to Navet’s worst case deadline failure prob-
ability (WCDFP).

• if data obtained from extended monitoring of a real
system or by simulation is plotted on the same axes,
then if the analysis is pessimistic, the real data should
always appear further to the left of the graph than the
analysis line.

3.6 Probabilities and ε

The algorithm necessarily cuts improbable branches of
the tree. However, if there are a large number of branches
that have probabilities of just below ε then their summed
probability can be significant. Therefore to assess the com-
pleteness of the search, the coverage can be defined as:

Qi = p(N) +
∑

∀〈t,p〉∈Ri

p (15)

where p(N) is the probability of being unschedulable,
recorded by the analysis when tn+1

i > Ti − Ji.
To be safe, any branches that are not covered should be

treated as unschedulable. Therefore, the WCDFP can be
found directly from the probability of being less than the
deadline, but taking into account any paths that are not cov-
ered:

p(Ri > Di) = 1 −





∑

∀〈t,p〉∈Ri|t � Di

p



 + (1 − Qi) (16)

The parameter ε is important to the analysis because it
controls the amount of coverage achieved. However, in-
creased coverage comes at the cost of execution time be-
cause as the coverage increases, the number of branches
increases exponentially. Values of ε between 10−10 and
10−20 are useful, depending on the message set and system
requirements. A value of ε too small will result in infeasible
execution times for the algorithm, the use of larger values
will lose coverage of the search space and therefore lose
accuracy for low probabilities.

Setting ε can be done on a message by message basis, by
considering the failure requirements as follows. The resul-
tant probability distribution refers to one single invocation
of the message. It is common for a dependable system to
have reliability requirements in the form “less than 10−9

failures per hour”. If we assume that timing failures are
independent, then we can calculate the failure probability
requirement per invocation. For example, for a periodic
message with T = 100ms, there are 36,000 invocations
per hour requiring a probability of failure per invocation of
10−9/36, 000 = 2.7 ·10−15. To ensure precision, a value of
ε must be chosen such that it is an order of magnitude lower
than the probability of failure per invocation. In this case
a suitable value is ε = 10−16. This value can be adjusted
if necessary if the coverage is deemed to be insufficient, or

procedure Response(t, ∆t, Eprev, ppath) is
– – Recursive procedure to solve eqn (13)
– – Eprev is En−1

i in eqn (14)
if ∆t = 0 then – – Base case: Converged

AddToPDF(t, ppath);
else if t > Ti − Ji then – – Base case: only R � T

AddToPDF(NOTSCHED, ppath);
else – – Recursive case

for j ∈ {n ∈ � |ppath ·poisson(n, ∆t, lambda) � ε} do
pj ←poisson(j, ∆t, lambda);
– – Probability of j errors
Ej ←Errors(i, j, ∆t);
– – Overhead of j errors
tnew ← Ci + B(i) + I(i, t) + Eprev + Ej ;
Response(tnew , tnew − t, Eprev + Ej , ppath ∗ pj);

end for;
end if;

end Response;

for i ∈ messages do
ClearPDF();
Response(Ci, Ci, 0, 1.0);
PrintPDF();

end for;

Figure 3. Analysis Algorithm

if the algorithm execution time is too long for a particular
message set.

3.7 Algorithm, Complexity and Implementation

The analysis can be efficiently implemented as a recur-
sive procedure, exploring the tree depth-first and using a
simple data-structure to record the results. An algorithm is
shown in Figure 3.

The algorithm is presented in a form designed for clar-
ity. However, it should be noted that the test for the second
base case (pr(path) < ε) is implicit in the for loop. A
real implementation of the algorithm should also make a
number of further optimisations (such as calculating Inter-
ference and Blocking outside the loop). Also, extreme care
should be taken if implementing with floating point arith-
metic because the algorithm may need to manipulate both
large and very small values together while avoiding loss of
precision. Functions such as Poisson() are particularly vul-
nerable.

The tree has the potential to grow exponentially, which
would lead to infeasible computation times. However the
algorithm keeps execution under control by capping many
branches using ε. In general, the search tree is very skewed
(as in Figure 1), vastly reducing the overall size of the tree.
As an example of the complexity, section 4 presents results
based on two case studies: an implementation of the anal-
ysis on a modern PC explored all the trees of the message
sets in a few seconds. The number of branches explored by
the analysis ranged from around 500 for the highest prior-



ity messages to just over 2,700,000 for the lowest priority
message. The maximum recursion depth was 26.

Despite the potential for exponential growth, the analy-
sis is much faster to compute than simulation or monitor-
ing of the bus. This is because simulation would have to
be performed for extended periods in order to be likely to
observe infrequent scenarios, whereas the analysis system-
atically detects unlikely scenarios during the computation
of the tree.

As noted in section 3.6, the value of ε can have a dra-
matic effect on the computation time because it increases
the maximum recursion depth as well as the number of
branches at each stage. Nevertheless, infeasible computa-
tion times have not been observed for any message set tested
so far.

4 Evaluation

In this section, the analysis is evaluated by use of two
case studies. The results of the analysis are compared with
data obtained through software simulation and to a previous
study.

4.1 Message Set

The first case study used was proposed by Navet [10].
The original source was provided by Peugeot-Citroen Auto-
mobiles Company. There are 12 periodic messages from six
devices in a prototype car. A data-rate of 250kbit/s is used.
The message set is not a particularly ‘strenuous’ one: un-
der no-fault conditions, the worst case response time for all
messages is less than the shortest period in the set. There-
fore, no frame can experience interference from any other
frame more than once. The bus utilisation is only 21.5%.
It should be noted that the messages are also schedulable
at the slower (and therefore less prone to faults) data-rate
of 125kbit/sec, and that the priorities are not ordered rate
monotonically. For all messages, the deadline is equal to
the period and there is no release jitter. The message set
is shown in Table 1 with standard worst case response time
calculations shown for comparison.

The analysis in section 3 was applied at the fault rate of
λ = 30 faults per second and ε = 2.7 · 10−15. We use
this value of λ because it has been frequently used in the
past [10, 12] as an expected number of faults in an aggres-
sive environment. Reading the results directly from Table 2
we can get a feel for the analysis. Only two frames are
shown, however they are representative of the other frames:
all show similar results. It can be seen that the probabili-
ties of messages being significantly delayed are very low.
The probability of any message being delayed beyond its
deadline is insignificant (less than ε, see section 3.6).

The full data set is plotted as a cumulative probability
graph in Figure 4. The ‘steps’ are due to the nature of the
error overhead function, Ei(t): it can only return a small
number of discrete values, so even though the search tree

Table 1. Example Message Set 1
Priority2 Length Period WCRT

Pi DLC Ti(ms) Ri(ms)
12 8 10 1.028
11 3 14 1.368
10 3 20 1.708

9 2 15 2.008
8 5 20 2.428
7 5 40 2.848
6 4 15 3.228
5 5 50 3.648
4 4 20 4.028
3 7 100 4.448
2 5 50 4.708
1 1 100 4.720

1Note that we use here a higher number to indicate a higher priority.

Table 2. Analysis results, (Set 1, λ = 30.0)
Priority: 12

Ri pr(Ri)
(ms)

1.028 0.969631
1.672 0.0293312
2.316 0.000999469
2.960 3.70872e-05
3.604 1.45769e-06
4.248 5.96774e-08
4.892 2.51816e-09
5.536 1.08753e-10
6.180 4.72729e-12
6.824 5.4321e-14
> 10 0

Priority: 5
Ri pr(Ri)

(ms)
3.648 0.896336
4.292 0.096218
4.936 0.00698767
5.580 0.000432349
6.224 2.46289e-05
6.868 1.33758e-06
7.512 7.0527e-08
8.156 3.64815e-09
8.800 1.86287e-10
9.444 9.24425e-12

10.088 2.95448e-13
> 50 0

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 2 4 6 8 10 12 14

1 
- 

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Response Time (ms)

All frames, lambda=30

12
11

10
9

8
7

6
5

4
3

2
1

Figure 4. Probability distribution of response
times for all frames (Set 1, λ = 30)



may have many branches, the actual number of branches
which have different values of t is very small.

A software simulator has been constructed which accu-
rately models the CAN bus in the presence of faults. It is
possible to simulate for extended periods, or to repeatedly
simulate conditions after a critical instant.

In order to explore the pessimism and accuracy of the
analysis, the analysis results for the frame with priority 5
are compared to the repeated simulation of a critical instant.
The same Poisson fault model of λ = 30 faults per second
was used for both the analysis and simulation, and the sim-
ulation was run 1,500,000 times. The results of both the
simulation and the analysis for this frame are plotted in Fig-
ure 5.

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 2 4 6 8 10 12

1 
- 

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Response Time (ms)

Response Time Probability

Analysis
Simulation of Critical Instant

Figure 5. Frame 5, Response Time Probability,
Analysis vs. Simulation (Set 1, λ = 30)

The analysis and the simulation results are very simi-
lar. We consider first the response times with probabil-
ity greater than about 10−6. The analysis is slightly pes-
simistic: shown by the fact that the analysis line is always to
the right of the simulation line. The pessimism here comes
mainly from the fact that the analysis always uses a max-
imal error function Ei(t) whereas the simulation more ac-
curately models network faults occurring in frames. How-
ever, the pessimism is not extreme — as can be see from the
graph, the lines are very close.

Of particular note are long response times at low priori-
ties as it is these which need to be carefully considered in a
critical system. The longer response times suggested in the
analysis never occurred in the simulation; they are unlikely
to because the simulation run had far less than 1014 itera-
tions. We hypothesise that the trend in Figure 5 continues:
analysis results are also slightly pessimistic for infrequent
events.

The advantage of probabilistic analysis over simulation
or monitoring is clear: in order to observe events at proba-
bilities as low as 10−14, we would expect to need to simu-

late for at least the reciprocal of this number of times. Based
on the simulator used here, this would take approximately
30 years of simulation, whereas the analysis took only sec-
onds.

In comparison with Navet [10], the analysis in this paper
is far less pessimistic. Navet shows the worst case dead-
line failure probability for frame 5, p(Ri > 50ms), with
λ = 30 to be approximately 0.045. According to our anal-
ysis, the probability of any frame being unschedulable is
insignificant. As the deadline was never approached in the
1,500,000 simulation runs, this shows that 0.045 is indeed
an overly pessimistic value3.

4.2 SAE Benchmark

The second case study used to evaluate the analysis is
Tindell’s widely published simplification [18] of the Soci-
ety of Automotive Engineers (SAE) benchmark [16]. The
messages appear in Table 3. There are 17 periodic data
frames with periods ranging from 5ms to 1s, release jitter
is neglected. At the bus speed of 125kbit/s, the utilisation
is about 85%, which is fairly high and therefore provides
a good basis for fault injection. The message set is only
just schedulable, frames 12, 9, 8 and 7 are particularly vul-
nerable to missing their deadlines because their worst case
response times are close to their deadlines.

Table 3. SAE CAN message set
Pri Bytes Ci Ti Di Ri

(ms) (ms) (ms) (ms)
17 1 0.480 1000 5 1.416
16 2 0.560 5 5 2.016
15 1 0.480 5 5 2.536
14 2 0.560 5 5 3.136
13 1 0.480 5 5 3.656
12 2 0.560 5 5 4.256
11 6 0.864 10 10 5.016
10 1 0.480 10 10 8.376
9 2 0.560 10 10 8.976
8 2 0.560 10 10 9.576
7 1 0.480 100 100 10.096
6 4 0.712 100 100 19.096
5 1 0.480 100 100 19.616
4 1 0.480 100 100 20.136
3 3 0.632 1000 1000 28.976
2 1 0.480 1000 1000 29.496
1 1 0.480 1000 1000 29.520

The analysis was performed with λ = 10 faults per sec-
ond and ε = 2.7 · 10−15. The results of the analysis are
similar in form to the previous case study, and are plotted in
Figure 6.

3The fault model used is similar to Navet’s (Poisson, same λ) so it is
appropriate to compare these values. Nevertheless, the models are different
(no burst errors) so a direct comparison should not be misinterpreted.



1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

1 2 4 8 16 32 64 128

1 
- 

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Response Time (ms)

Response Time Probability

17
16
15

14
13
12

11
10
9

8
7
6

5
4
3

2
1

Figure 6. Analysis of all frames (Set 2, λ = 10)

As the message set is only just schedulable, there is
opportunity to explore the probability of deadline failure.
The analysis results for message 15 appear in Table 4, ex-
pressed to 15 significant figures and are plotted (also with
the simulation results) in Figure 7. We find that the cover-
age from equation (15) is high, 1 − Q15 = 1.031 · 10−15

and the WCDFP for one invocation is then calculated as
1.431 · 10−5, this being an upper bound for the real prob-
ability of frame 15 missing a deadline. Again, the simula-
tions confirm that the analysis is slightly pessimistic in all
cases.

Notice that not all the lines in Figure 6 continue down
to the very low probabilities. This can be due to a combi-
nation of two factors: either the analysis does not consider
response times greater than the period of the message; or
the coverage is low. The probability at the lowest point on
a line can be interpreted as the probability of the message
being unschedulable, taking coverage into account.

Examples of both effects appear in this message set: the
high and mid-priority frames in Figure 6 (except the very
highest priority message) have high coverage but their re-
sponse times are very close to their periods and so have rel-
atively high probabilities of deadline failure, e.g. for mes-
sage 12, p(R12 > D12) = 0.0416. Therefore (depending
on the particular requirements of the system) the analysis
here would indicate that this message set is not acceptable.

For the lowest priority message in this example, the cov-
erage was somewhat lower than would normally be required
(1 − Q1 = 6.1139 · 10−9) and so the line stops around
this point even though the message is still easily schedula-
ble. This example frame shows the importance of checking
the coverage: in this case the coverage can be increased by
adjusting ε to provide analysis results of longer response
times.

Table 4. Message 15 (Set 2, λ = 10)
Ri pr(Ri)

(ms)
0 0

2.536 0.974.958.863.652.502
3.664 0.999,406,490,006,425
4.792 0.999,985,684,829,411
> 5 1.431,517,058,845,04e-05

1e-05

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6
1 

- 
C

um
ul

at
iv

e 
Pr

ob
ab

ili
ty

Response Time (ms)

Response Time Probability

Analysis
Simulation of Critical Instant

Figure 7. Analysis and Simulation for frame
15 (Set 2, λ = 10)

5 Conclusion

In this paper a new analysis has been presented which
provides a distribution of response times in a system with
a random process. It is applied specifically to CAN where
the effect of random network faults is considered. The anal-
ysis aims to remove pessimism where possible yet to avoid
optimism by considering worst case scenarios where it is
not feasible to consider exact or probabilistic performance.
The pessimism is not extreme; the analysis matches results
obtained by accurate simulation very closely.

The standard industrial practice of merely applying the
standard schedulability analysis [18] is not sufficient to be
able to guarantee performance in critical systems because
it relies on the assumption of a minimum inter-arrival time
between faults. This analysis allows that assumption to be
removed, instead using a probability distribution to model
faults more realistically.

The analysis can be completely automated, execution
times of the algorithm were no more than a few seconds
for the typical message sets used. Further, no changes are
required to the system in order to perform this analysis as
it models a standard CAN bus. Tool support can be pro-
vided in a way that is compatible with standard practice
tools which currently use Tindell’s schedulability analysis.



In comparison with previous similar work [10] this anal-
ysis does not suffer from the two major sources of pes-
simism described in section 2 (faults occurring after suc-
cessful transmission cannot affect the response time of the
frame, and the pessimistic assumption regarding the appli-
cation of the error overhead function to burst errors). Over-
all, our analysis produces probabilities many orders of mag-
nitude lower (less pessimistic) than previously predicted by
Navet.

This analysis can also be applied in other domains, for
example in processor scheduling to explore the effect of
external events (such as user interaction or data packet ar-
rivals) modelled as random sporadic tasks. The analysis
here is based on the non-preemptive model of CAN, but it
is trivial to adapt to a pre-emptive model.

5.1 Future Work

In the analysis, we consider only the invocation follow-
ing the critical instant as this is the worst case. However, the
other invocations in the hyper-period may have much less
interference than the worst case; therefore this is a source
of pessimism. We believe that a similar analysis can be pro-
duced which covers all invocations, progress has already
been made in this area. Another source of pessimism in the
analysis that could be avoided is consideration of faults al-
ways causing the maximum impact. The analysis can be
extended to consider faults which do not cause maximum
interference, such as those that happen during bus idle [7]
or when an error frame is already being transmitted.

The fault model used in this analysis is simplistic, con-
sisting of only single-bit errors. Other more complex fault
models published for CAN [14, 10] have some realistic
characteristics. This analysis may be extended to include
more complex fault models by considering the possibility
of having bursts of errors and multiple sources of interfer-
ence. However, we do not consider this extension here be-
cause multiple fault sources can often be modelled as one
source [5] and the effect of short burst errors is not much
worse than single-bit errors due to the considerable over-
head of a single bit fault.

Where the bursts are very long (e.g. as long as the period
of a message), the bus is inaccessible for so long that er-
ror recovery by retransmission is probably not appropriate,
therefore an analysis based on retransmission has no value.
In this situation, alternative error recovery protocols such
as can be provided by LST-CAN [4], FTTCAN [1] may be
more useful.

5.2 Acknowledgements

This work has been funded by EPSRC (UK), Rolls-
Royce and by the Spanish MCYT grant DPI2001-2311-
C03-02, which is partially funded by the European Union
FEDER program. Thanks also to the reviewers of this pa-
per for their helpful comments.

References

[1] L. Almeida and J. Fonseca. FTT-CAN: A network-centric
approach for CAN-based distributed systems. In IFAC 4th
Symposium on Intelligent Components and Instruments for
Control Applications, Buenos Aires, Argentina, Sept 2000.

[2] I. J. Bate. Scheduling and Timing Analysis for Safety Critical
Real-Time Systems. PhD thesis, Dept of Computer Science,
University of York, York, YO10 5DD, 1999.

[3] Bosch, Postfach 50, D-700 Stuttgart 1. CAN Specification,
version 2.0 edition, 1991.

[4] I. Broster and A. Burns. Timely use of the CAN protocol in
critical hard real-time systems with faults. In Proceedings of
the 13th Euromicro Conference on Real-time Systems, Delft,
The Netherlands, June 2001. IEEE.

[5] M. J. Buckingham. Noise in Electronic Devices and Sys-
tems. Series in Electrical and Electronic Engineering. Ellil
Horwood/Wiley, 1983.

[6] J. Charzinski. Performance of the error detection mecha-
nisms in CAN. In Proceedings of the 1st International CAN
Conference, pages 20–29, Mainz, Sept 1994.

[7] H. Hansson, C. Norström, and S. Punnekkat. Integrating
reliability and timing analysis of CAN-based systems. In
Workshop on Factory Communications Systems, Porto, Por-
tugal, Sept 2000. IEEE.

[8] International Standards Organisation. ISO 11898. Road Ve-
hicles – Interchange of digital information – Controller area
network (CAN) for high speed communication, 1993.

[9] R. T. McLaughlin. EMC susceptibility testing of a
CAN car. SAE Technical Paper 932886, SAE, 1993.
http://www.warwick.ac.uk/devicenet/publications.htm.

[10] N. Navet, Y.-Q.Song, and F. Simonot. Wost-case deadline
failure probability in real-time applications distributed over
controller area network. Journal of Systems Architecture,
46(1):607–617, 2000.

[11] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat. Using
bit-stuffing distributions in CAN analysis. In IEEE Real-
Time Embedded Systems Workshop at the Real-Time Systems
Symposium, London, UK, 2001.

[12] L. M. Pinho, F. Vasques, and E. Tovar. Integrating inac-
cessibility in response time analysis of CAN networks. In
Proceedings of the 3rd IEEE Workshop On Factory Commu-
nication Systems, pages 77–84, Porto, Portugal, September
2000.

[13] J. Proenza and J. Miro-Julia. MajorCAN: A modification
to the Controller Area Network protocol to achieve Atomic
Broadcast. In IEEE Int. Workshop on Group Communi-
cations and Computations. IWGCC. Taipei, Taiwan, April
2000.

[14] S. Punnekkat, H. Hansson, and C. Norström. Response time
analysis under errors for CAN. In Proceedings of RTAS
2000, pages 258–265, Washington DC, 2000. IEEE.

[15] J. Rufino. Redundant CAN architectures for dependable
communication. Technical Report CSTC Technical Report
RT-98-02, Instituto Superior Tecnico, NavIST Group, Lis-
boa, Portugal, 1998.

[16] SAE. Class C application requirement considerations. Tech-
nical Report J2056/1, Society of Automotive Engineers,
1993.

[17] M. J. Scholfield. Controller area network (CANbus).
http://www.mjschofield.com/, 2002.

[18] K. Tindell, A. Burns, and A. J. Wellings. Calculating con-
troller area network (CAN) message response times. Control
Engineering Practice, 3(8):1163–1169, 1995.

[19] J. Unruh, H. Mathony, and K. H. Kaiser. Error detection
capabilities of the CAN protocol. Technical report, Robert
Bosch GmbH, Stuttgart, Germany, Dec. 1989.


