
Applying Random Arrival Models to Fixed Priority Analysis

I. Broster∗, A. Burns
University of York, UK

{ianb, burns}@cs.york.ac.uk

Abstract

This paper addresses the use of a non-bounded interfer-
ence function caused by random arrivals in worst case re-
sponse time analysis. An outline of a probabilistic analy-
sis is presented which is based on a simple random arrival
model. The analysis produces a probability distribution of
response times. The analysis is derived from an analysis of
random faults on CAN and inherits some limitations from
this. We report this analysis as a stand-alone result and ob-
serve that for some systems this analysis can be directly ap-
plied. However, work is in progress to remove these limita-
tions.

1. Introduction

Worst case response time (WCRT) analysis can be used
to guarantee deadlines in a fixed priority scheduler. By con-
struction, it considers the the single worst case scenario (or
a scenario which is equivalently as bad as the worst case).
Thus, in WCRT analysis, it is necessary to place a bound
on all the components of the analysis (execution times, ar-
rivals, faults, jitter, blocking, interference etc.).

One of the fundamental assumptions that WCRT anal-
ysis makes is that the overhead of all process arrivals is
bounded. Typically, it is assumed that arrivals are periodic
or sporadic (i.e. with a minimum inter-arrival time, which is
equivalent to the periodic model in the worst case). However
for event-triggered systems which interact with the real-
world, it is not necessarily the case that a useful bound can
be placed on the arrival rate. Interrupt arrivals from exter-
nal sensors or network interfaces, for example, may have
no useful upper bound. The presence of transient faults is
another example; modelling the effect of transient network
faults is the original context of this analysis.

Assuming worst case bounds on all components of anal-
ysis is not only difficult (or impossible in some cases), but in
practical situations the analysis may simply return “no guar-
antees are possible”. However, running such a system might
show that deadlines are never (or rarely ever) missed. Thus,
while the analysis is correct: there are no guarantees (there
exists a scenario in which a deadline may be missed), the
analysis fails to describe the system adequately.

In previous publications [3, 1, 2], a probabilistic response
time analysis was developed for modelling the impact of
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transient faults caused by EMI on a CAN bus. It is not rea-
sonable to assume that faults have a bounded impact: the
presence of a fault at one instant does not guarantee that
there will be no faults in the next instant. The probabilis-
tic approach works very well in that domain. In this paper,
we apply the same basic approach to a general fixed prior-
ity scheduling environment.

The advantages of this probabilistic analysis are that it is
accurate, fast and simple. The disadvantage is that, in this
form, it can only consider one random arrival stream. Sec-
tion 2 explains how the original CAN analysis is applied to
fixed priority scheduling. Section 3 introduces a way to ap-
ply this for multiple streams.

2. Probabilistic Worst Case Response Time

This section describes the analysis approach. We begin
by a brief discussion of the CAN-based analysis, then de-
scribe it in the context of fixed-priority scheduling.

2.1. Modelling Faults in CAN

Broster et al.[3, 2] demonstrated that a probabilistic anal-
ysis approach can accurately model the impact on response
times of a random fault arrival model. A key characteristic
of a probabilistic analysis is that it is able to model the tail
of a distribution, with probabilities that are difficult to con-
sider using, for example, simulation or measurement tech-
niques alone. Experiments [1] with CAN show that the re-
sults of the analysis are accurate and do not exhibit signifi-
cant pessimism.

The fault model considered for the CAN analysis is that
faults arrive randomly with a Poisson distribution (this stan-
dard distribution models random arrivals in many domains
and is frequently applied to fault occurrences). Faults in
CAN are effectively like high-priority interference, much
like interrupts in CPU scheduling, although since a fault in
CAN also results in a frame retransmission the overhead of
a single fault has a larger impact than a typical small inter-
rupt.

The analysis technique (specifically, the version given
in [3]) is simple and has a low computational overhead to
calculate. As a number of other probabilistic approaches
emerge [5, 6], it is clear that the computational overhead of
probabilistic analysis can be significant. The approach for
CAN does not suffer this problem.

The overall result of the CAN analysis is a probability
distribution of response times. This can be represented as a



cumulative graph to provide a useful guide to the probabil-
ity of successful delivery of any frame.

2.2. Framework for Fixed Priority Scheduling

We introduce the analysis in the context of a general
fixed priority environment using the framework suggested
by Burns et al.[4]. Thus we begin with the familiar WCRT
equations. Following the general framework approach, we
may break the interference into parts. hpp(i) is the set of
processes with priority greater than i which have a bounded
arrival model, typically periodic (or periodic in the worst
case). Likewise hpn(i) is the set of processes with priority
greater than i which do not have a simple bounded interfer-
ence function. The worst case response time for a process i
is given by:

Ri = Ci +Bi +
∑

j∈hpp(i)

⌈

Ri

Tj

⌉

C j +
∑

k∈hpn(i)

Ak(Ri)Ck (1)

where Bi is the worst case blocking that process i can ex-
perience, Ti is the period of process i, Ci is the worst case
execution time of process i. Slightly different to original
framework[4], however, we use Ak(t) to be a random vari-
able with the meaning “the number of random arrivals of
event k in an interval of time t”.

2.3. Arrival Model

The original analysis for CAN deals with a single stream
of random fault arrivals. In CAN, the worst case overhead
of one fault is equivalent to any other (faults are neither spe-
cific to, nor related to, the frames they affect). Thus the in-
herent limitation of the CAN analysis, when applied to this
general framework, is that it deals with only one random ar-
rival stream. Multiple streams are considered in Section 3.
The rest of this section assumes one arrival stream.

We consider a random arrival model with a random dis-
tribution. A Poisson distribution is used, Ak ∼Po(λ ). The
Poisson distribution has the property that the distribution
is memoryless, which is required for the correctness of the
analysis. Therefore, we define the probability of exactly m
arrivals occurring in any time interval t as:

p(m, t) = pt(Ak = m) =
e−λ t(λ t)m

m!
(2)

The worst case overhead of each arrival of process k is
Ck. Therefore the function describing the non-bounded ar-
rivals is a random distribution:

Nk(t) =











0 with probability p(0, t)
Ck with probability p(1, t)
2Ck with probability p(2, t)
· · · · · ·

(3)

or more generally:

Nk(t) = Ak(t)Ck (4)

2.4. Pre-computing Response Times

As the example later in this paper will illustrate, the
shape of the probability distribution output is ‘stepped’. The
cause is the simple nature of the overhead function (3). It is
noted, therefore, that there are only a relatively small num-
ber of possible worst case response times that this analysis
will generate. A large number of different scenarios con-
tribute to the probability of each response time value; the
probability of each response time is the sum of the proba-
bilities of these scenarios.

Therefore, it is possible to pre-compute the set of pos-
sible response times up to some point (such as the period,
which is the limit of the analysis) and then calculate the pos-
sible scenarios which contribute to each response time.

Note that we use the notation Ri|m to mean the worst case
response time given that m events arrive before the process
completes an invocation. Pre-computing the response times
is done in the expected manner, by forming a recurrence re-
lation from equation (5) for all m up to the deadline, Di, or
period, Ti, such that Ri|m < Di ≤ Ti.

Ri|m = Ci +Bi +
∑

j∈hpp(i)

⌈

Ri|m

Tj

⌉

C j +mCk (5)

2.5. Scenarios

After pre-computing the possible worst case response
times, it is necessary to consider the scenarios that con-
tribute to each possible value. The following discussion of
these scenarios is useful to aid understanding of the scheme.

Equation (5) generates a set of non-overlapping intervals
over m, as shown in Figure 1. The notation e(n) is used
to denote the number of arrivals that occur in time inter-
val (Ri|n−1,Ri|n] (or (0,Ri|n] where n = 0).
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Figure 1. Possible Worst Case Response Times for
a Given Number of Faults.

Using the shorthand, 〈210〉 to mean the scenario e(0)=2,
e(1)=1, e(2)=0, Table 1 shows the scenarios which con-
tribute to a given response time1. Note that (for example)
the sequence 〈1020〉 cannot contribute to Ri|3, since the se-
quence begins 〈10〉 which contributes only to Ri|1 because
at time Ri|1, there has been only one arrival therefore the it-
eration of the WCRT equation terminates. It would be pes-
simistic to attach the scenario 〈1020〉 to the probability of
the response time for 3 arrivals, Ri|3.

1 The sequence of the number of scenarios which constitute each re-
sponse time grows rapidly. It begins 1, 1, 2, 5, 14, 42, 132, 429, 1430,
4862, 16796, 58786, 208012, 742900, and is known as the Catalan Se-



Response
Time

Possible Scenarios
(Shorthand)

Number of
Scenarios

Ri|0 〈0〉 1
Ri|1 〈10〉 1
Ri|2 〈200〉, 〈110〉 2
Ri|3 〈3000〉, 〈2100〉, 〈2010〉, 〈1200〉,

〈1110〉
5

Ri|4 〈40000〉, 〈31000〉, 〈30100〉, 〈30010〉,
〈21100〉, 〈21010〉, . . .

14

Table 1. Enumeration of Scenarios.

2.6. Efficient Probabilistic Analysis

From the precomputed response times, an efficient prob-
abilistic analysis can be used to find the probabilities of the
response times without enumerating all the scenarios. The
technique is presented in this section.

2.6.1. Calculating p(Ri|0) Considering the worst case re-
sponse time with no arrivals, Ri|0: p(Ri|0) is the upper bound
on the probability of arrivals not causing a process i to ex-
ceed this time. It is simply the probability that there are no
arrivals of the random stream in the interval (0,Ri|0]. As Ta-
ble 1 showed, this is the only possible scenario that can pro-
duce a response time of Ri|0.

p(Ri|0) = p(0,Ri|0)

2.6.2. Calculating p(Ri|1) For the response time Ri|1, i.e.
1 arrival, there is only one scenario which can cause this.
Table 1 shows this to be 〈10〉, there must be exactly one ar-
rival in (0,Ri|0] and no arrivals in (Ri|0,Ri|1]. The previous
section suggested that the probability of 〈10〉 may be calcu-
lated by summing the probabilities of the scenarios (just one
in this case).

However, an alternative approach is to begin with the
probability of having exactly one arrival in the interval
(0,Ri|1], which is p(1,Ri|1). This can occur in only two
ways: 〈01〉 or 〈10〉, of which only 〈10〉 is of interest. The
probability of scenario 〈01〉 is already partially calculated
because this is p(Ri|0) multiplied by the probability of 1 ar-
rival in (Ri|0,Ri|1].

p(1,Ri|1) =p(Ri|1) 〈10〉
+p(Ri|0)p(1,Ri|1 −Ri|0) 〈01〉

Hence:

p(Ri|1) = p(1,Ri|1)−p(Ri|0)p(1,Ri|1 −Ri|0)

2.6.3. Calculating p(Ri|m) Likewise, to calculate p(Ri|2),
is it possible to begin with the probability that there must
be exactly two arrivals in (2,Ri|2] and then exclude the sce-
narios where there were exactly 0 arrivals in (0,Ri|0], or ex-
actly 1 arrival in (0,Ri|1] since these scenarios would give

ries [7] given by the formula: (2m)!
m!(m+1)! where m is the number of ar-

rivals (as in Ri|m).

rise to smaller response times.

p(Ri|2) =p(2,Ri|2)

−p(Ri|1)p(1,Ri|2 −Ri|1)

−p(Ri,|0)p(2,Ri|2 −Ri|0)

The result is generalised as follows. The probability of
exactly m arrivals in Ri|m is derived directly from the Pois-
son distribution equation, p(m,Ri|m). However only some
permutations of arrivals can possibly lead to such a response
time. The permutations which cannot lead to Ri|m are those
which would lead to a response time Ri| j where j < m.

If there are j arrivals in (0,Ri| j] then (because there
are m arrivals in (0,Ri|m]) there must be m − j ar-
rivals in (Ri| j,Ri|m]. So, the probability of j arrivals in
(0,Ri| j] given that there are m arrivals in (0,Ri|m] is
p(Ri| j)p(m− j,Ri|m −Ri| j). This value can then be sub-
tracted from the probability p(Ri|m).

The resulting general equation for the upper bound on
the probability of worst case response time Ri|m is:

p(Ri|m) =p(m,Ri|m)

−

m−1
∑

j=0

p(Ri| j)p(m− j,Ri|m −Ri| j)
(6)

Finally, the probability of deadline failure for a process i
is given by equation (7).

pi( f ailure) = 1−
∑

∀m|Ri|m<Di

p(Ri|m) (7)

Implementation of this is trivial, so code is not shown.
A software implementation based on equations (5) and (6)
was used to calculate several examples shown next.

2.7. Probability Distribution

The immediate result of the analysis is a set of pairs
Ri = 〈ti,p(ti)〉. More usefully, a cumulative probability dis-
tribution can be plotted. The cumulative probabilities repre-
sent an upper bound on the probability of the corresponding
response time being exceeded.

An example from the original CAN-based analysis is
presented in Figure 2. It shows the general ’stepped’ shape
of the output for a number of different messages at differ-
ent priorities. Note that the lowest point on each line repre-
sents the probability of deadline failure, equation (7).

A further example illustrates the accuracy of the analy-
sis and also how the analysis can consider the tail of a dis-
tribution. The curved line in Figure 3 is generated by accu-
rate simulation, the other line is by analysis. The deviation
at low priorities is caused by the simulation not generating
the infrequent, but possible long response times.

3. Multiple Streams

The limitation of the analysis in Section 2 is that only
one random arrival stream can be accommodated. This sec-
tion explains why multiple streams is not trivial but gives
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Figure 2. Example of Analysis Output
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Figure 3. Comparing to Simulation

an intuition into how this scheme may be adapted for multi-
ple streams with random arrivals.

The fundamental difficulty with multiple streams is that
the number of combinations of different possible arrivals
can be very large. For example, considering only two ran-
dom streams, if we wish to find the probability of say Ri > d
then we would need to find all the possible combinations of
these two streams which can give rise to response times in
the range 0 to d. This might be expressed: Ri|0,0, Ri|1,0, Ri|0,1
etc. The complexity grows rapidly. Therefore, although en-
tirely possible in theory, the practical implications make this
approach redundant.

Next, we outline an approach to consider multiple
streams. From equation (1), we note that the interfer-
ence from arrivals for all random streams and non-random
streams are simply summed. Therefore, as far as any analy-
sis is concerned, we may neglect any indication of priority,
and just consider the set of processes with higher prior-
ity than the process under analysis.

Therefore, we may attempt to group together all the ran-
dom arrivals into a single arrival stream. Equation (4) for the
worst case interference function of these streams becomes:

N(t) = Aa(t)Ca +Ab(t)Cb + · · · (8)

These streams can be combined using the standard tech-
niques for making composite probability distributions, mod-
ified slightly since each original stream may have a differ-
ent worst case computation time (Ca etc.)

Finally, for this combined stream, the probability of indi-
vidual response times can be computed in a similar way to
before. However, given that the combined interference func-
tion is much more complex that before, it may also be nec-
essary to group a set of response times together into one
(slightly pessimistic) response time in order to maintain a
simple ‘stepped’ interference function.

The details of this approach are still to be finalised, but
we contend that this current work in progress will lead to
a practical analysis for random arrivals in fixed priority
scheduling.

4. Conclusion

In this paper, a probabilistic analysis, originally derived
for fault modelling on a network, has been applied to a gen-
eral fixed priority scheduling system. The analysis calcu-
lates the effect that random distributions of arrivals have on
response times. The analysis has uses modelling interrupts,
faults and other external interactions. The analysis has the
advantages that it is simple and not computationally expen-
sive too perform.

The original analysis for CAN was limited to one sin-
gle random arrival stream, which although useful in that do-
main (to model transient faults on a bus), becomes a limi-
tation in the general fixed priority framework. However, an
approach is also outlined which allows the analysis of mul-
tiple random streams.
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