
Dependency Patterns and Timing for Grid

Workloads

Andrew Burkimsher

Department of Computer Science, University of York

Abstract

This paper presents a set of patterns of dependencies for grid computing work-
loads abstracted from an industrial case study. In addition, algorithms are pre-
sented that generate task execution times and arrival times to match desired
statistical properties. This is as a part of the research performed by the author
on the creation of a simulation environment with which to compare and evalu-
ate the performance of di�erent schedulers on a grid system. The ultimate aim
of this research is to improve throughput and reduce response times of work
submitted to a grid using improved scheduling algorithms.

1 Introduction

Computing power has become ever cheaper over the past half-century following
an observed pattern known as Moore's Law [14]. However, many kinds of aca-
demic and industrial endeavour bene�t from as much computing power as pos-
sible. In recent years, increases in computing power have been gained through
increasing parallelism [5].

Where there is su�cient demand for compute power, datacentres have been
created to house these parallel computing nodes [13]. Unfortunately, datacenters
are limited in size by the availability of electrical power and cooling in a single
location [15]. Therefore, networks of geographically distributed datacenters have
been created in order to provide the computing capacity required [11]. These
networks are known as grids. In the model considered by this paper, many work-
loads may execute concurrently on a grid. In order to ensure good performance
of a grid, the work done must be carefully scheduled.

It has been shown that �nding an optimal schedule is NP-complete in the
general case [9]. Therefore in any system of realistic scale, heuristic scheduling
policies have to be used. Where dependencies are present in the workload, some
`simple' scheduling policies such as First In First Out (FIFO) exhibit undesirable
emergent e�ects known as `anomalies' [10,17]. [10] showed that reducing the
number of dependencies, reducing task execution time and increasing the number
of processors can all lead to an increase in total workload execution time when
using a FIFO scheduler. [17]showed that network delays can mean that executing
a workload on a multiprocessor would take longer than on a uniprocessor.

A wide variety of scheduling heuristics have been proposed [2]. The ultimate
aim of this research is to develop a framework with which to simulate grids in
order to compare the performance of schedulers. The simulation will be com-
posed of three fundamental models: an application model, a platform model and
a scheduling model. In this structure, the grid hardware is represented by the
platform model. The workload executed by the grid is represented by the appli-
cation model. The scheduling algorithm is captured in the scheduling model.

This paper is about the creation of workloads as part of the application
model. Pertinent literature will be summarised. The DAG shape patterns used
in taskset generation, along with algorithms to generate them will be presented.
Algorithms to generate workloads where both jobs and task execution times
follow desired statistical distributions will be proposed. Finally, algorithms will
be proposed to adjust the arrival rate of the work in reference to the ability of a
grid to service the work (stability ratio), while keeping the workload otherwise
equal. Limitations of the work along with future research directions will be noted.

2 Literature Review

To utilise the computational power a�orded by grids, the work must be paral-
lelised. Some kinds of computational work scale naturally to being run in a highly
parallel way. However, real-world grid workloads are not like this. They tend to
have sections that can be parallelised but others that must run in sequence.

Some nomenclature will now be introduced, following the scheme of [4]. In-
dependent packages of work are known as jobs. Within a job, the sections of
work are known as tasks. Each task runs on a single processor and consumes
some input and produces some output. Where one task's input includes another
task's output, a dependency is de�ned.

There has been much study of the scheduling of dependent task sets in the
literature; notable examples include [10,12,16]. The general notion of dependen-
cies in the literature is to consider the dependencies to be representable by a
Directed Acyclic Graph (DAG) structure. The acyclic nature of the dependen-
cies means that the computation time of each workload is bounded. The nodes
in a DAG represent tasks and edges represent dependencies between tasks.

Although many authors have mentioned the use of a DAG structure for work-
loads [12], there is scant mention in the literature of the actual structure of these
DAGs and how to generate them [7]. This paper will elaborate several classes
of DAG structure in Section 3. These structures are abstractions of patterns
observed in an industrial case study.

The dependency structure alone, however, does not de�ne a grid workload
as the execution times of tasks must also be de�ned. When generating large
numbers of workloads to use in the comparison of schedulers, it is important
that the workloads generated have certain statistical properties, so that they
form a fair comparison [7]. Algorithms to generate workloads with appropriate
statistical distributions of both job and task execution times will be described
in Section 4.

3 DAG shape classes

The exact parameters of real-world workloads are unlikely to be known in ad-
vance. Therefore, a successful grid scheduling policy should be able to perform
well across a wide range of workloads. To evaluate schedulers, therefore, a wide
range of workloads must be generated. However, the workloads generated should
also contain a fair representation on the kinds of workload likely to be encoun-
tered by the scheduler in production use.

The workload DAG patterns presented in this section were developed from
an industrial case study. The industrial case study was of a production system
that takes CAD models and performs computational �uid dynamic calculations
with them in order to produce predictions of aerodynamic characteristics. Work-
�ows are speci�ed in advance, and these work�ow task graphs can be inspected.
After inspection, general patterns were observed by the author and are presented
below. To the best of the author's knowledge, all the patterns except the linear
chains pattern are novel and have not been previously described in the literature.
Pseudocode algorithms for generating these DAG shapes are also speci�ed.

3.1 Linear Dependencies

The most basic DAG dependency pattern is that of linear dependencies. This is
when there is a single chain of purely sequential tasks with dependencies between
them, as shown in Figure 1a. However, this pattern could well be considered
unrealistic for a grid workload. This is because grids tend to perform best on
parallel workloads, so it is highly unlikely that a substantial part of any real grid
workload would be composed of linear dependent chains of work. Nevertheless, if
it were, an appropriate scheduling policy could be a pipeline arrangement. The
pseudocode to set up dependencies like this is shown in Algorithm 1.

3.2 Probabilistic dependencies

Sometimes it is desired to have a certain proportion of the possible dependencies
present in a workload. If it is desired that these dependencies are randomly
sampled from the set of possible dependencies, the probabilistic dependencies
method can be used. The pseudocode algorithm for this is shown in Algorithm
2. Two sample task graphs are shown in Figure 1d.

This algorithm has the advantage that the shape of the dependency graph
can vary signi�cantly, and given enough samples should provide a wide variety of
shapes with which to exercise a scheduler. However, there is a strong likelihood
when low probabilities are used that the dependency graph for each job can
have disconnected sections. By the de�nition given earlier, disjoint dependency
graphs should really be represented as separate jobs.

Although the job could be split into two separate jobs, or have the disjoint
sections connected with additional dependencies, this may interfere with the sta-
tistical properties desired in the workload. It could be possible to simply discard

jobs that where the graph has disjoint parts. However, as the probability is de-
creased then an increasing number of jobs may be discarded, to the point where
it may become impractical to generate workloads this way because too many
jobs are being discarded. As the probability is increased, this method approxi-
mates the linear dependencies model (if transitive dependencies are removed).
For all these reasons, this method is only really suited to probability values in
the middle of the probability range.

3.3 Independent Chains

Many workloads are parallelised by applying the same sequence of operations
to di�erent chunks of data. Each chain is one following the linear dependencies
pattern. This is inspired by the MIMD (Multiple Instruction Multiple Data)
parallelism pattern. As observed in an industrial case study, these chains need to
be spawned by an initial setup task. Their results are then collected up by a �nal
task. A diagram showing this arrangement is shown in Figure 1b. Pseudocode
for generating such a con�guration is shown in Algorithm 3.

3.4 Diamond

The diamond pattern as shown in Figure 1c is similar to the independent chains
model, but where the spawn-out of independent chains does not take place all
at once, but requires several stages to perform. It could also be considered like a
complete binary tree branching out to the maximum width, and then condensing
down again to collect up the data. Pseudocode for de�ning these dependencies
is given in Algorithm 4.

3.5 Dependencies over blocks

A single generation of the independent chains or diamond pattern can be con-
sidered as a block. A block is a subset of the tasks in a job with a single starting
and a single �nishing task. Workloads can be composed of dependencies between
blocks. The existing patterns shown can then be extended to also cover blocks.
The �rst and last tasks of each block are given the incoming and outgoing de-
pendencies of the whole block. These blocks then become building blocks for
more complex DAGs. Where a compositional approach is used with blocks, it
becomes possible to represent arbitrary DAGs.

A prevalent shape of workload observed in the industrial case study was that
of linear chains of blocks, where the blocks followed the independent chains pat-
tern (Figure 1e). This is observed where each stage of the workload can be
parallelised, but the data between each stage may need to be collated and trans-
mitted before the next stage of execution can commence. These patterns can
be particularly challenging to schedule e�ciently because of the multiple bottle-
necks between the blocks. However, they are important to study when comparing
schedulers, because they represent a signi�cant fraction of the workload observed
on some industrial grids.

Algorithm 1 Pseudocode for the Linear Dependencies pattern

n = number o f ta sk s
task [1] . dependenc ies = {}
f o r t a sk id in [2 to n]

task [t a sk id] . dependenc ies = { task [task id −1]}

Algorithm 2 Pseudocode for the Probabilistic Dependencies pattern

n = number_of_tasks
p = dependency_probabi l i ty
f o r t a sk id in 1 . . n :

f o r possible_dep_id in ta sk id . . n :
i f p <= random () :

t a sk s [t a sk id] . dependenc ies . add (
ta sk s [possible_dep_id])

Algorithm 3 Pseudocode for the Independent Chains pattern

a l l_ta sk s = empty l i s t o f t a sk s
task_inner_matrix = 2−d matrix o f ta sk s o f shape

(num_chains by chain_length)
f o r x in 1 . . num_chains :

f o r y in 2 . . chain_length :
task_inner_matrix [x] [y] . dependenc ies . add (

task_inner_matrix [x] [y−1])
a l l_ta sk s . add (task_inner_matrix [x] [y])

f o r x in 1 . . num_chains :
task_inner_matrix [x] [1] . dependenc ies . add (i n i t i a l_ t a s k)
f i na l_ta sk . dependenc ies . add (

task_inner_matrix [x] [chain_length])
a l l_ta sk s . add (i n i t i a l_ t a s k)
a l l_ta sk s . add (f i na l_ta sk)
re turn a l l_ta sk s

Algorithm 4 Pseudocode for the Diamond pattern

d = diamond_edge_length
task_matrix = 2−d matrix o f ta sk s with dimensions d ∗ d
f o r x in 1 . . d :

f o r y in 1 . . d :
i f x > 1 :

task_matrix [x] [y] . dependenc ies . add (
task_matrix [x−1] [y])

i f y > 1 :
task_matrix [x] [y] . dependenc ies . add (

task_matrix [x] [y−1])

1

2

4

3

5

(a) Linear
Dependencies

...
Chain

Length

Number
of chains

(b) Independent Chains (c) Diamond

0 1 2 3 5

4 6

879

01 2 3 6

7 4

8

5

9

(d) Probabilistic Dependencies
(T = 10, P = 0.3)

(e) Chain of Blocks

Fig. 1: Dependency DAG shapes

4 Execution Times and Stability

Section 3 describes the shape of the DAG of a workload's dependencies. However,
the execution times of each task within the workload must also be speci�ed, as
must the arrival time of each job. The scheduler must know this information in
order to be able to make appropriate scheduling decisions. This section will �rstly
describe ways of generating workloads with task and job execution times that
conform to a desired statistical distribution. Secondly, an algorithm is described
to set the arrival time for each job to ensure a given stability ratio.

4.1 Distribution of Execution Times

According to the model de�ned above, each task has a speci�ed execution time.
These task execution times need to be generated in such a way that the workload
has statistically robust properties [8].

The simplest method of assigning execution times to all the tasks in the
workload is simply to generate a random number in a given range for each task.
However, this means that where jobs are composed of a similar number of tasks,
they will also have a similar total execution time [1].

When generating many workloads that are comparable, it is highly desirable
to be able to create them with the same total workload sum of execution times.
In order to create job execution times that all sum to a given value, the UUnifast
algorithm as originally described by [1] is appropriate. In the UUnifast algorithm,
n−1 execution times are sampled from a logarithmic distribution. The �nal value
is then the di�erence between the sum of all previous values and the target value.

In the industrial case study it was observed that job execution times followed
a logarithmic distribution, whereas task execution times followed a normal distri-
bution. Yet in order to satisfy the job execution time distribution, the execution
time of the tasks in a job must sum to a particular value. This distribution is
created using a similar approach to UUnifast where n − 1 values are sampled,
but from a normal instead of a logarithmic distribution. The last task execution
time value is calculated, as before, to achieve the speci�ed job execution time.

4.2 Stability

Stability can be measured by the percentage rate at which work is arriving into
a grid compared to the maximum rate that the grid can process this work. The
arrival rate is said to be stable if the arrival rate is less than the maximum
processing rate (<100%), and unstable if the arrival rate is faster than the rate
at which work can be processed (>100%) [3].

Grids are virtually always run at close to 100% stability ratio. Because the
procurement and operational cost of a grid is very high, the operator is highly
unlikely to over-buy resources for a grid. In addition, many computational loads
can occupy as much computing power as is available. In many industrial grids,
the stability ratio �uctuates around 100%. There may even be extended periods

Algorithm 5 Pseudocode to de�ne job arrival time with varying stability ratio

n = number o f p r o c e s s o r s in system
jobcount = number o f j obs in workload
sumj (i) = the sum of a l l task execut ion t imes in job i
p = de s i r ed s t a b i l i t y r a t i o as percentage
s t a r t (i) = s e t the s t a r t time o f job i

s t a r t (1) = 0
f o r j in 2 . . jobcount :

s ing l eprocworkt ime = sumj (j − 1) / n
decimalp = p / 100
s t a r t (j) = s t a r t (j−1) + (s ing l eprocworkt ime / decimalp)

where the rate is over 100%, and the extra work must be queued. Therefore, it
is necessary to be able to compare schedulers over a range of stability ratios.

A stability ratio for a workload can only ever be de�ned with relation to a
platform, yet it is desirable to be able to adjust the stability ratio independently
of the workload and platform. This can be achieved by adjusting the arrival
times of jobs. The algorithm for calculating the arrival times of each job for a
given platform and workload is given in Algorithm 5.

An alternative method for generating a workload is by specifying a duration of
time for which the speci�ed platform would be at 100% utilisation. The time slots
on each processor are then divided up using the UUnifast-Discard algorithm, as
presented by [6]. Each time slice on each processor then corresponds to a task.
Each task is then randomly assigned a job to belong to. To vary the stability
ratio for this method, the requested and actual �nish time of the whole workload
can be adjusted accordingly.

5 Conclusion

A summary of the issues surrounding Grid Scheduling were described, along with
the background that motivates the work of this paper. Classes of Directed Acyclic
Graph shapes and patterns that could be useful for evaluating the performance
of schedulers were described, and algorithms for generating these patterns were
shown. Algorithms for creating workloads with realistic distributions of task
and job execution times were presented. The issue of stability was described, as
were two methods of creating workloads with a given stability level for given
platforms.

Several areas of future extensions to this work are possible. There may be
more possible patterns of DAG that could be deduced from further case studies.
Other workloads may demonstrate distributions of job and task execution times
other than logarithmic and normal, respectively.

The performance of the implementation of these algorithms should be evalu-
ated. The algorithms presented here for generating workloads can struggle with a

high rate of discarding when certain parameters are set to extremes. Investigation
into algorithms that still produce tasks and jobs with the desired distributions
but eliminate or minimise the discard rate would also be valuable to increase the
e�ciency of workload generation. From a scheduling aspect, determining which
schedulers are best suited to working with each kind of task graph shape is an
ongoing topic of research.

The work presented in this paper is intended to demonstrate the algorithms
used in the creation of an application model. This application model, when com-
bined with a future platform model, will be used to compare di�erent scheduling
policies as to their e�ectiveness on a variety of grid workloads.

References

1. E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests.
Real-time Systems, 30:129�154, 2005.

2. P. Brucker. Scheduling Algorithms. SpringerVerlag, 2004. ISBN 3540205241.
3. S. J. Chapin. Distributed and multiprocessor scheduling. ACM Comput. Surv.,

28(1):233�235, 1996. ISSN 0360-0300.
4. D. E. Collins and A. D. George. Parallel and sequential job scheduling in het-

erogeneous clusters: A simulation study using software in the loop. Simulation,
77(5-6):169�184, 2001.

5. B. Dally. Life after moore's law. Forbes.com, April 2010.
6. R. I. Davis and A. Burns. Priority assignment for global �xed priority pre-emptive

scheduling in multiprocessor real-time systems. Real-Time Systems Symposium,
IEEE International, 0:398�409, 2009. ISSN 1052-8725.

7. P. Emberson. Searching For Flexible Solutions To Task Allocation Problems. Ph.D.
thesis, University of York, UK, 2009.

8. P. Emberson, R. Sta�ord, et al. Techniques for the synthesis of multiprocessor
tasksets. In 1st International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), pp. 6�11. Jul. 2010.

9. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

10. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:416�429, 1969.

11. C. Kesselman and I. Foster. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers, Nov. 1998. ISBN 1558604758.

12. M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algorithm
for heterogeneous computing systems. In HCW '98: Proceedings of the Seventh
Heterogeneous Computing Workshop, p. 57. IEEE Computer Society, Washington,
DC, USA, 1998. ISBN 0-8186-8365-1.

13. R. Miller. Special report: The world's largest data centers. April 2010.
14. G. E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8):114�117, Apr. 1965.
15. V. Salapura. Next generation supercomputers. IBM.com, October 2007.
16. A. Schoneveld, J. F. de Ronde, et al. On the complexity of task allocation. Com-

plex., 3(2):52�60, 1997. ISSN 1076-2787.
17. S. Selvakumar and C. S. R. Murthy. A list scheduling anomaly. Microprocessors

and Microsystems, 17(8):471 � 474, 1993. ISSN 0141-9331.

