
A Characterisation Of The Workload On An Engineering Design Grid
Andrew Burkimsher, Iain Bate, Leandro Soares Indrusiak

Department of Computer Science, Deramore Lane, University of York, Heslington, York, YO10 5GH, UK
{amb502, iain.bate, leandro.indrusiak}@york.ac.uk

Keywords: Workload Characterisation, Workload Generation,
Grid Computing, Engineering Design, Dependencies
Abstract
Computer-aided engineering design uses simulations to explore
a design space and identify promising regions. The hierarchical
structure of the engineering design process suggests distinctive
workload patterns that we believe are common in industry, yet
have been little captured by previous characterisations. Selecting
a scheduling policy that is ill-suited to the workload it serves may
lead to poor performance. This paper characterises the workload run
on the private grid of a large aircraft manufacturer over a period of
30 months. Cycles of load at daily and weekly scales are observed,
and there are extended periods where the grid operates at saturation
and work must queue. A method of creating workloads containing
such cycles at a given total load percentage by adjusting inter-arrival
times is given. Task execution times are demonstrated to be dis-
tributed in a log-uniform way, and an algorithm is given to generate
execution times following this distribution. Graphs of dependencies
between tasks are shown to have variation in node degree
greater than that of random graphs, and a process of constructing
dependency graphs following the observed distribution is described.

1. Introduction
High-Performance Computing systems (HPCs) made up of

a large number of parallel processors have become ever more
popular in recent years, due to their ability to provide significant
computing capacity at a relatively low cost. Where a single HPC
cluster cannot satisfy an organisation’s desire for computing power,
geographically-distributed networks of such clusters have been
created, and these are known as grids.

The activities undertaken on grids support industrial operation,
and the grids’ performance is key to enabling the productivity of
their users. Grid scheduling to meet this performance demands
is an area of much research. The selection of the most appropriate
scheduling policy, however, can only be made in the context of
the workload run and the requirements of users. An inappropriate
or poorly tuned scheduling policy can cause performance to
suffer. Proper evaluation of scheduling policies therefore requires
appropriate workload characterisations [1].

Computer-aided engineering design is a growing field, as more
computational capacity becomes available and simulation tools
become more refined. The engineering design process follows the
hierarchical decomposition model - the classic divide-and-conquer
pattern. The composition of work leads to simulation being
necessary at all levels of detail - from small simulations for small
problems, to large-scale simulations for validation of the final
compositions. We believe that workloads similar to the one studied
are necessary across all kinds of engineering problems.

Workloads with a wide variation in execution times can pose
particular problems for classes of scheduler that do not consider
execution times [2]. This is because it is not usually desirable for

a task that takes a few minutes of execution time to ever queue
behind one that takes weeks or even months.

This paper will characterise the workload run on the private grid
of an engineering corporation whose primary business is that of
the design and manufacture of aircraft. In order to meet the need
for quicker turnaround times than are available from wind tunnels,
a large amount of early-stage design now takes place with CFD
simulations. This corporation engaged the authors to study the work-
load placed on their grid, with the ultimate aim of improving the
performance of the workflows that execute on the grid. Logs were
provided for a period of 30 months up until the end of August 2012.

To generate realistic workloads, several aspects are required. This
paper considers the inter-arrival times and size of tasks along with
the internal dependency structure of jobs (collections of tasks). The
size of tasks is shown to follow a log-uniform pattern. The rate of
task arrival is shown to follow daily, weekly and seasonal patterns.
The grid spends significant periods of time in a saturated state. The
internal dependency graphs have a high variation in node degrees.

The paper will summarise related work. A detailed characterisa-
tion of the workload is undertaken, based on log files obtained from
the partner, including submission patterns (Section 2.) and execution
volumes (Section 3.). The structure of dependencies within the
workload is presented (Section 4.). In some figures, the scales on
the axes have been obscured to protect the interests of the industrial
partner, although this does not influence the trends and distributions
observed. Algorithms to generate synthetic workloads matching the
observed distributions and structures are presented in each section.
1.1. Related Work

Although workload characterisations of web services and
research-oriented grids are well-represented in the literature, there
is little in the way of characterisations for engineering design
workloads. Some recent examples of web service characterisations
include [3, 4]. However, web services tend to run well below their
maximum possible utilisation, so as to have the capacity to scale
up with peaks in traffic. An overall utilisation of just 6% is noted
by [3], 5-10% by [5], while average of 50%, rising to 70% at peak
was observed by [4]. Utilisations this low pose little challenge to a
scheduler, as tasks can run immediately. Workload characterisations
also exist for research-oriented grids, where [6] and [7] observed
utilisation between 90 and 100%, where the implication is that
tasks usually queue for some time (or pend) before execution.
Where tasks queue and the grid is saturated, the scheduling policy
to manage the queue becomes important.

The management of the queue is especially important in where
there is a wide variation in runtimes. [6] and [1] observed that many
workloads have a large number of small tasks that contribute only
a small fraction of the load. Conversely, only the small proportion
of large tasks contribute the bulk of the load. Effective prioritisation
by the scheduler is required to keep the system responsive for the
smallest tasks but also to avoid starvation for the largest ones.

639

The patterns in arrival times over working days and weeks were
noted by [6], [1] and [7]. It comes as no surprise that the peak of
task submissions appear during normal working hours. This feature
of academic grids is in contrast to the web workloads, where peaks
appear before and after usual working hours [4]. [6] had a roughly
even distribution of tasks between the working days, whereas [7]
had a high peak on Mondays, which decreased during the week.

Much work has been performed on how to schedule in the
presence of dependencies between tasks on a grid [8] and how
they can be modelled using Directed Acyclic Graphs [9]. However,
the difficulty of scheduling DAGs on a grid depends significantly
on the structure of dependencies within such graphs and the
opportunity or otherwise of extracting parallelism. Little work
seems to be have been performed on characterising the dependency
structures within grid workloads. Examples of structured graph
topologies were given by [10], but these looked at the internal
structure of algorithms, rather than that of workflows. In Section
4., we present dependency graphs from the industrial workload
and characterise them using graph-theoretic metrics.

2. Working pattern of designers
The users who place the vast majority of the load on the grid

are the designers. These people work in a way which could be
considered typical for an engineering group. The staff in the design
team follow many natural rhythms in their work. This section will
describe the rhythms found in the submission and execution of
work on the partner’s industrial grid. The figures throughout this
paper were created using the data from the 30 months of log files.

2.1. Submission Cycles
The most basic cycle is that related to the working day. Figure 1

displays the number of tasks submitted per 15-minute block through-
out the day, averaged over the whole workload sample. The highest
rate of submission is during working hours (08:00-17:00). There is a
distinct drop in the middle of the day when workers break for lunch.

The pattern observed fits with similar observations of such daily
rhythms in [11, 12, 3]. It is natural that the lowest level of work
submission is overnight, when most workers are sleeping. There
is a baseline level of work submissions even when no-one is at
work, as the result of automated scripts. As the users only work
Monday-Friday, submission peaks only appear on those days, in
contrast to the observations of [3].

The rate of task arrival per hour can be normalised to a probabil-
ity mass function (pmf) by dividing the counts by the total number
of tasks submitted. Table 1b gives the pmf values for arrivals on
each day of the week. There were too many samples made on the
time of day to give the pmf value for each time, so instead, the
coefficients of a polynomial fitted using the least-squares method
are given in Table 1a. Counts were grouped into 15-minute bins
over 24 hours, giving 96 samples for the mass function.

The results returned by the jobs with the smallest execution
times (minutes up to a few hours) can usually be analysed by the
users within the same day, if they arrive in time. However, many
results take longer to calculate, so designers follow a daily design
cycle instead. They tend to expect results to be ready when they
arrive at work. They then analyse results and work on new designs
during the day before submitting more simulations at the end of
the working day.

Figure 1: Daily Submissions and Queueing

for 0 y < 24, y = �1.85x7 ·10�4

3.41 ·10�3 +1.88x8 ·10�5

�1.29x ·10�2 �1.34x9 ·10�6

+3.06x2 ·10�2 +6.62x10 ·10�8

�3.13x3 ·10�2 �2.24x11 ·10�9

+1.73x4 ·10�2 +4.93x12 ·10�11

�5.82x5 ·10�3 �6.38x13 ·10�13

+1.26x6 ·10�3 +3.67x14 ·10�15

(as shown in Figure 1)
(a) Daily

Mon 0.167
Tue 0.191
Wed 0.192
Thu 0.198
Fri 0.187
Sat 0.042
Sun 0.012

(b) Weekly

Table 1: Probability Mass Functions for Submission Rates

Achieving responsiveness to serve these cycle times is
paramount, because jobs that are ‘late’ affect the productivity of
designers. The stages of aircraft design usually have fixed time
budgets that the designers have to work to. The quality of a design
is usually determined by the number of iterations the designers
can perform within the given time frame.

Most of the time, more work is submitted during working hours
than can be processed immediately. Instead, work queues up during
the day and this queue is drawn down overnight (Figure 1). This
build up of work also happens over the scale of a week (Figure
2, averaged over log duration), where the queue length increases
during the week, and is drawn down again at the weekend. From
this, it can be seen that the grid spends a significant proportion
of its time in a saturated utilisation state.

Submission Cycle Generation
These distinct patterns of variation in submissions pose

significant challenges to schedulers, especially when the load is
high enough to lead to periods of platform saturation. In order to
properly evaluate scheduling policies, it is necessary to generate
workloads that follow these patterns.

Previous work by [13] gave a method of adjusting the target load
on a cluster by varying the inter-arrival times of jobs. This approach
is advantageous, because it allows schedulers to be evaluated
with the same workload at different loading levels. However, the

640

Figure 2: Weekly Submissions and Queuing

Algorithm 1 To generate submission patterns by changing
inter-arrival times

Symbol Parameter
c Number of processing cores in the system
l Desired loading factor (full load = 1)
j Array of all jobs in workload

ji
exec

Total load (core-seconds) of Job ji

ji
sub

Submit time of Job ji
pmf

day

(h) Probability mass function of arrivals
over a day (by hour), such as in Table 1a

pmf
week

(d) Probability mass function of arrivals
over a week (by day), such as in Table 1b

set_arrival_times(c, l, j, num_samples) :
id, binid, last_fill, last_sub, time_increase= 0

fordayin0..6 :
forsmpin0..num_samples :
min_bin[id] = 60 ·24 ·7 ·pmf

day

(day) ·pmf
week

(smp)
id= id+1

for ji in j :
newmins= ji

exec

c·l
binfill= last_fill+newmins

ifbinfill< min_bin[binid] :
last_fill= binfill

time_increase= 60
num_samples ·

newmins

min_bin[binid]
else :
acc= 0

whilebinfill� min_bin[binid] :
acc= acc+ 60

num_samples ·
min_bin[binid]�last_fill

min_bin[binid]
last_fill= 0

binfill= binfill�min_bin[binid]
binid= (binid+1) modid

last_fill= binfill

time_increase=acc+ 60
num_samples ·

binfill

min_bin[binid]
last_sub= last_sub+time_increase
ji
submit

= last_sub

Figure 3: Daily Utilisation

algorithm they suggested is limited to giving a constant-load arrival
rate. The patterns we have demonstrated here would be poorly
modelled by such an approach.

However, their approach can be extended in order to model
the arrival patterns over a working day and a working week. Their
approach for load levels involves calculating the arrival time of the
next job in a generated workload, and increasing or decreasing this
time dependent on the desired level of load. Algorithm 1 presents a
method that sets arrival times for every job in a workload by using
probability mass functions (pmf) for the time of day and day of
week. It works by calculating what the next arrival time would
be if the current job could be perfectly parallelised across the whole
grid. This new time point is then scaled on the load level desired
and the pmf of the daily and weekly load distributions.
2.2. Grid Utilisation Cycles

In this section, we investigate the utilisation of the grid over
the course of a day and week. This is done using distributions
of utilisation for each hour or day encountered in the logs. In
calculating the utilisation, only the fraction of time used by any
task running within that hour or day was counted.

Figure 3 shows the distribution of utilisation of the cluster cores
by time of day. This chart shows the utilisation of all cores in the
grid, including those of specialised architectures. Above about
80%, some work will be almost certainly be queueing, because it
is limited as to which cluster or architecture it can run on. When a
multicore task heads the queue, the current scheduling policy waits
until sufficient cores are free before starting the task. This means
that full utilisation of the grid is almost unachievable and that tasks
will be queuing well below 100% utilisation on some clusters.

There is significant variation because of the large number of
days that were sampled. However, the variance decreases at the
end of the day, showing how cluster utilisation rises to saturation
at the end of every working day. The work submitted each day
is only caught up on overnight, reinforcing the impression from
Figure 1. The lowest point of utilisation tends to be around the time
people arrive at work in the morning, when work has been caught
up on overnight. This is in distinct contrast to [12], who observed

641

Figure 4: Weekly Utilisation

peak utilisations of around 30%, or [5] with a utilisation of 10%.
This cycle of queue buildup during working ours is manifest on a

weekly basis as well (Figure 4). Only Sunday and Monday have me-
dian utilisations much below saturation point. During the week, the
average utilisation increases as more work is submitted during each
working day than can be processed by the next day (corroborated
by the average queue length in Figure 2). Monday has somewhat
lower average utilisation because the most likely times for the grid
to have any idle time is before the staff arrive on Monday morning.

In such a sizeable grid, tasks will be arriving and finishing at
a fairly high rate. Figure 5 shows the probability of having to wait
longer than a certain number of minutes for a task to arrive or
finish. Because of the high variability in arrival rates, sometimes the
arrival rates are very high. This is why the the probability of having
to wait a long time for the next arrival of a task is low. Above about
120 minutes, the daily, weekly and seasonal cycles mean that there
is more variability in the arrival rate, giving a higher probability
of waiting longer for the next task to arrive than finish.

The finish rate of tasks is more constant, which is why the
probability of a task finishing in a given time is lower under about
120 minutes. However, the probability of finish is still remarkably
high, with a 10% chance of waiting longer than 10 minutes for the
next task to finish, to 0.1% for 1000 minutes. Beyond 1000 minutes,
the lines become aliased because of the very few occurrences of
there ever being wait periods this long.

In summary, the findings of this section are that work is submitted
in cycles following the rhythm of working hours. During working
hours, work is submitted faster than it can be processed, and queue
length increases accordingly, only being drawn down outside of
working hours. The grid therefore spends a great deal of its time in
a saturated state. Due to the large volumes of work passing through,
the inter-arrival and inter-finish times of work are low.
3. Workload Composition

Engineering designs are made by hierarchically decomposing
the problem into small parts, and then composing the completed
designs until a final, complete design is reached. Early stage
designs require low-fidelity and so need only a small amount of

Figure 5: Inter-arrival & inter-finish time probabilities

computation time for each CFD simulation. However, these are
iterated over quickly (up to several iterations per day) and so there
are many small tasks. As designs progress, the models considered
get more complicated and require greater fidelity. This naturally
requires more compute time for simulations. The largest jobs
used for certification of an entire aircraft in full fidelity are very
compute-intensive, and may need to execute over many months.

The characterisation in this section demonstrates that the
hierarchical composition of the design process gives a workload
that follows exponentially-distributed patterns. Notably, this is
in contrast to previous research that has suggested alternative
distributions of work found in large-scale grid systems [5], who
observed a log-normal distribution.

3.1. Volume
Figure 6 shows the execution times of all the tasks in the

2.5-year workload, sorted by execution time. For multicore tasks,
the execution time is given multiplied by the number of cores used.
The striking feature of the graph is the straightness of the line, when
the task size is plotted on a logarithmic scale. This can be compared
to the linear fit obtained using least-squares. This suggests that the
distribution of execution times follows a log-uniform distribution, at
least between 101 and 105 core-minutes. This suggests that there are
a roughly similar number of large and small tasks, with the median
task execution time being approximately 1000 core-minutes.

There are few jobs that take less than 10 core-minutes of
computing time, likely because jobs this small can be run on a local
PC. The flattening of the slope in the middle of the curve indicates
a particular peak of tasks around 103 core-minutes. This is likely
to show the peak of jobs submitted where the results are needed
within the same day for fast iteration.

An alternative view of this data is through a logarithmic
histogram of the tasks’ execution times, shown in Figure 7. Here,
the uniform nature of the distribution is still apparent, at least
between 101 and 105 core-minutes. In this view of the data, three
distinct peaks of work are apparent. The first peak, centered on 101

core-minutes is likely to correspond to small tasks used for system

642

Figure 6: Task Volume Distribution

Algorithm 2 Task Execution Time Generation

base_samples[1..n] = uniform
�
0,1.34 ·104,n

�

ji
exec

= 10(3.83·10�5·base_samples[i]+56.9)

maintenance or data transfer. The second peak, at around 103 core
minutes, or 16 core-hours, corresponds to the tasks submitted where
results are required during the same working day. If 64 cores were
allocated to a task of this size, the computation time would be 15
minutes. The final peak, at around 105 core-minutes or 70 core-days,
corresponds to the tasks that need to be returned overnight. If 128
cores were dedicated to this job, about 13 hours would be required.

An important feature of the distribution, however, is the small
number of tasks that are very large. These are the tasks that are run
in order to put a high-quality airframe model through a rigorous
testing regime, which go towards the certification of an aircraft.
Within the logs that were analysed, there were 28 tasks that took
over 10 core-years of CPU time (107 core-minutes) to complete.
Even with 128 cores allocated to them, these tasks would take
over 2 months to complete execution. These are not tasks that have
overrun in error, because their sheer size means that they would
have been closely monitored by system administrators, and have
required specific approval to run.

The fact that the workload has a similar number of small and
large tasks could distract from the fact that the larger tasks represent
a much larger fraction of the load placed on the cluster. Figure 7 also
shows the proportion of the workload volume placed on the cluster
by task size. While the majority of tasks in terms of numbers execute
in less than 104 core-minutes, this figure shows that their contri-
bution to the load is small. The bulk of the load comes from tasks
between 104.5 and 106.5 core-minutes. This poses further challenges
to schedulers, because of the risk of the shorter tasks, which require
higher responsiveness, having to queue behind the large tasks.

Figure 7: Task Volume

number (log pmf) volume (log pmf)
0 log10(y) 6 4 log10(y) 7

8.04 ·10�4 �5.81 ·102

+1.41x ·10�2 +7.82x ·102

�1.14x2 ·10�1 �4.47x2 ·102

+3.71x3 ·10�1 +1.41x3 ·102

�5.06x4 ·10�1 �2.64x4 ·101

+3.60x5 ·10�1 +2.94x5 ·100

�1.49x6 ·10�1 �1.81x6 ·10�1

+3.69x7 ·10�2 +4.72x7 ·10�3

�5.42x8 ·10�3

+4.35x9 ·10�4

�1.47x10 ·10�5 from 200 samples

Table 2: Task Volume Distribution Polynomial

Volume Distribution Generation
Generating workloads with task execution times that conform to

a realistic distribution is crucial when evaluating the effectiveness
of scheduling policies to apply to a grid for a given organisation.
This is especially the case where the workload has such a wide
variation of execution times as the one observed here.

In Algorithm 2, we give a method of creating workloads sampled
from the log-uniform distribution observed. The expression
uniform(a,b,k) represents a function returning k random samples
from the uniform distribution [a,b).
3.2. Multi-Core Tasks

A feature of intensive simulation workloads are tasks that must
execute over a number of cores. Particularly in the case of our
workload, multi-core tasks must execute on the number of cores
specified simultaneously and in lockstep. This is due to the structure
of the particular CFD flow solvers used. The volume of space to be
simulated is broken up into segments using a mesh. Each point in the
mesh has a calculation performed for each time step, and then the re-
sults of that point are cascaded to all its neighbouring points. A large

643

Figure 8: Workload by cores used, number of tasks

number of time steps are usually needed to achieve convergence.
Each multi-core task is considered by the grid system to be

single tasks, as one piece of software executes, just over multiple
cores. This is in contrast to the dependencies between potentially
different pieces of software, described in Section 4., which join
tasks together to form jobs.

Users specify the number of cores required before the task has
started, and this decision is informed by several constraints. RAM
capacity constraints and a reduction in turnaround time give a lower
limit on the number of cores used. On the other hand, there is
an upper limit on the appropriate number of cores because of the
network bandwidth requirements and the longer pend time for
more parallel tasks.

The distribution of cores per task is shown in Figure 8. This
shows that most tasks use less than 100 cores. Around a quarter
of tasks run on only a single core. The step-function nature of
the distribution shows the effect of users being instructed to use
multiples of the number of cores in the servers available. This
enables tasks to use complete multi-core servers to work on, with
the aim of reducing memory and network conflicts between tasks.

Although the single-core tasks are a quarter of the number of
tasks submitted, these tasks place very little load on the cluster.
Unsurprisingly, the tasks that place more load on the cluster are
those that are assigned more cores to execute with. The load placed
on the cluster by tasks with a given number of cores is shown
in figure 9. This roughly approximates a log-normal distribution
with a mean of 100 cores. As before, the bunching of results shows
where core counts have been rounded to an appropriate multiple
of the number of cores per server.

The most highly-parallel tasks here do not actually contribute
most of the load to the cluster, even though figure 7 shows that the
largest tasks contribute most of the load. This means that at least
some of the largest tasks are not run on the largest number of cores
available. This is likely due to several factors. Firstly, the largest
tasks are also some of the least urgent, and so users do not mind
waiting a long time. As previously mentioned, the inefficiencies
inherent in scaling to larger levels of parallelism may also mean

Figure 9: Workload by cores used, volume

that some of these large tasks do not actually benefit all that much
from further parallelism. In fact, they may take up more of the
grid’s resources at one time (disadvantaging other users), without
much of a net gain for the user who submitted the job. Furthermore,
in order to achieve good packing of tasks to clusters, tasks of the
same size are preferred.

This section has shown that task volumes fairly closely follow
a log-uniform distribution in their execution times, which can
be described by a log-linear trend through a sorted list of their
execution times. As has been found by previous studies [6, 1],
there are a smaller number of large tasks, but they contribute a very
large share of the workload. This is to be expected from such a
log-uniform distribution of task execution times. The volume of
work by cores required is found to follow a log-normal distribution
with a mean of 100 cores. This reinforces that the 25% of tasks
that are single-core contribute little to the workload volume.
4. Dependencies

The execution of each task on the grid does not take place in
isolation. Instead, each task usually forms part of a user’s workflow.
This paper uses the terminology of workflows to describe sets
of tasks that are performed with a person involved. Groupings of
tasks that can execute without human involvement are termed jobs.
Tasks are the indivisible (yet possibly multi-core) units of work
that execute on a single cluster in one go.

The tasks that compose a job have significant dependencies
between them. Many different pieces of software are composed
inside jobs, in order to set up, generate, post process and visualise
the CFD simulations appropriately. Each task takes some input
data, executes for a period of time, and produces output data.
Some of this output data is valuable to the end users, and some is
relevant to subsequent tasks. Executing the tasks in the right order
is imperative, because later tasks in the dependency chain require
data from the earlier tasks to run.

The structure of dependencies is a key aspect of characterising
this sort of engineering workload, where each task run on the grid
is part of a job and a higher-level workflow. A challenge for us
in analysing dependency patterns was that the grid manager did

644

not include dependencies in its log files. However, the submission
software employed by the users does store the structure of the
workflows. Although was not possible therefore to make statistical
generalisations of the frequency of dependency patterns within the
workflows, common structures can be described. Figure 10 shows
three workflow structures obtained from the workflow submission
tool. The three examples represent the least complex, the average
and the most complex workflow examples we found in our analysis.

Dependencies have been widely modelled in previous work by
assuming that they are Directed Acyclic Graphs (DAGs) [9, 8].
However, simply stating that the dependencies are DAGs gives
no further information about the internal structure of these graphs.
A selection of structured dependency graph patterns used for
evaluations were given by [10]. These patterns followed common
algorithmic structures, such as fork-join, diamond (called mean
value analysis by [10]) and in and out-trees. Methods of generating
some of these patterns were given by [13], who also suggested
linear chains of tasks or collections of tasks known as blocks.

The strictly regular structures of [10], however, were not
observed in these industrial workflows. The fork-join model of
computation happens inside each multi-core task, rather than at
the job level. Some chaining is present, but it is not perfectly linear.
Tasks with large computation times tend to take a proportionately
large number of inputs and have their output consumed by a
proportionately large number of successors. Furthermore, the
industrial job dependency graphs have somewhat less structure
than these fully-structured graphs.

A common alternative way of generating DAGs with random
structure is to use the Erdős–Rényi [14] model to create random
graphs. A method of doing so was outlined by [13]. However,
this method of generating graphs tends to produce only a narrow
spread of in-degree and out-degree over the nodes in the graph. The
distribution for the complex industrial pattern is noticeably more
dispersed than that generated by the Erdős–Rényi model, under the
same conditions. The Erdős–Rényi model specifically has a very
low likelihood of nodes with a large in- or out-degree. The mean
and standard deviations, as well as the number of source and sink
nodes are also different to that observed (See table in Figure 10)

Because the Erdős–Rényi (E-R) model has these shortcomings,
we developed Algorithm 4 to generate random graphs that better
approximate the degree distribution of nodes in the observed
industrial graph. This method uses an integer version (Algorithm
3) of the UUnifast algorithm of [15] to generate a logarithmic
distribution on the in- and out-degree for the nodes, and then creates
random dependency connections that satisfy these distributions.
Our method gives greater importance to some nodes, representing
a higher level of structure than a purely random graph, and this
more closely parallels the structures observed in industry.

5. Conclusion
The aim of this paper was to characterise the grid workload of

an engineering design department of a large aircraft manufacturer
by analysing log files that spanned a period of 30 months. It was
found that there are distinctive daily and weekly patterns, with work
being submitted faster than it can be processed during working
hours - a distinctive feature of this characterisation. A means of
generating a workload with peaks corresponding to those observed
is presented. The task execution times are shown to follow a

(a) Simple (b) Average

(c) Complex

Figure 10: Dependency Patterns

N
od

es

Ed
ge

s

Ed
ge

D
en

sit
y

So
ur

ce
s

Si
nk

s

In-degree Out-degree
Simple 6 8 26.6% 2 1 µ s µ sAverage 18 39 12.7% 3 3
Complex36 98 7.78% 5 5 2.69 2.15 2.64 2.61
E-R 36 98 7.78% 15 9 1.33 1.31 1.33 1.2
New 36 98 7.78% 6 6 2.72 2.37 2.72 2.61

Table 3: Dependency Graph Metrics

Algorithm 3 Pseudocode for UUnifast Integer
UUnifInt(samples, sum_of_samples) :
vectU= []
sumU= sum_of_samples
foriin0..(samples�1) :
nextSumU= round

⇣
sumU ·(random())

1

(samples�i)
⌘

vectU.append(sumU)�nextSumU

sumU= nextSumU

vectU.append(SumU)
returnvectU

645

Algorithm 4 Python code for random graph generation with high
spread of in- and out-degrees
defGraphGen(n, e) :
found_outer= False

whilenotfound_outer :
ins_by_node= sorted(UUnifInt(n�1, e)+[0])
outs_by_node= sorted(UUnifInt(n�1, e)+[0])[:: �1]
found_inner= False

itercount= 0

while(notfound_inner)and(itercount 40) :
itercount+= 1

found_inner= True

o= {x : outs_by_node[x]forxinrange(n)}
i= {x : ins_by_node[x]forxinrange(n)}
edges= []
whilelen(edges)< e :
K= max([x[0]forxini.items()ifx[1]> 0])
P= [x[0]forxino.items()ifx[1]> 0andx[0]< K]
D= [(u,K)foruinPif(u,K)notinedges]
iflen(D) == 0 :
found_inner= False

break

else :
new_edge= random.choice(D)
o[new_edge[0]]�= 1

i[new_edge[1]]�= 1

edges.append(new_edge)
found_outer= notlen(edges)< e :
returnedges

log-uniform distribution, and a algorithm to generate a sample of
such a distribution is given. Dependency patterns within workflows
were characterised in a way few authors have done before, and
an algorithm given to create jobs with such patterns.

The parameters of this characterised workload are likely to be
common to engineering design workloads, where the appetite for
computational capacity is large and a hierarchical decomposition
of work is followed. Synthetic workloads based on the parameters
shown can be generated using the methods presented and be used
in the evaluation of scheduling policies within industrially-relevant
contexts.

Acknowledgements
The authors wish to thank the EPSRC (grant number

EP/F501374/1) for funding this research through the UK’s
Large-Scale Complex IT Systems (LSCITS) programme.
References

[1] D. G. Feitelson and B. Nitzberg, “Job characteristics of a production
parallel scientific workload on the nasa ames ipsc/860,” in Job
Scheduling Strategies for Parallel Processing, ser. Lecture Notes
in Computer Science, D. Feitelson and L. Rudolph, Eds. Springer
Berlin Heidelberg, 1995, vol. 949, pp. 337–360. [Online]. Available:
http://dx.doi.org/10.1007/3-540-60153-8_38

[2] A. Burkimsher, I. Bate, and L. S. Indrusiak, “A survey of scheduling
metrics and an improved ordering policy for list schedulers operating
on workloads with dependencies and a wide variation in execution
times,” Future Generation Computer Systems. In press, Corrected

Proof. Available Online 27 December 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2012.12.005

[3] N. Poggi, D. Carrera, R. Gavalda, J. Torres, and E. Ayguade,
“Characterization of workload and resource consumption for
an online travel and booking site,” in Proceedings of the IEEE
International Symposium on Workload Characterization, ser. IISWC
’10. Washington, DC, USA: IEEE Comput. Soc., 2010, pp. 1–10.

[4] Z. Ren, J. Wan, W. Shi, X. Xu, and M. Zhou, “Workload analysis,
implications and optimization on a production hadoop cluster: A
case study on taobao,” IEEE Transactions on Services Computing,
vol. 99, p. 1, 2013.

[5] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis
of traces from a production mapreduce cluster,” in Proceedings of
the 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (CCGrid), 2010, pp. 94–103.

[6] S.-H. Chiang and M. Vernon, “Characteristics of a large shared
memory production workload,” in Job Scheduling Strategies
for Parallel Processing, ser. Lecture Notes in Computer
Science, D. Feitelson and L. Rudolph, Eds. Springer Berlin
Heidelberg, 2001, vol. 2221, pp. 159–187. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45540-X_10

[7] H. You and H. Zhang, “Comprehensive workload analysis and
modeling of a petascale supercomputer,” in Job Scheduling Strategies
for Parallel Processing, ser. Lecture Notes in Computer Science,
W. Cirne, N. Desai, E. Frachtenberg, and U. Schwiegelshohn, Eds.
Springer Berlin Heidelberg, 2013, vol. 7698, pp. 253–271. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-35867-8_14

[8] H. Topcuouglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 3, pp. 260–274, March 2002.

[9] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous
distributed computing,” in In Encyclopedia of Electrical and
Electronics Engineering. John Wiley, 1999, pp. 679–690.

[10] Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling: an
effective technique for allocating task graphs to multiprocessors,”
IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 5,
pp. 506–521, May 1996.

[11] D. Feitelson and E. Shmueli, “A case for conservative workload
modeling: Parallel job scheduling with daily cycles of activity,” in
Proceedings of the IEEE International Symposium on Modeling,
Analysis & Simulation of Computer and Telecommunication Systems,
2009., ser. MASCOTS ’09, 2009, pp. 1–8.

[12] H. Li, D. Groep, and L. Wolters, “Workload characteristics of
a multi-cluster supercomputer,” in Job Scheduling Strategies for
Parallel Processing, ser. Lecture Notes in Computer Science,
D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Springer
Berlin Heidelberg, 2005, vol. 3277, pp. 176–193. [Online].
Available: http://dx.doi.org/10.1007/11407522_10

[13] A. Burkimsher, “Dependency patterns and timing for grid
workloads,” in Proceedings of the 4th York Doctoral Symposium
on Computer Science, October 2011, pp. 25–33. [Online]. Available:
http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/468/YCS-
2011-468.pdf

[14] P. Erdős and A. Rényi, “On the evolution of random graphs,” in
Publication Of The Mathematical Institute Of The Hungarian
Academy Of Sciences, 1960, pp. 17–61.

[15] E. Bini and G. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

646

