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Abstract. The limitations of the deterministic formulation of scheduling are out-
lined and a probabilistic approach is motivated. A number of models are reviewed
with one being chosen as a basic framework. Response-time analysis is extended
to incorporate a probabilistic characterisation of task arrivals and execution times.
Copulas are used to represent dependencies1.

1 Introduction

Scheduling work in real-time systems is traditionally dominated by the notion of abso-
lute guarantee. The load on a system is assumed to be bounded and known, worst-case
conditions are presumed to be encountered, and static analysis is used to determine that
all timing constraints (deadlines) are met in all circumstances.

This deterministic framework has been very successful in providing a solid engi-
neering foundation to the development of real-time systems in a wide range of applica-
tions from avionics to consumer electronics. The limitations of this approach are, how-
ever, now beginning to pose serious research challenges for those working in scheduling
analysis. A move from a deterministic to a probabilistic framework is advocated in this
paper where we review a number of approaches that have been proposed. The sources
of the limitations are threefold:

1. Fault tolerant systems are inherently stochastic and cannot be subject to absolute
guarantee.

2. Application needs are becoming more flexible and/or adaptive – work-flow does
not follow pre-determined patterns, and algorithms with a wide variance in compu-
tation times are becoming more commonplace.

3. Modern super-scalar processor architectures with features such as cache, pipelines,
branch-prediction, out-of-order execution etc. result in computation times for even
straight-line code that exhibits significant variability. Also, execution time analysis
techniques are pessimistic and can only provide upper bounds on the execution time
of programs.

Note, these characteristics are not isolated to so called ‘soft real-time systems’ but
are equally relevant to the most stringent hard real-time application. Nevertheless, the
early work on probabilistic scheduling analysis has been driven by a wish to devise
effective QoS control for soft real-time systems [1, 17, 18, 38].

In this paper we consider four interlinked themes:

1 This paper is approximately the same as the one at EmSoft2003



1. Probabilistic guarantees for fault-tolerant systems
2. Representing non-periodic arrival patterns
3. Representing execution-time
4. Estimating extreme values for execution times.

In the third and fourth themes it will become clear that one of the axioms of the
deterministic framework – a well founded notion of worst-case execution time – is not
sustainable. The parameterisation of work-flow needs a much richer description than
has been needed hitherto.

The above themes are discussed in Sections 3 to 5 of this paper. Before that we give
a short review of standard schedulability analysis using a fixed priority scheme as the
underlying dispatching policy (see Burns and Wellings [11] for a detailed discussion
of this analysis). We restrict our consideration to the scheduling of single resources –
processors or networks. In Section 6 we bring the discussion together and draw some
conclusions.

2 Standard Scheduling Analysis

For the traditional fixed priority approach, it is assumed that there is a finite number
(N ) of tasks (τ1 .. τN ). Each task has the attributes of minimum inter arrival time,
T , worst-case execution time,C, deadline,D and priorityP . Each task undertakes a
potentially unbounded number of invocations; each of which must be finished by the
deadline (which is measured relative to the task’s invocation/release time). All tasks are
deemed to share acritical instancein which they are all released together; this is often
taken to occur at time0. It is important to emphasise that the standard analysis assumes
that the two limits on load (minimumT and maximumC) are actually observed at run
time. No compensation for average or observedT or C is accommodated.

We assume a single processor platform and restrict the model to tasks withD ≤ T .
For this restriction, an optimal set of priorities can be derived such thatDi < Dj ⇒
Pi > Pj for all tasksτi, τj [26]. Tasks may be periodic or sporadic (as long as two
consecutive releases are separated by at leastT ). Once released, a task is not suspended
other than by the possible action of a concurrency control protocol surrounding the use
of shared data. A task, however, may be preempted at any time by a higher priority task.
System overheads such as context switches and kernel manipulations of delay queues
etc. can easily be incorporated into the model [21][10] but are ignored here.

The worst-case response time (completion time)Ri for each task (τi) is obtained
from the following [20][2]:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

wherehp(i) is the set of higher priority tasks (thanτi), andBi is the maximum blocking
time caused by a concurrency control protocol protecting shared data.

To solve equation (1) a recurrence relation is produced:

rn+1
i = Ci + Bi +

∑

j∈hp(i)

⌈
rn
i

Tj

⌉
Cj (2)



wherer0
i is given an initial value of 0. The valuern can be considered to be a compu-

tational window into which an amount of computationCi is attempting to be placed. It
is a monotonically non-decreasing function ofn. Whenrn+1

i becomes equal torn
i then

this value is the worst-case response time,Ri [10]. However ifrn
i becomes greater than

Di then the task cannot be guaranteed to meet its deadline, and the full task set is thus
unschedulable. It is important to note that a fixed set of time points are considered in
the analysis: 0,r1

i , r2
i , ...,rn

i .
Table 1 describes a simple 4 task system, together with the worst-case response

times that are calculated by equation (2). Priorities are ordered from 1, with 4 being
the lowest value, and blocking times have been set to zero for simplicity. Scheduling
analysis is independent of time units and hence simple integer values are used (they can
be interpreted as milliseconds).

TaskP T C D B R Schedulable
τ1 1 100 30 100 0 30 TRUE
τ2 2 175 35 175 0 65 TRUE
τ3 3 200 25 200 0 90 TRUE
τ4 4 300 30 300 0 150 TRUE

Table 1.Example Task Set

All tasks are released at time0. For the purpose of schedulability analysis, we can
assume that their behaviour is repeated every LCM, where LCM is the least common
multiple of the task periods. When faults are introduced it will be necessary to know
for how long the system will be executing. LetL be the lifetime of the system. For
convenience we assumeL is an integer multiple of the LCM. This value may however
be very large (for example LCM could be 200ms, andL fifteen years!).

3 Probabilistic Guarantees for Fault-tolerant Systems

In this review we restrict our consideration to transient faults. Castilloat al [13] in their
study of several systems indicate that the occurrences of transient faults are 10 to 50
times more frequent than permanent faults. In some applications this frequency can be
quite large; one experiment on a satellite system observed 35 transient faults in a 15
minute interval due to cosmic ray ions [12].

Hou and Shin [19] have studied the probability of meeting deadlines when tasks
are replicated in a hardware-redundant system. However, they only consider permanent
faults without repair or recovery. A similar problem was studied by Shin et al [36]. Kim
et al [22] consider another related problem: the probability of a real-time controller
meeting a deadline when subject to permanent faults with repair.

To tolerate transient faults at the task level will require extra computation. This
could be the result of restoration and re-execution of some routine, the execution of an
exception handler or a recovery block. Various algorithms have been published which



attempt to maximise the available resources for this extra computation [37, 35, 3]. Here
we consider the nature of the guarantee that these algorithms provide. Most approaches
make the commonhomogeneous Poisson process(HPP) assumptions that the fault ar-
rival rate is constant and that the distribution of the fault-count for any fixed time inter-
val can be approximated using a Poisson probability distribution. This is an appropriate
model for a random process where the probability of an event does not change with
time and the occurrence of one fault event does not affect the probability of another
such event. A HPP process depends only on one parameter, viz., the expected number
of events,λ, in unit time; here events are transient faults withλ = 1/MTBF , where
MTBF is the Mean Time Between transient Faults2. Per the definition of a Poisson
Distribution,

Prn(t) =
e−λt(λt)n

n!
(3)

gives the probability ofn events during an interval of durationt. If we take an event to
be an occurrence of a transient fault andY to be the random variable representing the
number of faults in the lifetime of the system (L), then the probability of zero faults is
given by

Pr(Y = 0) = e−λL

and the probability of at least one fault

Pr(Y > 0) = 1− e−λL

Modelling faults as stochastic events means that an absolute guarantee cannot be
given. There is a finite probability of any number of faults occurring within the deadline
of a task. It follows that the guarantee must have a confidence level assigned to it and
this is most naturally expressed as a probability. One way of doing this is to calculate
the worst case fault behaviour that can (just) be tolerated by the system, and then use
the system fault model to assign a probability to that behaviour. Two ways of doing this
have been studied in detail.

– Calculate the maximum fault arrival rate that can be tolerated [9] – represented by
TF , the minimum fault arrival interval.

– Calculate the maximum number of faults each task can tolerate before its deadline
[31].

The first approach is more straightforward (there is only a single parameter) and
is reviewed in the following section. The basic form of the analysis is to obtainTF

from the task set, and then to derive a probabilistic guarantee fromTF . An alternative
formulation is to start with a required guarantee (for example, probability of fault per
task release of10−6) and to then test for schedulability. This is the approach of Broster
et al [6] and is outlined in Section 3.2.

2 MTBF usually stands for mean time between failures, but as the systems of interest are fault
tolerant many faults will not cause system failure. Hence we use the term MTBF to model the
arrival of transient faults.



3.1 Probabilistic Guarantee forTF

Let Fk be the extra computation time needed byτk if an error is detected during its
execution. This could represent the re-execution of the task, the execution of an excep-
tion handler or recovery block, or the partial re-execution of a task with checkpoints. In
the scheduling analysis the execution of taskτi will be affected by a fault inτi or any
higher priority task. We assume that any extra computation for a task will be executed
at the task’s (fixed) priority3.

Hence if there is just a single fault, equation (1) will become [33][7]4:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj + max

k∈hep(i)
(Fk) (4)

wherehep(i) is the set of tasks with priority equal or higher thanτi, that ishep(i) =
hp(i) ∪ {τi}.

This equation can again be solved forRi by forming a recurrence relation. If allRi

values are still less than the correspondingDi values then a deterministic guarantee is
furnished.

Given that a fault tolerant system has been built it can be assumed (although this
would need to be verified) that it will be able to tolerate a single isolated fault. And
hence the more realistic problem is that of multiple faults; at some point all systems
will become unschedulable when faced with an arbitrary number of fault events.

To consider maximum arrival rates, first assume thatTf is a known minimum arrival
interval for fault events. Also assume the error latency is zero (this restriction is easily
removed [9]). Equation (4) becomes [33, 7]:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj +

⌈
Ri

Tf

⌉
max

k∈hep(i)
(Fk) (5)

Thus in interval (0Ri] there can be at most
⌈

Ri

Tf

⌉
fault events, each of which can

induceFk amount of extra computation. The validity of this equation comes from noting
that fault events behave identically to sporadic tasks, and they are represented in the
scheduling analysis in this way [2].

Table 2 gives an example of applying equation (5). Here full re-execution is required
following a fault (ie.Fk = Ck). Two different fault arrival intervals are considered. For
one the system remains schedulable, but for the shorter interval the final task cannot be
guaranteed. In this simple example, blocking and error latency are assumed to be zero.
Note that for the first three tasks, the new response times are less than the shorterTf

value, and hence will remain constant for allTf values greater than 200.
The above analysis has assumed that the task deadlines remain in effect even during

a fault handling situation. Some systems allow a relaxed deadline when faults occur (as
long as faults are rare). This is easily accommodated into the analysis.

3 Recent results had improved the following analysis by allowing the recovery actions to be
executed at a higher priority [27].

4 We assume that in the absence of faults, the task set is schedulable.



TaskP T C D F R R
Tf = 300 Tf = 200

τ1 1 100 30 100 30 60 60
τ2 2 175 35 175 35 100 100
τ3 3 200 25 200 25 155 155
τ4 4 300 30 300 30 275 UNSCH

Table 2.Example Task Set -Tf = 300 and 200

Limits to Schedulability

Having formed the relation between schedulability andTf , it is possible to apply sensi-
tivity analysis to equation (5) to find the minimum value ofTf that leads to the system
being just schedulable. As indicated earlier, let this value be denoted asTF (it is the
threshold fault interval).

Sensitivity analysis [39, 24, 23, 34] is used with fixed priority systems to investigate
the relationship between values of key task parameters and schedulability. For an un-
schedulable system it can easily generate (using simple branch and bound techniques)
factors such as the percentage by which allCs must be reduced for the system to be-
come schedulable.

Similarly for schedulable systems, sensitivity analysis can be used to investigate the
amount by which the load can be increased without jeopardising the deadline guaran-
tees. Here we apply sensitivity analysis toTf to obtainTF .

When the above task set is subject to sensitivity analysis it yields a value ofTF of
275. The behaviour of the system with this threshold fault interval is shown in Table 3.
A value of 274 would causeτ4 to miss its deadline.

TaskP T C D R
TF = 275

τ1 1 100 30 100 60
τ2 2 175 35 175 100
τ3 3 200 25 200 155
τ4 4 300 30 300 275

Table 3.Example Task Set -TF set at 275

In the paper cited earlier for this work, formulae are derived for the probability that
during the lifetime of the system,L, no two faults will be closer thanTF . This is denoted
by Pr(W < TF ); whereW denotes the actual (unknown) minimum inter-fault gap. Of
course,Pr(W < TF ) is equivalent to1− Pr(W ≥ TF ). The exact formulation is



Pr(W ≥ TF ) =
∞∑

n=0

Pn, (TF/L) e−λL (λL)n

n!

= e−λL





1 + λL +

⌈
L

TF

⌉
∑
n=2

(
1− (n−1)

(TF

L

))n (λL)n

n!





= e−λL





1 + λL +

⌈
L

TF

⌉
∑
n=2

λn

n!
(L− (n−1)TF )n





(6)

this leads to

Pr(W ≥ TF ) = e−λL

{
1 + λL +

∞∑
n=2

(λL− (n− 1)λTF )n
+

n!

}
(7)

Fortunately upper and lower bands can also be derived.

Theorem 1. If L/(2TF ) is a positive integer then

Pr(W<TF ) < 1 +
[
e−λTF (1 + λTF )

] L
TF
−1 − 2

[
e−2λTF (1 + 2λTF )

] L
2TF

Theorem 2. If L/(2TF ) is a positive integer then

Pr(W<TF ) > 1− [
e−λTF (1 + λTF )

] L
TF

which gives rise to the approximations

Corollary 1. An approximation for the upper bound onPr(W<TF ) given by Theo-
rem 1 is3

2λ2LTF , provided thatλTF , λ2LTF are small, andLÀTF .

Corollary 2. An approximation for the lower bound onPr(W<TF ) given by Theo-
rem 2 is1

2λ2LTF , provided only thatλTF , λ2LTF are small.

The important upper bound approximation of Corollary 1 can be written in the form
3
2 (λL)(λTF ). It will often be the case thatλTF < 10−2; indeed this constraint allowed
the approximations to deliver useful values. ButλL can vary quite considerably from
10−2 or less in friendly environments to103 or more in long-life, hostile domains.

The example introduced in earlier had aTF value of 275ms. Table 4 gives the upper
bound on the probability guarantee for various values ofλ andL (in seconds).

A typical outcome of this analysis is that in a system that has a non-stop run-time
(L) of 10 hours with a mean time between transient faults of 1000 hours and a tolerance
of faults that do not appear closer than 1/100 of an hour, the probability of missing a



λ
L 1 10−2 10−4

1 1.1×10−4 1.1×10−8 1.1×10−12

101 1.1×10−3 1.1×10−7 1.1×10−11

102 1.1×10−2 1.1×10−6 1.1×10−10

104 1 1.1×10−4 1.1×10−8

Table 4.Upper bound on Non-Schedulability due to Faults.

deadline is upper bounded by 1.5×10−7. A lower bound is also derived (Corollary 4)
and this yields a value of 0.5×10−7. For these parameters the exact analysis produces
a value very close to 1.0×10−7.

WhenλL<10−2, λL approximates the probability of any fault happening during the
mission of durationL. So, 2

3 (λTF )−1 represents the gain in reliability that is achieved
by the use of fault tolerance, under the other assumptions stated. For example, in Table
4, whenλ = 10−2 andL = 1 the gain is approximately106.

3.2 Scheduling Analysis for Probabilistic Events

In contrast to the above approach Broster et al [6] produce a response time profile
that is a direct result of the probabilistic fault model. They do not assume a singleTF

value. Their analysis was originally derived for CAN scheduling but is generalised here.
Rather than consider the lifetime of the system,L, the analysis is formulated in terms of
the likelihood of failure per execution of the task. There is an obvious straightforward
relationship between these two formulations.

It was noted earlier that standard response analysis for fixed priority scheduling
looks at a series of time points, 0,r1

i , r2
i , ..., rn

i . (we shall ignore the task subscript in
the following description). This approach assumes no faults. It is possible to generalise
the scheme by replacing the single pointr1 by a series of points that are obtained by
assuming one fault, two faults etc. That isr(0)1, r(1)1, r(2)1, ...,r(m)1 (with r(0)1 =
r1). The fault model (eg. Poisson) is able to provide a value for the probability ofs
faults inr(s)1 – see equation(3).

Once all probabilities are obtained that are greater then the required guarantee (eg.
10−6) the sequence is terminated and for each value ofr(s)1 a set of secondary points
are obtainedr(s, q)2 with the second parameter,q, being the number of faults in the
interval[r(s)1, r(s, q)2), q = 0, 1, 2, .... This process is repeated and at each interaction,
events (faults) with a likelihood below the threshold of interest are ignored. Although
the overall search space is potentially large, the trimming that occurs due to dismissing
rare events, leads to a scheme has been shown to be tractable for real sized problems.
Once all sequences terminate, deadlines are checked and a probability distribution for
response times is obtained.

Scheduling Analysis for Required Probabilistic Guarantee An alternative way of
formulating the question of a probabilistic guarantee of schedulability is to calculate the



worst-case response time when fault occurrences, below the threshold of interest, are
ignored. Note this is not the same question as that addressed by Broster. To answer this
formulation of the question is much easier as only a single iteration of the scheduling
equation is needed. First equation (4) is solved assuming zero faults (let this value be
represented byR(0) – we again ignore the task subscript). Then the fault model, the
threshold and this valueR(0) are used to estimate the number of faults (of interest) in
the interval. Let this value beS1. From equation (8) we can now calculate a new value
for response time,R(S1):

Ri(S1) = Ci + Bi +
∑

j∈hp(i)

⌈
Ri(S1)

Tj

⌉
Cj + S1 max

k∈hep(i)
(Fk) (8)

The number of faults of interest inR(S1) is then calculated. If this new value,S2,
is equal toS1 then the formulation is stable andR(S1) is the worst case response time.
Alternatively equation (8) is solved forS2 and the process continues until either stability
is obtained or a response time greater than deadline is calculated and unschedulability
is proclaimed.

To illustrate the approach consider the small example given earlier for the other
approach. If we set the threshold value to10−6 and assumeλ is obtained from a mean
time between errors of 0.1 seconds then the same response time give in Table 3 are
observed (eg. 60, 100, 155 and 275).

Note that the above analysis is relatively straightforward when a Poisson derived
fault model is assumed. Nevertheless, the framework can still be used if other arrival
distributions are more appropriate.

3.3 Summary

The schemes reviewed in this section all have a common theme. Scheduling approaches
are used to maximise the effective resources that can be made available, when required,
for fault tolerance. Then limits to schedulability are derived in conjunction with the
probability of those limits being observed during execution. This furnishes the prob-
abilistic guarantee. Alternatively, a standard yes/no guarantee is obtained while faults
below a threshold of likelihood are ignored.

4 Probabilistic Guarantees with Non-Periodic Work

Initially scheduling analysis assumed a purely periodic work flow [28]. The sporadic
jobs were incorporated by assuming a minimum arrival time, that in the worst case was
exhibited by the system. In effect a sporadic job behaved exactly the same as a periodic
one. Response time analysis, as outlined in Section 2 can actually deal with a much
more general model of non-periodic work. LetAk(t) be defined to be a function that
delivers the maximum number of arrivals of taskk in any interval [0,t). Then equation
(1) becomes

Ri = Ci + Bi +
∑

j∈hpp(i)

⌈
Ri

Tj

⌉
Cj +

∑

k∈hpn(i)

Ak(Ri)Ck (9)



wherehpp(i) is now the set of higher priority periodic tasks, andhpn(i) the set of
higher priority non-periodic tasks.

Although a useful generalisation, equation (9) is still a deterministic one. It assumes
that the worst-case number of arrivals of all sporadics tasks will occur with probability
one. To deal with non-periodic tasks that follow a stochastic model a different frame-
work is needed. First, some form of probabilistic density function will be needed for
all sources of sporadic work. If nothing is known about the arrival pattern of work then
clearly no guarantee, not even a probabilistic one, can be given. One method of incor-
porating this stochastic work load is to use the same approach as for fault tolerance.
After all, faults handling routines are, from a scheduling point of view, just one form of
non-periodic work. The approach outlined in Section 3.2 can then be applied.

A probability threshold for the system must be defined. This is the value below
which events are sufficiently rare to be ignored. Letρ be this threshold value. We re-
defined the functionA given earlier in this section as follows:Ak(ρ, t) is the num-
ber of arrival events in any interval of lengtht with a probability of more thanρ. So
Ak(10−6, 30), for example, would give the result 2 if the probability of 3 or more ar-
rivals in 30 time units is less than10−6 (and the probability of 2 is more than this value).
Equation (9) then becomes:

Ri = Ci + Bi +
∑

j∈hpp(i)

⌈
Ri

Tj

⌉
Cj +

∑

k∈hpn(i)

Ak(ρ,Ri)Ck (10)

This approach contains some explicit assumptions that would need to be clarified.
For example, it assumes each source of arrivals is independent of each other; also that
the computation time of the job is independent of the arrival behaviour. The existence
of correlations would complicate the analysis – but pessimistic assumptions may be
relatively straightforward to incorporate (see later discussion on the use of Copulas).

Care must of course be taken with choosing the probability threshold for the system.
If an application is, by its specification, meant to deal with rare events then the thresh-
old must be chosen so that such events (at least one in any small interval) are always
incorporated into the run-time behaviour that is being analysed.

5 Representing Execution Time

The above discussions have generalised the notion of work flow by allowing the arrival
of work to be described stochastically. However the worst-case resource requirement
of each job is still represented by a single parameterC. This represents the maximum
processor (resource) time needed by the job on each and every arrival. In developing
a general framework for scheduling analysis, where application code and processor
behaviour combined to produce a rich execution profile, it is not surprising that this
single parameter approach is becoming limited in its application. Even a two (average
and worst-case) or three (add minimum) parameter scheme is far from adequate.

In other works [8, 16, 4] we have argued that it is now inadequate to use analysis
alone to obtain a single worst-case execution time (WCET) value. Rather a combination
of analysis and measurement must be used to obtain a probabilistic representation of



the entire execution profile of the task. Moreover, this probability density function must
extend beyond observed data to predict the likelihood of experiencing, during the real
execution of the system, extreme (large) values for execution time. Data obtained from
measurement of relatively straightforward code illustrates two general characteristics of
execution time profiles (letO be the maximum observed value during measurement).

– Large observed values for computation time may be sufficiently rare that for non-
hard systems it would be inappropriate for any schedulability test to assume this
value for every task’s execution (ie.O is too large to use).

– Large observed values for computation time may not represent the worst-case that
will be experienced during real execution, and extrapolations beyond observed val-
ues will be needed for some hard real-time systems (ie.O is too small to use).

The alternative to simple parameterisation is to model execution time as a random
variable following some probability distribution. These distributions (execution time
profiles) being derived from measurement. But the granularity of measurement remains
an open issue. Three levels are possible:

1. The basic block - a sequence of instructions.
2. The task - which consists of a number of basic blocks.
3. The system - which consists of a number of tasks.

If measurement is used at the task level then knowledge about the structure of the
task is being ignored, however uncertainties arising from the interactions of basic blocks
are being sampled. If analysis is used at the task level (with measurements only being
done for basic blocks) then the rules for combining the execution time profiles need to
be articulated. A similar trade-off exists at the system level.

In the work we have undertaken, we have used measurement only at the basic block
level and hence we must address the issue of how to combine probability distributions.
If independence could be assumed then standard statistical methods could be applied.
Unfortunately there seems to be ample evidence that this assumption would be overtly
optimistic. A series of basic blocks may be strongly correlated. Moreover a series of
task executions within a schedule may also be dependent upon one another. Indeed the
execution of the same task, one or more times, within the response time of a lower
priority task may exhibit a strong correlation. These may be positive (a long execution
time is more likely to be followed by another large one) or negative (long will induce a
short one next time).

5.1 Use of Copulas

Copulas are a general mathematical tool to construct multivariate distributions and to
investigate dependence structures between random variables [32]. A copula is basically
a joint distribution function with uniform marginals. The main feature is that they allow
one to separate the marginal distributions from the dependency between the two random
variables, therefore given a joint probability distribution it is possible to characterize
it uniquely with the marginal distributions and a copula. Similarly, given two marginal
distributions and a copula, it is possible to derive the joint distribution and this is unique.



The importance is that the copula captures thedependence structurebetween ran-
dom variables. So given two joint distributions with different marginal distributions but
that capture the same dependency process, they would have the same copula.

There are two additional results of importance for this analysis, the first one is that
the set of copulas is a partially ordered set and there exist two special copulas, called
the lower and upper Fréchet bounds that characterize the maximum and minimum de-
pendence between random variables.

The problem of timing analysis can be formulated as follows, ifX andY are two
random variables that represent the execution time of two blocks of code with respec-
tive distribution functionsFX(t) andFY (t), we want to determine the distribution of
Z = X + Y which is the execution time ofX followed byY , FZ(t). If X andY are
independent, the probability density function ofZ corresponds to the standard convo-
lution of the probability density functions ofX andY . However, if this hypothesis is
not correct then we can use the theory of copulas to constructFZ(t).

If the joint distribution is known, (or its copula) then the distribution ofZ is a
straightforward generalisation of the convolution but using the joint distribution instead.
More importantly, if the dependency is not known, then it is possible to find upper and
lower bounds of the distribution function forany possible dependency between the
marginal distributions [5, 29, 14]. Some generalisations of these results allow to tighten
even more these bounds if partial knowledge of the dependence is known.

5.2 Representing Extreme Execution Times

It was noted earlier that for some hard real-time systems execution time values beyond
what have been observed during tests need to be taken into account if very low levels of
failure are to be tolerated. One means of addressing this issue is to apply the branch of
statistics concerned with extreme values. One of the three extreme value distributions is
used to ‘fit’ the data and then give predictions beyond the observed data range. We have
had some success [16] in fitting the Gumble distribution but it is still not clear if this is a
general purpose technique. What this approach provides is a probability distribution for
the worst-case value for a task’s execution. One useful result of this study is that a col-
lection of tasks has a bounded behaviour. LetC1..CN be the worst-case times derived
from the above approach with probability thresholdρ; then the sequential execution of
each task will have a total expected execution time ofC1 + C2 + C3 + .. + CN with
probability boundρ.

6 Other Relevant Work on Probabilistic Analysis

There have been some other approaches using probabilistic methods in real-time sys-
tems. The work of Diaz et.al. [15] computes probability distributions of the response
times of entirely periodic (fixed release times) task systems with random execution
times. The work relies on the independence of the execution times of the different tasks.
The work improves on an earlier work by Gardner et.al. [18]. The works of Nissanke
[25] and Eles [30] also tackle this problem. However, none of these approaches address
the issue of extreme distributions or dependencies between execution times or task ar-
rivals.



7 Conclusion: A Probabilistic Framework

Bringing together the above approaches we are able to postulate one means of construct-
ing a scheduling framework that can deal with stochastic parameterisation of work flow.
The following are the main components of such a framework.

1. All tasks have an arrival pattern expressed asA(ρ, t) - the number of instances of
the task likely to occur in any interval of lengtht, where the probability of greater
thanA(ρ, t) occurring is less thanρ.

2. All tasks have an execution profile derived that extends beyond the data observed
during test.

3. A threshold probability is defined for the system. Events (task arrivals or execu-
tion times) with a likelihood of occurring less than this threshold are ignored. The
threshold could be expressed as a likelihood of failure per execution of any task of
interest.

4. A worst-case response time of each task is calculated from the above data as fol-
lows:

– An initial estimate,R0, is obtained by assuming all tasks arrive once with exe-
cution times derived from their profiles andρ.

– The number of tasks arriving inR0 is derived (usingA(ρ,R0) and any depen-
dency relationships).

– A conservative copula is used to combine the execution profiles of those jobs.
– A new value forR0 (i.e. R1) is obtained by using the threshold probability

value on this derived distribution.
– Repeat until a stable value ofR is obtained (orR expands beyond the task’s

deadline).

It would be at least theoretically possible to vary the probability threshold to derive
a relation between response time and this threshold.

In conclusion, we have argued in support of the developed the notion of a probabilis-
tic assessment of schedulability and shown how it can be derived from the stochastic
behaviour of the work that the real-time system must accomplish. Many aspects of this
framework require significant further study, and we aim to continue with this line of
investigation.
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