
Programming Execution-Time Servers in Ada 2005∗

A. Burns and A.J. Wellings
Real-Time Systems Research Group, Department of Computer Science

University of York, UK

Abstract

Much of the research on scheduling schemes is prevented
from being used in practice by the lack of implementations
that provide the necessary abstractions. An example of this
is the support of execution-time servers. Apart for a sin-
gle mechanism (the Sporadic Server), which is defined in
the POSIX standard, these important building blocks are not
available to the system developer. Over the last few years, we
have been developing the mechanisms necessary to construct
execution-time servers from within an Ada context. Versions
of these have now been incorporated in the Ada 2005 stan-
dard. In this paper, we show how the mechanisms can be used
to construct the Deferrable and Sporadic servers.

1. Introduction

Over the last two decade or more, a considerable volume
of literature has been produced which addresses the issues
and challenges of real-time scheduling. The focus of much of
this research has been on how to effectively support a collec-
tion of distinct applications – each with a mixture of periodic
and non-periodic, and hard and soft, activities. This work is
seen as an enabling technology for a wide range of appli-
cations from multi-media to robust control. Notwithstand-
ing the quality of individual contributions, it is unfortunately
true that system implementors have not, in general, taken up
these results. There are a number of reasons for this, includ-
ing the normal inertia associated with technical change, but
we would highlight the following.

• Inconsistency in the literature – no single approach has
emerged as being widely applicable, indeed there is not
even any consensus over the right simulation models to
use for evaluation.

• Limitations of the schedulability analysis models – too
many models have unrealistic assumptions such as ig-
noring run-time overheads or assuming that the WCET

∗ This work has been undertaken within the context of the EU ARTIST2
and the UK EPSRC DIRC projects.

is known for all tasks (or not recognizing that actual ex-
ecution times can be much smaller than WCET values).

• Difficulty of implementation – often the schedul-
ing scheme will require operating system primitives
that are not available on any commercial platform.

• Lack of computational model – the scheduling results
are not tied back to realistic models that applications can
use to construct systems.

• Lack of design patterns that applications programmers
can adopt and adapt.

The work presented in this paper focuses on the final three
problems of this group.

Over the last few years, we have been investigating the ap-
propriate abstractions that are needed to support the develop-
ment of flexible real-time systems [7, 8, 6, 18, 10, 9]. Work-
ing in conjunction with the Series of International Workshops
on Real-Time Ada Issues - IRTAW1, we have developed a set
of mechanisms that allow a wide range of flexible real-time
systems to be implemented. These have now been incorpo-
rated into the Ada 2005 standard [5]. In this paper, we will
show how these facilities allow flexible scheduling schemes
to be programmed and analysed, and code patterns devel-
oped.

The challenges of real-time scheduling are easy to (infor-
mally) define: hard deadlines must always be met, distinct
applications (or subsystems of the same application) must be
isolated from each other but any spare capacity (typically the
CPU resource) must be used to maximise the overall util-
ity of the applications. The ‘extra’ work that could be un-
dertaken typically exceeds the spare capacity available, and
hence the scheduler must decide which non-hard task to ex-
ecute at any time. As processors become more complex and
the analysis of worst-case execution time more pessimistic,
the amount of spare capacity will increase. Indeed, the to-
tal utilisation of the hard tasks will often be much less than
50%. There is continuing pressure on applications to min-
imise their use of hard tasks and to exploit flexible schedul-

1 Proceeding published in Ada Letters, Vol XXI, March 2001, Vol XXII,
December 2002 and Vol XXIII, December 2003.



ing to deliver dynamic behaviour. A real-time system with
this mixture of hard and aperiodic tasks has to ensure that:

• all hard real-time tasks meet their deadlines, even when
worst-case conditions are being experienced;

• failed components do not impact on non-failed applica-
tions by, for example, denial of service;

• all aperiodic tasks have a good response time – here,
good should mean that the tasks meet their soft dead-
lines in most of their invocations;

• other soft tasks exhibit good quality of output by gain-
ing access to the maximum computation time available
before their soft/firm deadlines.

One of the key building blocks for delivering this form
of flexible scheduling is the use of execution-time servers
[14, 17, 13, 4, 3]. Servers are in some senses virtual proces-
sors, they provide their clients with a budget that has a de-
fined ‘shelf life’, and a means of replenishing the budget in a
predictable and analysable way. The servers collectively must
sustain their budgets (i.e. allow the full budget to be available
to clients), whilst the clients must ensure that the budget is
sufficient. A number of papers have addressed the schedul-
ing issues associated with server-based systems. In this paper
we are concerned with programming servers – or more pre-
cisely defining the language primitives that allow server ab-
stractions to be built.

The rest of the paper is structured as follows. The Ada
2005 language is introduced in the next section; section 3
shows a framework for programming execution-time servers
and gives examples of its use. Related work is briefly consid-
ered in section 4, and the last section presents the future work
and conclusions.

2. Ada 2005

Ada 2005[5] is the recent amendment to the Ada 95 stan-
dard2. It includes many additional features across a range of
programming topics. Of particular interest here are the new
features that have been added to support the programming of
real-time systems with requirements that include high perfor-
mance, flexibility and run-time protection.

The Ada 95 version of the language already defines a num-
ber of expressive concurrency features that are effective for
the real-time domain. Features include:

• Tasks – the basic unit of concurrency; dynamic or static
creation and flat or hieratical relationships between tasks
are supported.

2 The authors of this paper have been involved in the inclusion of real-
time support into the Ada Standard. The features reported in this paper
are the result of language design research aimed at improving the ex-
pressive power and ease of use of real-time primitives within procedural
programming languages.

• Absolute and relative delay statements.

• Rendezvous – a synchronous means of communication
between tasks.

• Asynchronous Transfer of Control (ATC) – an asyn-
chronous means of affecting the behaviour of other
tasks.

• Protected Types – a monitor-like object that enforces
mutual exclusion over its operations, and which sup-
ports condition synchronisation via a form of guarded
command.

• Requeue – a synchronisation primitive that al-
lows a guarded command to be prematurely terminated
with the calling task placed on another guarded opera-
tion; this significantly extends the expressive power of
the synchronization primitive without jeopardizing effi-
ciency.

• Exceptions – a means of abandoning the execution of a
sequential program segment.

• Controlled objects – an OOP feature that allows the ex-
ecution of code when objects enter and exit the scope of
their declaration.

• Fixed priority dispatching – a standard implementation
including ceiling priority protection against unbounded
priority inversion.

What was missing from the Ada 95 model was explicit
support for resource management and for other dispatch-
ing policies such as EDF and Round Robin. In this paper,
we concentrate on the feature that have been included into
Ada 2005 for resource control and management. However it
should also be noted that Ada 2005 now supports: the EDF
and Round Robin dispatching policies (together with Baker’s
algorithm[2] as a generalisation of the priority ceiling pro-
tocol); preemptive and non-preemptive dispatching; multiple
dispatching policies (executing in a coherent way); the notion
of deadline as a first class abstraction; the Ravenscar Profile
(a subset of the tasking model) for high integrity real-time ap-
plications; and the use of task, protected and synchronized in-
terfaces (which integrate the language’s OOP model with the
tasking model).

In the following subsection we introduce four important
new features of Ada - timing events, execution time clocks,
timers and group budgets.

2.1. Timing Events

Ada 2005 has introduced a new abstraction of a timing
event to allow code to be executed at specified times with-
out the need to employ a task/thread. These events are like
interrupts but are generated by the progression of the sys-
tem clock. Associated with a timing event is a handler that



is executed at the allotted time. An implementation may ex-
ecute this handler directly from the interrupt handler for the
clock device. This leads to a very efficient scheme. The fol-
lowing standard library package is defined by Ada 2005:

package Ada.Real_Time.Timing_Events is
type Timing_Event is tagged limited private;
type Timing_Event_Handler is access protected

procedure(Event : in out Timing_Event);
procedure Set_Handler(Event : in out Timing_Event;

At_Time : Time; Handler: Timing_Event_Handler);
procedure Set_Handler(Event : in out Timing_Event;

In_Time: Time_Span;
Handler: Timing_Event_Handler);

function Is_Handler_Set(Event : Timing_Event)
return Boolean;

function Current_Handler(Event : Timing_Event)
return Timing_Event_Handler;

procedure Cancel_Handler(Event : in out
Timing_Event; Cancelled : out Boolean);

function Time_Of_Event(Event : Timing_Event)
return Time;

private -- Not specified by the language.
end Ada.Real_Time.Timing_Events;

This package provides an API to the necessary abstraction
for a timing event. The handler to be executed, when the asso-
ciated time is reached, is a protected procedure that is passed
the timing event as a parameter when the handler is called.
This event is a tagged type and hence can be extended by the
application (an example of this is given later). The term ‘pro-
tected’ implies it can be executed safely in a concurrent pro-
gram (by the use of a ceiling protocol). Most execution-time
server abstractions require budgets to be replenished at fixed
points in time – timing events will be used to implement this
requirement efficiently.

Many of the new real-time features introduced into Ada
2005 take the form of event handling and have a similar struc-
ture.

2.2. Execution Time Clocks

In hard real-time systems, it is essential to monitor the exe-
cution times of all tasks and detect situations in which the es-
timated WCET is exceeded. This detection was usually avail-
able in systems scheduled with cyclic executives, because the
periodic nature of its cycle makes it easy to check that all
initiated work had been completed by end of each cycle. In
event-driven concurrent systems, the same capability should
be available, and this can be accomplished with execution
time clocks and timers. In addition, many flexible real-time
scheduling algorithms require the capability to measure exe-
cution time and be able to perform scheduling actions when
a certain amount of execution time has been consumed.

Ada 2005 directly supports execution time clocks for
tasks, which includes timers that can be fired when tasks have
used defined amounts of execution times:

with Ada.Task_Identification, Ada.Real_Time;
with Task_Identification, use Ada.Real_Time;
package Ada.Execution_Time is -- not all features shown

type CPU_Time is private;
CPU_Tick : constant Time_Span;

function Clock(T : Task_ID := Current_Task)
return CPU_Time;

function "+" (Left : CPU_Time; Right : Time_Span)
return CPU_Time;

function "+" (Left : Time_Span; Right : CPU_Time)
return CPU_Time;

-- similar definitions for -, <=, > and >=, and
-- other subprograms, not relevant here

function Time_Of (SC : Seconds_Count;
TS : Time_Span) return CPU_Time;

private -- Not specified by the language.
end Ada.Execution_Time;

The execution time of a task, or CPU time as it is commonly
called, is the time spent by the system executing the task and
services on its behalf. The clock is set to zero when the task
is created and it then monotonically increases as the task ex-
ecutes. The accuracy of the measurement of execution time
cannot be dictated by the language specification, it is heav-
ily dependent on the run-time support software. On some im-
plementation (perhaps on non real-time operating systems),
it may not even be possible to support this package. But if
the package is supported, the range of CPU Time must be at
least 50 years and the granularity of the clock (CPU Tick)
should be no greater than 1ms.

The following code shows how a periodic task is con-
structed. In it the task’s deadline is used to interrupt the task,
and on each iteration the execution time of the task is out-
put. The predefined routines Set Deadline and Get -
Deadline allow a task to set and read its own deadline.

task body Periodic_Task is
Interval : Time_Span := Milliseconds(30);
-- the period of the task
Rel_Deadline : Time_Span := Milliseconds(20);
-- the relative deadline of the task
Next : Ada.Real_Time.Time;
CPU,CPU2 : Ada.Execution_Time.CPU_Time;
Used : Ada.Real_Time.Time_Span;

begin
Next := Ada.Real_Time.Clock;
CPU := Ada.Execution_Time.Clock;
Set_Deadline(Next+Rel_Deadline);
loop

select
delay until Get_Deadline;

then abort
-- application code

end select;
CPU2 := Ada.Execution_Time.Clock;
Used := CPU2-CPU;
Print(Used);
CPU := CPU2;
Next := Next + Interval;
Set_Deadline(Next+Rel_Deadline);
delay until Next;

end loop;
end Periodic_Task;



Note the use of ‘select then abort’ statements (called ATC –
asynchronous transfer of control).

The application code executes until the deadline of the
task is reached (obtained by calling Get Deadline); the
code is then aborted and the rest of the task is executed. In
this example, the CPU time is calculated and output, the next
release time is set and the next deadline computed before the
task suspends itself. Note that the last two statements can be
combined to remove a wasteful context switch (see the revi-
sion of this example in section 2.3).

This example illustrates termination; i.e. when the dead-
line is reached the code is abandoned. It is also possible, us-
ing a separate protected object, to catch the deadline miss but
allow the task to continue to execute (perhaps with a lower
priority, or new, longer, deadline).

2.3. Execution Time Timers

As well as monitoring a task’s execution time, it is also
useful to trigger an event if the clock gets to some specified
value. Often this is an error condition, where the task has ex-
ecuted for longer than was anticipated. A child package of
Execution Time provides support for this type of event:
package Ada.Execution_Time.Timers is

type Timer(T : not null access constant
Ada.Task_Identification.Task_ID) is tagged
limited private;

type Timer_Handler is access protected
procedure(TM : in out Timer);

Min_Handler_Ceiling : constant
System.Any_Priority := <Implementation Defined>;

procedure Set_Handler(TM: in out Timer;
In_Time : Time_Span; Handler : Timer_Handler);

procedure Set_Handler(TM: in out Timer;
At_Time : CPU_Time; Handler : Timer_Handler);

procedure Cancel_Handler(TM : in out Timer);
function Current_Handler(TM : Timer)

return Timer_Handler;

function Time_Remaining(TM : Timer)
return Time_Span;

Timer_Resource_Error : exception;
private -- Not specified by the language.
end Ada.Execution_Time.Timers;

An execution time timer is a ‘one-shot’ event. It identifies
code to be executed when the task CPU time clock reaches
a specified value. Obviously it cannot reach that value again,
so the handler needs to be reset for any further requirement.

To illustrate its use, the earlier code fragment is changed
to stop the task if it executes for more than its WCET:
protected WCET_Protect is
entry Overrun;
procedure Overrun_Handler(T : in out Timer);

private
Barrier : Boolean := False;

end WCET_Protect;

protected body Overrun_Handler is
entry Overrun when Barrier is
begin

Barrier := False;
end Barrier;

procedure Overrun_Handler(T : in out Timer) is
begin

Barrier := True;
end Overrun_Handler;

end Overrun_Handler;

task body Periodic_Task is
Interval : Time_Span := Milliseconds(30);
Rel_Deadline : Time_Span := Milliseconds(20);
Next : Ada.Real_Time.Time;
CPU : Ada.Execution_Time.CPU_Time;
Me : access constant Task_Id :=

Current_Task’Access;
WCET_Timer : Timer(Me);
begin

Next := Ada.Real_Time.Clock;
CPU := Ada.Execution_Time.Clock;
Set_Deadline(Next+Rel_Deadline);
loop
Set_Handler(WCET_Timer,WCET,

WCET_Protect.Overrun_Handler’Access);
select

WCET_Protect.Overrun;
-- action to deal with WCET overrun here

then abort
select

delay until Get_Deadline;
then abort

-- application code
end select;

end select;
Next := Next + Interval;
Delay_and_Set_Deadline(Next,Rel_Deadline);

end loop;
end Periodic_Task;

Note, the outer ‘select-then-abort’ statement is triggered
by the entry call becoming open, whereas the inner one is
triggered by the passage of time.

2.4. Group Budgets

The support for execution time clocks allows the CPU re-
source usage of individual tasks to be monitored, and the use
of timers allows certain control algorithms to be programmed
but again for single tasks. There are, however, situations in
which the resource usage of groups of tasks needs to be man-
aged. Typically, this occurs when distinct subsystems are pro-
grammed together but need to be protected from one another
– no failures in one subsystem should lead to failures in the
others. So even if a high priority task gets into an infinite
loop, tasks in other subsystems should still meet their dead-
lines. This is usually achieved with the use of execution-time
servers.

Ada 2005 does not directly support servers. But it does
provide the primitives from which servers can be pro-
grammed. Group budgets allows different servers to be



implemented. Note, servers can be used with fixed prior-
ity or EDF scheduling.

A typical server has a budget and a replenishment period.
At the start of each period, the available budget is restored
to its maximum amount. Unused budget at this time is dis-
carded. To program a server requires timing events to trigger
replenishment and a means of grouping tasks together and al-
locating them an amount of CPU resource. A standard pack-
age (a child of Ada.Execution Time) is defined to ac-
complish this:

package Ada.Execution_Time.Group_Budgets is
type Group_Budget is tagged limited private;

type Group_Budget_Handler is access
protected procedure(GB : in out Group_Budget);

type Task_Array is array(Positive range <>) of
Ada.Task_Identification.Task_ID;

Min_Handler_Ceiling : constant
System.Any_Priority := <Implementation Defined>;

procedure Add_Task(GB: in out Group_Budget;
T : Ada.Task_Identification.Task_ID);

-- other subprograms not relevant here

function Members(GB: Group_Budget)
return Task_Array;

procedure Replenish(GB: in out Group_Budget;
To : Time_Span);

procedure Add(GB: in out Group_Budget;
Interval : Time_Span);

function Budget_Remaining(GB: Group_Budget)
return Time_Span;

procedure Set_Handler(GB: in out Group_Budget;
Handler : Group_Budget_Handler);

Group_Budget_Error : exception;
private -- not specified by the language
end Ada.Execution_Time.Group_Budgets;

The type Group Budget represents a CPU budget to be
used by a group of tasks.

The budget decreases whenever a task from the associ-
ated set executes. The accuracy of this accounting is again
implementation defined. To increase the amount of budget
available, two routines are provided. The Replenish pro-
cedure sets the budget to the amount of ‘real-time’ given in
the To parameter. It replaces the current value of the bud-
get. By comparison, the Add procedure increases the budget
by the Interval amount. But as this parameter can be neg-
ative, it can also be used to, in effect, reduce the budget.

The minimal budget that can be held in a Group Budget
is zero – represented by Time Span Zero. If a budget is
exhausted, or if Add is used to reduce the budget by an
amount greater than its current value then the lowest the bud-
get can get is zero.

A handler is associated with a group budget by use of the
Set Handler procedure. There is an implicit event associ-

ated with a Group Budget that occurs whenever the bud-
get goes to zero. If at that time there is a non-null handler set
for the budget, the handler will be executed3. Furthermore,
the handler is permanently linked to the budget (unless it is
changed or cancelled). So every time the budget goes to zero
the handler is fired.

As with timers, there is a need to define the minimum ceil-
ing priority level for the protected object linked to any group
budget handler.

We will shortly give some examples to illustrate the use
of group budgets. But it is important that one aspect of the
provision is clear.

• When the budget is zero the associated tasks continue to
execute.

If action should be taken when there is no budget, this
has to be programmed (it must be instigated by the handler).
So group budgets are not in themselves an execution-time
server abstraction – but they allow these abstractions to be
constructed.

3. Implementing Execution-Time Servers

In this section, we show a framework for implementing
execution-time servers and then instantiate that framework to
implement two well known servers: the deferrable server and
the sporadic server.

The following package specification defines the common
types and interface for all periodic servers.

with Ada.Real_Time, System, Ada.Task_Identification;
use Ada.Real_Time, System, Ada.Task_Identification;
package Execution_Time_Servers is

type Server_Parameters_Basic is tagged record
Period : Time_Span;
Budget : Time_Span;

end record;

type Server_Parameters is new
Server_Parameters_Basic with record

Foreground_Pri : Priority;
Background_Pri : Priority;

end record;

type Server is synchronized interface;
procedure Register(ES: in out Server; T :

Task_Id := Current_Task) is abstract;

type Any_Server is access all Server’Class;
end Execution_Time_Servers;

All servers have parameters that determine the servers
characteristics. There are many different types of servers, but
they all have

• a budget – how much CPU time has been allocated;

3 This will also occur if the budget goes to zero as a result of a call to Add
with a large enough negative parameter.



• a period – how often the server’s budget is replenished.

This is represented by the Server Parameters Basic
type.

Some servers allow their client tasks to have differ-
ent priorities, most require them to have the same priority.
Some servers, suspend their clients when their budgets ex-
pire4, others set their priorities to a background value. In this
paper, we will show the infrastructure for those with a sin-
gle foreground priority and setting a background pri-
ority on budget exhaustion. This is represented by the
Server Parameters type.

All execution servers require their clients to register. Here,
any task can register any other tasks.

3.1. Deferrable Server

In this section we show how the deferrable server can be
constructed. The following package specification illustrates
the approach.

with System, Ada.Real_Time, Ada.Task_Identification,
Ada.Real_Time.Timing_Events,
Ada.Execution_Time.Group_Budgets,
Execution_Time_Servers;

-- use clauses for all the above omitted
package Deferrable_Servers is

protected type Deferrable_Server
(Params : access Server_Parameters) is new
Server with

pragma Interrupt_Priority(Interrupt_Priority’Last);
overriding procedure Register(

T : Task_Id := Current_Task);
private

procedure Timer_Handler(E : in out Timing_Event);
procedure Group_Handler(G : in out Group_Budget);
T_Event : Timing_Event;
G_Budget : Group_Budget;
First : Boolean := True;

end Deferrable_Server;
end Deferrable_Servers;

A deferrable server in Ada is a passive entity that is con-
structed as a protected type, which implements the Server
interface and overrides the Register subprogram. It uses
the new Ada 2005 mechanisms: group budgets are used to
keep track of the registered tasks’ CPU time consumption
and timing events are used to signal the replenishment peri-
ods. For these reasons, the ceiling priority of the type is set to
the highest interrupt priority level (as the Timer Handler
procedure is potentially called from the clock interrupt).

To illustrate the use of the server, consider the following:

Control_Params : aliased Server_Parameters := (
Period => Milliseconds(10), Budget => Microseconds(1750),
Foreground_Pri => 12, Background_Pri => Priority’First);

Con : Deferrable_Server(Control_Params’Access);

4 This can be done in Ada using the operations Hold and Continue
from the predefined package Asynchronous Task Control.

In the above, first some server parameters are declared,
and then an instance of the deferrable server is declared that
references these parameters. Now, a client aperiodic task can
be included:

task Aperiodic_Task is
pragma Priority(Default_Priority);
-- only used to control initial execution

end Aperiodic_Task;

task body Aperiodic_Task is
-- local data

begin
Con.Register;
loop

-- wait for next invocation
-- undertake the work of the task

end loop;
end Aperiodic_Task;

In this simple example, the task is tied to a particular
server object; however, it can have just as easily taken an ac-
cess parameter in a task discriminant if the task needed to be
parameterized. The body of the deferrable server follows:

with Ada.Dynamic_Priorities, Ada.Task_Identification;
use Ada.Dynamic_Priorities, Ada.Task_Identification;
package body Deferrable_Servers is

protected body Deferrable_Server is
procedure Register(T : Task_Id := Current_Task) is
begin
if First then

First := False;
G_Budget.Add(Params.Budget);
T_Event.Set_Handler(Params.Period,

Timer_Handler’Access);
G_Budget.Set_Handler(Group_Handler’Access);

end if;
G_Budget.Add_Task(T);
if G_Budget.Budget_Has_Expired then

Set_Priority(Params.Background_Pri, T);
else

Set_Priority(Params.Foreground_Pri, T);
end if;

end Register;

procedure Timer_Handler(E : in out Timing_Event) is
T_Array : Task_Array := G_Budget.Members;

begin
G_Budget.Replenish(Params.Budget);
for I in T_Array’range loop

Set_Priority(Params.Foreground_Pri,T_Array(I));
end loop;
E.Set_Handler(Params.Period,Timer_Handler’Access);

end Timer_Handler;

procedure Group_Handler(G : in out Group_Budget) is
T_Array : Task_Array := G_Budget.Members;

begin
for I in T_Array’range loop

Set_Priority(Params.Background_Pri,T_Array(I));
end loop;

end Group_Handler;
end Deferrable_Server;

end Deferrable_Servers;

The first client task to call the server assigns the required
budget and sets up the two handlers: one for a group bud-



get and one for a timing event. The timing event is used to re-
plenish the budget (and reset the priority of the client tasks),
and a group budget is used to lower the priority of the client
tasks. When a task registers (or is registered by another task)
it is running outside the budget, so it is necessary to check if
the budget is actually exhausted during registration. If it is,
the priority of the task must be set to the low value.

One of the advantages of the deferrable server is that it
need not have any detailed knowledge of its clients after
they have registered. Other servers require to know explic-
itly when there clients are executing as they have different re-
plenishment policies. The sporadic server is an example, and
is now considered.

3.2. Sporadic Server

To programme the Sporadic Server also requires the use
of timing events and group budgets. In the following there
is a single server for each sporadic task, so strictly speak-
ing it does not require a group budget and an execution-time
timer could be used instead. However, the example can be ex-
panded to support more than one task, and even for one task,
the server is easier to construct with a group budget.

As the sporadic server replenishes at times related to when
the sporadic task is release, the server can be combined with
the release mechanism. The sporadic task, therefore, has the
following structure:

task body Sporadic_Task is
begin
Sporadic_Controller.Register;
-- any necessary initialisations etc
loop

Sporadic_Controller.Wait_For_Next_Invocation;
-- undertake the work of the task

end loop;
end Sporadic_Task;

The rule for the Sporadic Server are as follows (following
the POSIX standard).

• If there is adequate budget, a task that arrives at time t
and executed for time c will result in capacity c being
returned to the server at time t + T — where T is the
‘period’ of the server.

• If there is no budget at time t then the calling task is de-
layed until budget becomes available, say at time s; this
capacity is returned at time s+ T .

• If there is some budget available x (with x < c) then
the task will immediately use this budget (and it will
be returned at time t + T ); later when at time s, say,
further adequate budget becomes available then the task
will continue and c− x will be returned at time s+ T .

• If s is before task has used initial budget then when it
finishes, all of c is returned at time t+ T .

In addition, we assume that the client tasks do not suspend
themselves during their execution.

Each time the task calls its server, the amount of compu-
tation time it used last time must be noted and replenished
at the appropriate time. To do this (and block the task for
its release event) requires the use of Ada’s requeue mecha-
nism. Although there is only one task, it may execute a num-
ber of times (using less than the budget each time), and hence
there can be more than one timing event outstanding. To en-
able a single handler to deal with all of these requires the tim-
ing event to be extended to include the amount of budget that
must be returned. We will use a dynamic algorithm that de-
fines a new timing event every time a replenish event should
occur. The full specification for the server is as follows.

with System, Ada.Real_Time, Ada.Task_Identification,
Ada.Real_Time.Timing_Events, Execution_Time_Servers,
Ada.Execution_Time.Group_Budgets;

-- use the above
package Sporadic_Servers is

type Budget_Event is new Timing_Event with record
Bud : Time_Span;

end record;
type Bud_Event is access Budget_Event;

protected type Sporadic_Server
(Params : access Server_Parameters) is new

Server with
pragma Interrupt_Priority (Interrupt_Priority’Last);
overriding procedure Register(

T : Task_Id := Current_Task);
entry Wait_For_Next_Invocation;
procedure Release_Sporadic;

private
procedure Timer_Handler(E : in out Timing_Event);
procedure Group_Handler(G : in out Group_Budget);
entry Wait_For;
TB_Event : Bud_Event;
G_Budget : Group_Budget;
Start_Budget : Time_Span;
Release_Time : Time;
ID : Task_ID;
Barrier : Boolean := False;
Task_Executing : Boolean := True;

end Sporadic_Server;
end Sporadic_Servers;

An instance can be easily declared:

Sporadic_Controller : Sporadic_Server(P’Access);
-- for some appropriate parameter object P

The full implementation is shown below:

with Ada.Dynamic_Priorities, Ada.Task_Identification;
use Ada.Dynamic_Priorities, Ada.Task_Identification;
package body Sporadic_Servers is

protected body Sporadic_Server is
procedure Register(T : Task_Id := Current_Task) is
begin
ID := T;
G_Budget.Add_Task(ID);
G_Budget.Add(Params.Budget);
G_Budget.Set_Handler(Group_Handler’Access);
Release_Time := Clock;
Start_Budget := Params.Budget;

end Register;



entry Wait_For_Next_Invocation when True is
begin

-- work out how much budget used, construct
-- the timing event and set the handler
Start_Budget := Start_Budget -
G_Budget.Budget_Remaining;

TB_Event := new Budget_Event;
TB_Event.Bud := Start_Budget;
TB_Event.Set_Handler(Release_Time+Params.Period,
Timer_Handler’Access);

Task_Executing := False;
requeue Wait_For with abort;

end Wait_For_Next_Invocation;

entry Wait_For when Barrier is
begin

if not G_Budget.Budget_Has_Expired then
Release_Time := Clock;
Start_Budget := G_Budget.Budget_Remaining;
Set_Priority(Params.Foreground_Pri,ID);

end if;
Barrier := False;
Task_Executing := True;

end Wait_For;

procedure Release_Sporadic is
begin

Barrier := True;
end Release_Sporadic;

procedure Timer_Handler(E : in out Timing_Event) is
Bud : Time_Span;

begin
Bud := Budget_Event(Timing_Event’Class(E)).Bud;
if G_Budget.Budget_Has_Expired and

Task_Executing then
Release_Time := Clock;
Start_Budget := Bud;
G_Budget.Replenish(Bud);
Set_Priority(Params.Foreground_Pri,ID);

elsif not G_Budget.Budget_Has_Expired and
Task_Executing then

G_Budget.Add(Bud);
Start_Budget := Start_Budget + Bud;

else
G_Budget.Add(Bud);

end if;
end Timer_Handler;

procedure Group_Handler(G : in out Group_Budget) is
begin

-- a replenish event required for the used budget
TB_Event := new Budget_Event;
TB_Event.Bud := Start_Budget;
TB_Event.Set_Handler(Release_Time+
Params.Period,Timer_Handler’Access);

Set_Priority(Params.Background_Pri,ID);
Start_Budget := Time_Span_Zero;

end Group_Handler;
end Sporadic_Server;

end Sporadic_Servers;

To understand how this algorithm works, consider a spo-
radic server with budget of 4ms and a replenishment inter-
val of 20ms. Figure 1 shows the execution of an example
task with our implementation using AdaCore’s evolving Ada
2005 compiler. The system currently runs in a simulated real-
time mode, as group budgets are not implemented yet (our

simulator works at the milliseconds level).

Register WFNI Released

Budget Exhaution

Replenish

(1)

WFNI

Replenish

(3)

1 2 ... 15 18 ... 21 22 35...

Time

Client

Task Executing

Foreground
Task Waiting Task Executable 

Background 
Key

Replenish

(1)

... 41

Figure 1. Sporadic Server Illustration 1

The task first calls Register; this sets up the group bud-
get, adds the task to this group budget and notes the time of
the registration (in our example, the registration takes place
at time 1). It also notes that its starting budget is 4ms. Af-
ter the execution of other initialisation activities, the task will
call in to await its release event. This initial phase of exe-
cution takes 1ms. Within Wait For Next Invocation
(WFNI in the Figure 1), a timing event is constructed that
triggers at time 21 with the budget parameter set at 1ms.

The external call to Release Sproadic occurs at time
15. The client task is released and, as there is budget avail-
able, the release time of the task is noted (15) as is the current
capacity of the budget (which is 3). The task executes imme-
diately (i.e there are no higher priority tasks); it starts to use
the budget. In this example, its CPU requirement is 4ms; it
executes for 3ms and then, at time 18, the budget handler is
triggered as the budget has been exhausted. In the handler, a
timing event is constructed; its trigger time is 35 and its bud-
get parameter is 3ms. The task is given a background priority.
Our example has a lower priority task (above the background)
that consumes CPU time, so the client task is not able to exe-
cute. The next event is the triggering of the first timing event
at time 21. This adds 1ms to the budget and allows the task
to continue to execute at its higher priority level. The time of
release is noted (21) and the budget outstanding (1ms). The
task finishes its invocation (and waits for the next one) with
this 1ms capacity. Again, a timing event is created and trig-
gered at time 41 (with parameter 1ms).

If the task while at the background priority was able to
execute then this would not impact on the budget (which is
zero). If it gets as far as completing its execution then when it
calls Wait For Next Invocation, a timing event with
parameter 0ms will be constructed – this is inefficient, but a
rare event and hence probably better to allow rather than test



for non-zero parameter.

Register WFNI Released

Replenish

(1)

WFNI

Replenish

(4)

1 2 ... 19 22 ...21 39...

Time

Client

... 41

Figure 2. Sporadic Server Illustration 2

To illustrate just a further feature of the algorithm (see Fig-
ure 2), assume the call of Release Sproadic occurred at
time 19 (rather than 15). Now, the task will start executing at
time 19 and run until it uses up the available budget at time
22. However, during that interval, the triggering of the tim-
ing event will occur at time 21. This will add 1ms to the bud-
get but have no further effects as the budget is non-zero at
that time. The task can now run to completion and, when it
calls Wait For Next Invocation, a timing event with
a parameter of 4ms and a triggering time of 39 will be con-
structed. It may appear that this replenishment time is too
soon (should it not be 40?) but the analysis of the Sporadic
Server algorithm does allow this optimisation.

The above code has a single client and uses dynami-
cally created timing objects. Adding more clients is relatively
straightforward although it will require the use of execution
time clocks to track budget usage of each client. The alterna-
tive to dynamically creating timing objects is to reuse a finite
pool defined within the controller.

As CPU time monitoring (and hence budget monitoring)
is not exact, the above algorithm is likely to suffer from drift
– in the sense that the budget returned is unlikely to be ex-
actly the equivalent of the amount used. To counter this, some
form of re-asserting the maximum budget is required. For ex-
ample the Timer Handler routine could be of the form:

procedure Timer_Handler(E : in out Timing_Event) is
begin
...
G_Budget.Add(Bud);
if Budget_Remaining(G_Budget) > Params.Budget then

Replenish(G_Budget, Params.Budget);
end if;
...

end Timer_Handler;

This will prevent too much extra budget being cre-
ated. To counter budget leakage, it would be necessary to
identify when the task has not run for time Period and
then make sure the budget was at it maximum level (us-
ing Replenish). This could be achieved with a further tim-

ing event that is set when the task is blocked on Wait For
and triggered at this time plus Period unless it is can-
celled in Release Sporadic.

4. Related Work

Work of real-time programming models for fixed priority
systems can be divided into two categories. Those that use
research-based languages (usually based on C – for example
[15]) or real-time operating systems (such as the Shark ker-
nel [12]) and those attempts to bring the result of research
into international standards. Ada, of course, falls into the lat-
ter category. Of this class, the main technologies that can it
can be compared to is the Real-Time Posix extensions [16]
and the Real-Time Specification for Java [18].

Real-Time Posix, like Ada, attempts to provide low-level
real-time mechanisms. It supports CPU-Time clocks that can
be integrated into its other timing abstractions (e.g., timers
that can take any clock type, and signals that can be gener-
ated when timers expire). However, it chooses to support a
particular execution-time server: the sporadic server. There
is no other notion of thread group budgets, and consequently
constructing other servers is not possible.

The Real-Time Specification for Java provides higher
level models than Ada or Posix. It directly supports peri-
odic, aperiodic and sporadic programming abstractions. It
also supports the notion of a processing group. Threads can
be associated with a group and the group can be given a bud-
get and a replenishment period. Moreover, unlike the spo-
radic and deferrable servers, the threads can have different
parameters, and they are suspended when the budget is ex-
hausted. By constraining the priorities, a deferrable server
can be implemented but the more complicated sporadic sever
is not possible.

5. Conclusion

Many of the new features of Ada 2005 take the form of
events that are fired by the program’s execution environment.
Example events are:

• when a task’s execution time reaches a defined value,

• when time reaches a defined value,

• when a group budget reaches zero,

• when an interrupt occurs (existing Ada 95 feature),

• when a task terminates.

All of these events trigger the execution of an application-
defined handler programmed as a protected procedure with
a ceiling priority that determines the priority at which the
handler is executed. These provide the building blocks upon
which it is possible to construct flexible real-time systems.



The focus of this paper has been on the construction
of execution-time server abstractions using the facilities of
Ada 2005. Simple servers such as the Deferrable Server are
straightforward and need just a simple timing event and group
budget. The Sporadic Server by contrast is quite complicated,
and its implementation is a testament to the expressive power
of the revised language. There are a number of other server
algorithms for fixed priority scheduling and others, such as
the bandwidth preserving server, that are defined to work
with EDF[1, 11]. Space restrictions prevents any further ex-
amples in this paper, but they can be programmed following
the general approach defined.

Our current work is focussing on extending the approach
given in this paper to develop a range of real-time program-
ming utilities that support a range of real-time task abstrac-
tions. The goal is to provide the Ada programmer with a high-
level model on par with that provided by the RTSJ. However,
the advantage of the Ada approach is that if the application
requires a different abstraction then it can easily be provided
from the low-level Ada mechanisms. In the RTSJ, the given
abstractions are more difficult to tailor.

Ada has come along way since its initial version back in
the early 1980s. That version was heavily criticised. Ada 95
responded to those criticisms and is an efficient language for
high-reliable long-lived real-time applications. Yet arguably
the damage to the language’s reputation had already been
done. Ada has for too long struggled to overcome those initial
setbacks. Ada 2005 has continued the recovery, and the lan-
guage now provides a comprehensive set of mechanisms that
can deliver modern real-time scheduling theory to the sys-
tems engineer. It is time for those with prejudice against Ada
to reconsider their position, and see Ada 2005 for what it re-
ally is – a flexible concurrent real-time object-oriented pro-
gramming language.

6. Acknowledgements

The authors wish to thank member of ISO committee
ARG and attendees of the IRTAW series for their input to the
issues discussed in this paper. We also would like to thank
AdaCore for allowing access to early releases of their Ada
2005 compiler, which was used to test the algorithms pre-
sented in this paper.

References

[1] L. Abeni, G. Lipari, and G. Buttazzo. Constant bandwidth vs
proportional share resource allocation. In Proceedings of the
IEEE International Conference on Mutimedia Computing and
Systems, Florence, Italy, June 1999.

[2] T.P. Baker. Stack-based scheduling of realtime processes.
Real-Time Systems, 3(1), March 1991.

[3] G. Bernat, I. Broster, and A. Burns. Rewriting history to ex-
ploit gain time. In Proceedings Real-time Systems Sympo-

sium, pages 328–335, Lisbon, Portugal, 2004. Computer So-
ciety, IEEE.

[4] G. Bernat and A. Burns. New results on fixed priority ape-
riodic servers. In Proceedings 20th IEEE Real-Time Systems
Symposium, pages 68–78, 1999.

[5] R. Brukardt(ed). Ada 2005 reference manual. Technical re-
port, ISO, 2006.

[6] A. Burns, M. González Harbour, and A.J. Wellings. A round
robin scheduling policy for Ada. In Reliable Software Tech-
nologies, Proceedings of the Ada Europe Conference, volume
LNCS 2655, pages 334–343. Lecture Notes on Computer Sci-
ence, Springer Verlag, 2003.

[7] A. Burns and A. J. Wellings. Accessing delay queues. In Pro-
ceedings of IRTAW11, Ada Letters, Vol XX1I(4), pages 72–76,
2002.

[8] A. Burns and A.J. Wellings. Task attribute-based scheduling
- extending Ada’s support for scheduling. In T. Vardenega,
editor, Proceedings of the 12th International Real-Time Ada
Workshop, volume XXIII, pages 36–41. ACM Ada Letters,
2003.

[9] A. Burns, A.J. Wellings, and T.Taft. Supporting deadlines and
EDF scheduling in Ada. In Reliable Software Technologies,
Proceedings of the Ada Europe Conference, pages 156–165.
Springer Verlag, LNCS 3063, 2004.

[10] A. Burns, A.J. Wellings, and T. Vardanega. Report of session:
Flexible scheduling in Ada. In Proceedings of IRTAW 12, Ada
Letters, Vol XXIII(4), pages 32–25, 2003.

[11] M. Caccamo and L. Sha. Aperiodic servers with resource con-
straints. In Proceedings of the IEEE Real-Time Systems Sym-
posium, December 2001.

[12] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new ker-
nel approach for modular real-time systems development. In
Proceedings of the 13th IEEE Euromicro Conference on Real-
Time Systems, pages 199–207, 2001.

[13] J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for
scheduling soft-aperiodic tasks fixed-priority preemptive sys-
tems. In Proceedings 13th IEEE Real-Time Systems Sympo-
sium, pages 110–123, 1992.

[14] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic
responsiveness in a hard real-time environment. In Proceed-
ings 8th IEEE Real-Time Systems Symposium, pages 261–270,
1987.

[15] L. Palopoli, G. Buttazzo, and P. Ancilotti. A C language exten-
sion for programming real-time applications. In Proceedings
of the 6th IEEE International Conference on Real-Time Com-
puting Systems and Applications, pages 102–110, 1999.

[16] M. Aldea Rivas and M. Gonzalez Harbour. Evaluation of new
POSIX real-time operating systems services for small embed-
ded platforms. In Proceedings of the 15th IEEE Euromicro
Conference on Real-Time Systems, pages 161–168, 2003.

[17] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task schedul-
ing for hard real-time systems. Real-Time Systems, 1:27–69,
1989.

[18] A.J. Wellings. Is Java augmented with the RTSJ a better real-
time systems implementation technology than Ada 95? In Pro-
ceedings of IRTAW 12, Ada Letters, Vol XXIII(4), pages 16–21,
2003.


