
Combining EDF and FP Scheduling: Analysis and
Implementation in Ada 2005

A. Burns, A.J. Wellings and F. Zhang

Real-Time Systems Group
Department of Computer Science

University of York, UK.

Abstract. Earliest Deadline First (EDF) and Fixed Priority (FP) scheduling rep-
resent the two main dispatching policies within the research domain of real-time
systems engineering. Both dispatching policies are now supported by Ada. In
this paper the two approaches are combined to maximize the advantages of both
schemes. From EDF comes efficiency, from FP predictability. A system model is
presented in which a relatively small number of high-integrity tasks are sched-
uled by FP, with the rest of the tasks being handled via an EDF domain of lower
priority. Two aspects of integration are covered in this paper. Firstly, Response-
Time Analysis (for FP) and Processor-Demand Analysis (for EDF) are brought
together to provide a single analysis framework. Secondly, the programming of
systems which combine FP and EDF is addressed within the facilities provided
by Ada 2005. Both partitioned and dynamic schemes are covered.

1 Introduction and Related Work

It is remarkable that the two most common scheduling schemes for real-time systems,
EDF (Earliest Deadline First) and FP (Fixed Priority – sometimes known as rate mono-
tonic) were both initially defined and analyzed in the same paper [19]. Since the publi-
cation of this seminal work in 1973, there has been a vast amount of research material
produced on both of these schemes, and on the many ways of comparing and contrasting
them. In this paper we will not rehearse the ‘which is better’ debate but will motivate
the use of the combination of both approaches. We will show how combined EDF+FP
dispatching can be analyzed and how systems can be programmed in Ada 2005 that
make use of separated and combined EDF and FP domains. Indeed we will show how
tasks can migrate from EDF to FP dispatching during execution.

In general, EDF has the advantage of optimality – its makes the best use of the
available processor, whilst FP has the advantage of predicability and efficiency of im-
plementation over current real-time operating systems. For general task parameters, FP
has (up to recently) also have the advantage that schedulability is easier to evaluate (but
see new results reviewed in Section 3).

The motivation for combining the two schemes comes from the wish to exploit
the benefits of both approaches: EDF for its effectiveness and FP for the predictability
it affords to high priority tasks [12]. In keeping with a number of recent papers on
hierarchical approaches to scheduling, we shall explore the properties of a system that
has FP as its basic dispatching mechanism. So high integrity tasks will run under FP,



2 A. Burns, A.J. Wellings and F. Zhang

but the majority of tasks within the system will be managed by EDF (at a conceptually
low priority). As a result of this scheme, FP tasks are isolated from the EDF ones, any
overrun of the EDF tasks will not effect the FP ones, and the FP tasks will have regular
execution patterns which helps to reduce input and output jitter.

The desire to combine EDF and FP is not new [26, 15, 6]. In this paper we com-
bine RTA (Response-Time Analysis) for FP and PDA (Processor-Demand Analysis)
for EDF using an adaption of the hierarchical scheduling approach presented by Zhang
and Burns in 2007[23]. We are able to present necessary and sufficient analysis of com-
bined EDF and FP systems.

Although EDF does have a number of advantages over FP, its use by industry has
been limited. Priority based systems are supported by a wide range of real-time kernel
APIs (such as POSIX) and programming languages such as Real-Time Specification
for Java (RTSJ) and Ada. EDF support is found only on academic research platforms.
Recently Ada [9] has been extended to include a number of features of relevance to the
programming of real-time systems. One of these is the support for EDF dispatching and
combined EDF and FP dispatching – including the sharing of protected objects between
tasks scheduled by the different schemes.

The structure of this paper is straightforward, a system model is presented in Section
2, existing analysis for FP and EDF systems is covered in Section 3 with Section 4
containing the new integrated analysis. The programming of integrated FP and EDF
systems is addressed in Section 5. Sections 3 to 5 address statically partitions systems.
Although this may be appropriate for application where all tasks must be guaranteed,
many applications will contain soft tasks. These require a more dynamic approach that
is able to guarantee hard tasks and effectively schedule soft tasks. One such scheme is
illustrated in Section 6. Conclusions are drawn together in Section 7.

2 System Model

We use a standard system model in this paper, incorporating the preemptive scheduling
of periodic and sporadic task systems. A real-time system, A, is assumed to consist of
N tasks (τ1 .. τN ) each of which gives rise to a series of jobs that are to be executed on
a single processor. Each task τi is characterized by several parameters:

– A period or minimum inter-arrival time Ti; for periodic tasks, this defines the exact
temporal separation between successive job arrivals, while for sporadic tasks this
defines the minimum temporal separation between successive job arrivals.

– A worst-case execution time Ci, representing the maximum amount of time for
which each job generated by τi may need to execute. The worst-case utilization
(Ui) of τi is Ci/Ti.

– A relative deadline parameter Di, with the interpretation that each job of τi must
complete its execution within Di time units of its arrival. In this paper we assume
Di ≤ Ti. The absolute deadline of a job from τ i that arrives at time t is t + Di.

Once released, a job does not suspend itself. We also assume in the analysis, for ease
of presentation, that tasks are independent of each other and hence there is no blocking



Combining EDF and FP Scheduling: Analysis and Implementation in Ada 2005 3

factor to be incorporated into the scheduling analysis. The use of protected objects to
allow data sharing is however allowed in the program model.

System overheads are ignored in this treatment. Their inclusion would not impact
on the structure of the results presented, but would complicate the presentation of these
results. In practice, these overheads must of course not be ignored [11].

There are no restrictions on the relative release times of tasks (other than the mini-
mum separation of jobs from the same task). Hence we assume all tasks start at the same
instant in time – such a time-instant is called a critical instant for the task system[19].
In this analysis we assume tasks do not experience release jitter.

In the initial specification of the model, the system A is statically split into two sets:
AFP and AEDF . All task in AFP are scheduled using fixed distinct priorities with the
priorities being assign by some appropriate scheme (for the application) such as Dead-
line Monotonic[18]. Tasks within AEDF are scheduled by EDF. The total utilization of
the tasks in these two sets is denoted by UFP and UEDF . For any system to be feasible:
UFP + UEDF ≤ 1.

At any time during execution, if a task within AFP has an active job (released
but not yet competed) then it, or another member of AFP will execute. The order of
execution of the tasks from AFP is determined by the static priority parameter of the
task. If there are no active jobs from AFP then an active job from AEDF is chosen for
execution. The job with the earliest (soonest) absolute deadline is picked for execution.
At all times, the arrival of a high priority job will preempt a lower priority or EDF
job. Similarly the arrival of a job with an earlier absolute deadline will preempt the
current EDF job. As a consequence of these rules, tasks in AFP are unaffected by the
existence of EDF tasks (other than by the use of shared protected objects). The EDF
tasks, however, suffer interference from the FP tasks.

In order to illustrate the application of the methods described in this paper, the
example provided in Table 1 will be used. It consists of ten tasks, three of which are
high-integrity I/O routines that require their deadlines to be met on all occasions and
additionally require minimum jitter over their input and output operation. The other
seven tasks are less critical and may be subject to occasional overruns in their execution
times. Nevertheless they require their deadlines to be met if there are no execution time
faults.
Note the total utilization of this task set is high at 0.97 and that a number of tasks have
deadline less than period.

3 Existing Schedulability Analysis

We are concerned with analysis that is necessary, sufficient and sustainable [3]. In gen-
eral, schedulability is asserted by either a direct test for this property or via the inter-
mediate calculation of response times. Response times are then trivially compared with
(relative) deadlines to complete the analysis. Direct and response-time analysis exists
for both FP and EDF. However, Response-Time Analysis (RTA) is the more common
approach for FP systems, and the values of the response times will be needed in the
integrated scheme. Hence RTA will be used for fixed priority analysis. For EDF the re-



4 A. Burns, A.J. Wellings and F. Zhang

Task ID T C D
τ1 10 1 4
τ2 50 2 50
τ3 65 1 30
τ4 10 2 8
τ5 20 1 20
τ6 30 5 20
τ7 50 4 50
τ8 100 13 100
τ9 200 26 150
τ10 1500 80 900

Table 1. Example Task Set

verse is true, with a direct test known as Processor-Demand Analysis (PDA) being the
most appropriate to apply.

3.1 RTA for FP Systems

Response-Time Analysis [16, 1] examines each task in turn, and computes it latest com-
pletion time (response-time) which is denoted by R i. An equation for Ri is obtained by
noting that if task τi is released at time t and this is a critical instant, then in the interval
(t,Ri] there must be time for τi to complete and every higher priority job that is released
in the interval to also complete. Hence,

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

For all i, hp(i) denotes the set of tasks with higher priority than τ i. This equation for
Ri is solved by forming a recurrence relation:

wn+1
i = Ci +

∑
j∈hp(i)

⌈
wn

i

Tj

⌉
Cj (2)

As long as the start value (w0
i ) is less than Ri then this recurrence relation will find

the worst case response time (wn+1
i = wn

i = Ri) or it will correctly determine that
the task is not schedulable (wn+1

i > Di). Finding an effective start value for w0
i is the

subject of considerable conjecture (see for example some recent results [14]). We shall
return to this issue in the integrated approach.

The task set illustrated in Table 1 can be analysed using RTA (with the priorities
assigned by the optimal deadline monotonic ordering). Unfortunately not all tasks are
schedulable, as shown in Table 2. Note the value 1 denotes the highest priority in this
example (and 10 the lowest); this is the normal representation in the scheduling litera-
ture but is the reverse of the order used by Ada.



Combining EDF and FP Scheduling: Analysis and Implementation in Ada 2005 5

Task ID T C D P R
τ1 10 1 4 1 1
τ2 50 2 50 6 15
τ3 65 1 30 5 10
τ4 10 2 8 2 3
τ5 20 1 20 3 4
τ6 30 5 20 4 9
τ7 50 4 50 7 19
τ8 100 13 100 8 48
τ9 200 26 150 9 FAIL
τ10 1500 80 900 10 FAIL

Table 2. RTA Analysis

3.2 PDA for EDF Systems

Processor-Demand Analysis [5, 4] considers the entire system in one sequence of tests.
It does not compute Ri but uses the property of EDF that at any time t only jobs that
have an absolute deadline before t need to execute before t. So the test takes the form
(the system start-up is assumed to be time 0):

∀t > 0 : h(t) ≤ t (3)

where h(t) is the total load/demand on the system (all jobs that have started since time
0 and which have a deadline no greater than t). A simple formulae for h(t) is therefore
(for D ≤ T ):

h(t) =
N∑

j=1

⌊
t + Tj − Dj

Tj

⌋
Cj (4)

The need to check all values of t is reduced by noting that only values of t that
correspond to job deadlines have to be assessed. Also there is a bound on t. An un-
schedulable system is forced to fail inequality (3) before the bound L. A number of
values for L have been proposed in the literature, here we give one that we shall use in
the integrated approach. It is called the synchronous busy period [20, 22] and is denoted
here by LB . It is calculated by forming a similar recurrence relationship to that used for
RTA:

sm+1 =
N∑

i=1

⌈
sm

Ti

⌉
Ci (5)

The recurrence stops when sm+1 = sm, and then LB = sm. Note that the recurrence
cycle is guaranteed to terminate if U ≤ 1 for an appropriate start value such as s 0 =∑N

i=1 Ci.
With all available estimates for L there may well be a very large number of dead-

line values that need to be checked using inequality (3) and equation (4). This level



6 A. Burns, A.J. Wellings and F. Zhang

of computation has been a serious disincentive to the adoption of EDF scheduling in
practice. Fortunately, a new much less intensive test has recently been formulated [24,
25]. This test, known as QPA (Quick Processor-demand Analysis), starts from time L
and integrates backwards towards time 0 checking a small subset of time points. These
points are proved [24, 25] to be adequate to provide a necessary and sufficient test.

The QPA algorithm is encoded in the following pseudo code in which D min is the
smallest relative deadline in the system and d min(t) is the smallest absolute deadline
strictly less than t:

t := d min(L)
loop

s := h(t)
if s <= D min then exit (schedulable)
if s > t then exit (unschedulable)
if s = t then
t := d min(s)

else
t := s

end if
end loop

In each iteration of the loop a new value of t is computed. If this new value is greater
than the old value the system is unschedulable. Otherwise the value of t is reduced
during each iteration and eventually it must become smaller than the first deadline in
the system and hence the system is schedulable.

Theorem 1. ([24, 25]) A general task set is schedulable if and only if U ≤ 1, and the
iterative result of the QPA algorithm is s ≤ Dmin where Dmin is the smallest relative
deadline of the task set.

If the example of Table 1 is scheduled entirely with EDF then the QPA test easily
determines that it is schedulable.

3.3 Hierarchical Scheduling

In a recent paper on hierarchical scheduling [23], the following result was given for the
situation where a collection of EDF tasks are scheduled within a fixed priority server
(eg. a deferrable [17] or sporadic server [21]).

Theorem 2. (adapted from [23]) In a two level hierarchical system when the local
scheduler is EDF, a set of periodic or sporadic tasks in the application is schedulable
if all of the following conditions are true:

1. The utilization of the task set is less than the capacity of the server.
2. All tasks in the application are released simultaneously at time 0.
3. ∀di ∈ (0, LB), R(h(di)) ≤ di where LB is the worst-case synchronous busy

period, and the term R(h(t)) is the worst-case response time for the load h(t)
when executed within the server.

We shall use this result in the following integrated analysis for FP and EDF.



Combining EDF and FP Scheduling: Analysis and Implementation in Ada 2005 7

4 Integrated Analysis of FP and EDF

Integration comes from linking RTA and PDA (QPA) using the approach developed for
hierarchical scheduling. Under EDF the amount of work that must be completed by
time t is represented by h(t). But during the execution of an EDF job, some FP jobs
may preempt and use some of the available time. It follows that a minimum requirement
on the combined task set is that:

∑
j∈AF P

Cj + Cmin ≤ Dmin

where Cmin is the computation time of the EDF task with the shortest deadline (Dmin).
By modeling the entire EDF load as a single low priority task within a FP system,

h(t) becomes the computation time of this lower priority task. And hence the response
time of this task is the earliest completion time for the EDF load generated by time
t. Define R(h(t)) to be this completion time. The fundamental schedulability test for
EDF becomes:

Theorem 3. In the combined EDF+FP system when all EDF tasks run at the lowest
priority level, the EDF tasks are schedulable if and only if:

1. U ≤ 1 where U is the total utilization of the whole task set (including EDF and FP
tasks).

2. ∀di ∈ (0, LB), R(h(t)) ≤ di, where LB is the synchronous busy period of the
whole task set.

Proof. From Theorem 2’s discussion ∀t > 0, R(h(t)) ≤ t ⇒ h(t) ≤ A(t) where
A(t) is the worst-case available processor execution time in a given time interval [0,t].
Also from Theorem 2, the system is schedulable if and only if ∀d i > 0, R(h(di)) ≤ di.

The upper bound LB can be obtained from the argument of Liu and Layland [19], if
there is an overflow in any tasks’ arrival pattern, then there is also an overflow without
idle time prior to it when all tasks arrive simultaneously. Since all EDF tasks run at
the lowest priority level, when all tasks arrive simultaneously at time 0, then the busy
period of the EDF tasks ends when there is no pending tasks in the system. Hence the
schedulability check can be bounded to the synchronous busy period of the whole task
set. �

To obtain the value of R(h(t)) within the FP domain, equation(1) becomes:

R(h(t)) = h(t) +
∑

j∈AF P

⌈
R(h(t))

Tj

⌉
Cj (6)

This is again solved using the recurrence relationship identified in equation (2). The
value of LB is calculated by equation (5).

The QPA algorithm outlined in Section 3.2 is essentially unchanged. Since R(h(t))
is non-decreasing with t, we can use the same argument used in the proof of Theorem
1 to show that only line in the pseudo code needs altering: the assignment to s which
must now be:

s := R(h(t))



8 A. Burns, A.J. Wellings and F. Zhang

To test a complete system the response time equation is evaluated for a series of
‘loads’ starting with h(LB) and decreasing each iteration of the QPA loop. This usage
of RTA facilitates an efficient start value (w0) for equation (6). In general, the utilization
of the FP tasks will be relatively small and the size of h(t) large when compared to the
typical FP task’s execution time. In these circumstances the start value derived by Bril
et al [8] is the best one to use:

w0 =
h(t)

(1 − UFP )
(7)

So in the example the three fixed priority tasks (τ1...τ3) are easily schedulable – the
values for these task are given in Table 3.

Task ID T C D P R
τ1 10 1 4 1 1
τ2 50 2 50 3 4
τ3 65 1 30 2 2

Table 3. RTA Analysis of FP Tasks

The synchronous busy period estimation of LB is 988. Using equation (4) to com-
pute h(988) gives the value 815. Equation (7) for h(t) = 815 provides an initial value
for the RTA analysis of 965. Equation (6) is then solved with this initial value to give
R(815) = 967. As 988 > 967 this initial QPA test is positive (ie. R(h(988)) < 988).
From the value of 967 the iteration continues. Table 4 shows this process for all the
stages that the QPA analysis requires. Termination occurs when t becomes less then
the shortest EDF deadline in the system (ie 6 < 8). The result is that on all iterations
R(h(t)) ≤ t and therefore the EDF part of the system is deemed schedulable. And
hence the dual scheduled complete system is schedulable.

t h(t) w0 w1 w2 R(h(t) t h(t) w0 w1 w2 R(h(t)

988 815 965 967 967 373 271 321 323 323
967 803 951 954 954 323 224 265 268 268
954 800 947 948 948 268 184 218 220 220
948 765 906 908 908 220 158 187 188 188
908 750 888 889 889 188 128 152 155 155
889 643 761 764 764 155 113 134 136 136
764 570 675 677 677 136 73 86 88 88
677 485 574 576 576 88 41 49 49
576 424 502 505 505 49 17 20 22 23 23
505 367 435 436 436 23 10 12 15 15
436 313 371 373 373 15 2 2 6 6

Table 4. Full Analysis of EDF Subsystem



Combining EDF and FP Scheduling: Analysis and Implementation in Ada 2005 9

Note Table 4 includes all the calculations needed to verify this system. A useful
way of estimating the effort required to complete the verification process is to count the
number of ceiling/floor function calls that are required. Within this example, for all but
two of the steps only two iterations are needed to compute the response time for the
EDF load. For one step three iterations were needed; for another only one. The com-
bination of an efficient start value to this part of the algorithm and the use of the QPA
approach means that a total of only 69 ceiling/floor computations have been necessary
to test the entire system (3 for the FP part, 22 processor demand calculations and 44 w
evaluations).

5 Programming EDF and FP in Ada 2005

To implement combined EDF and FP systems requires either support from an underly-
ing operating system (OS) or from a programming language. Unfortunately few com-
mercial OSs support EDF let alone combined EDF/FP. Similarly, programming lan-
guages aimed at the embedded and real-time domain are weak in their provisions for
real-time abstractions and notations. The only engineering languages that does support
a variety of dispatching policies is Ada; this section therefore focussed on the imple-
mentation of combined EDF/FP systems in that language.

A typical time-triggered task type, dispatched by FP, has the form:

task type Periodic_FP (Pri : Priority; Period_in_MS : Integer) is
pragma Priority(Pri); -- fixed priority

end Periodic_FP;

task body Periodic_FP is
Next_Release : Time;
Period : Time_Span := Milliseconds(Period_in_MS);

begin
Next_Release := Clock;
loop
-- application code
Next_Release := Next_Release + Period;
delay until Next_Release;

end loop;
end Periodic_FP;

Actual_FP_Periodic_Task : Periodic_FP(16,25);
-- task with priority of 16 and a period of 25 ms

The time types and the clock function are all defined in the predefined language
package Ada.Real Time. Note as is typical in FP systems, the actual deadline of the
task is not represented in the program’s code.

To inform the run-time system that FP dispatching is required, the following pragma
is used:

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);



10 A. Burns, A.J. Wellings and F. Zhang

5.1 Supporting EDF scheduling

To support EDF requires two language features:

– representation of the deadline for a task,
– representation of preemption level for a protected object.

The first is obviously required; the second is the EDF equivalent of priority ceilings
and allows protected objects to be ‘shared’ by multiple tasks [2]. A predefined package
provides support for deadlines:

package Ada.Dispatching.EDF is
subtype Deadline is Time;
Default_Deadline : constant Deadline := Time_Last;
procedure Set_Deadline(D : in Deadline;

T : in Task_ID := Current_Task);
procedure Delay_Until_And_Set_Deadline(Delay_Until_Time : Time;

TS : in Time_Span);
function Get_Deadline(T : Task_ID := Current_Task) return Deadline;

end Ada.Dispatching.EDF;

Within a complete system, the priority range is split into different ranges for dif-
ferent dispatching policies. For the approach adopted in this paper, a collection of high
values (larger integers) are used for FP, and a range of lower values are used for EDF.
If the base priority of a task is within the range of priorities defined as EDF Across
Priorities then it is dispatched by EDF. Note also that the ready queues for priori-
ties within this range are ordered by absolute deadline (not FIFO).

The typical code pattern for a periodic task type, scheduling by EDF, is therefore
now:

task type Periodic_EDF (Pri : Priority; Period_in_MS,
Deadline_in_MS : Integer) is

pragma Priority(Pri);
pragma Relative_Deadline(Milliseconds(Deadline_in_MS));

end Periodic_EDF;

task body Periodic_EDF is
Next_Release: Time;
Period : Time_Span := Milliseconds(Period_in_MS);
Rel_Deadline : Time_Span := Milliseconds(Deadline_in_MS);

begin
Next_Release := Clock;
loop
-- application code
Next_Release := Next_Release + Period;
Delay_Until_and_Set_Deadline(Next_Release, Rel_Deadline);

end loop;
end Periodic_EDF;

Actual_EDF_Periodic_Task : Periodic_EDF(5,25,20);
-- 5 is within the EDF_Across_Priorities range.
-- Period of 25 ms, and relative deadline of 20 ms.
-- The first absolute deadline of the task is 20ms from the time the
-- task is created.



Combining EDF and FP Scheduling: Analysis and Implementation in Ada 2005 11

The different priority ranges are indicated by the following pragmas (in this exam-
ple, the bottom ten are allocated to EDF and the next higher ten to FP).

pragma Priority_Specific_Dispatching(FIFO_Within_Priorities, 20, 11);
pragma Priority_Specific_Dispatching(EDF_Across_Priorities, 10, 1);

Note the code for a task object of type Periodic EDF could be dispatched by FP
by merely changing the range into which its priority falls – there is no need to make any
changes to the code of the task.

5.2 Protected objects

With standard fixed priority scheduling, priority is actually used for two distinct pur-
poses:

– to control dispatching, and
– to facilitate an efficient and safe way of sharing protected data.

In Baker’s stack-based protocol, two distinct notions are introduced for these poli-
cies[2]:

– earliest deadline first to control dispatching1,
– preemption levels to control the sharing of protected data.

With preemption levels, each task is assigned a static preemption level (represented by
the task’s base priority), and each protected object is assigned a ceiling value that is the
maximum of the preemption levels of the tasks that call it. At run-time, a newly released
task, T1 say, can preempt the currently running task, T2, if and only if:

– the absolute deadline of T1 is earlier (i.e. sooner) than the absolute deadline of T2,
and

– the preemption level of T1 is higher than the ceiling preemption level of every
locked protected object.

With this protocol it is possible to show that, on a single processor, mutual exclusion
(over the protected object) is ensured by the protocol itself (in a similar way to that
delivered by fixed priority scheduling and ceiling priorities) 2. Baker also showed, for the
classic problem of scheduling a fixed set of periodic or sporadic tasks, that if preemption
levels are assigned according to each task’s relative deadline then a task can suffer at
most a single block from any task with a longer deadline. Again this result is identical
to that obtained for fixed priority scheduling.

The definition of Ada 2005 provides support for Baker’s algorithm – see Burns and
Wellings[10] for details.

1 His paper actually proposes a more general model of which EDF dispatching is an example.
2 This property requires that there are no suspensions inside the protected object – as is the case

with Ada.



12 A. Burns, A.J. Wellings and F. Zhang

6 Dynamic Partitioning of EDF and FP Tasks

Rather than partition the two types of tasks (with the high integrity tasks being sched-
uled as FP and the others as EDF), a dynamic scheme can be used. This is particularly
appropriate where the system has a mixture of high-integrity (hard) and soft real-time
tasks. In one such approach, all tasks are initially scheduled using EDF, but if it be-
comes critical for a high-integrity task to execute, it is pulled from the EDF level and
is allowed to complete as a FP task where the execution behaviour is more predictable.
This means of scheduling tasks is known as dual priority scheduling [13, 7].

Each high-integrity task has a promotion time, S i, that indicates when (relative to its
release) it must move to its higher level. The scheduling equations when they compute
worst-case response time Ri immediately allow this value to be obtained: Si := Ti−Ri.
The full analysis is given in [13]. Here, we focus on the programming aspects.

To support dual priority scheduling in Ada 2005 requires two features:

– a means of dynamically changing a task’s priority, and
– a means of making such a change at a particular point in time.

The former is supported by a straightforward dynamic priority package. More sig-
nificantly, Ada 2005 has introduced a new abstraction of a timing event to allow code to
be executed at specified times without the need to employ a task/thread. These events
are like interrupts, but they are generated by the progression of the real-time system
clock. Associated with a timing event is a handler that is executed at the allotted time.
An implementation should actually execute this handler directly from the interrupt han-
dler for the clock device. This leads to a very efficient implementation scheme.

It would be quite possible for each task to have its own handler that alters its base
priority when required. However, using the ‘tagged’ feature of the event type it is pos-
sible to have just a single handler that uses the event parameter to reference the correct
task. To do this, the type Timing Event is first extended (in a library package) to
include a task ID field:

type Dual_Event is new Timing_Event with
record

TaskID : Task_ID;
end record;

The single handler has a straightforward form (it is placed in the same library package
as the type definition):

protected Dual_Event_Handler is
pragma Interrupt_Priority(Interrupt_Priority’Last);
procedure Change_Band(Event : in out Timing_Event);

end Dual_Event_Handler;

protected body Dual_Event_Handler is
procedure Change_Band(Event : in out Timing_Event) is
The_Task : Task_ID;
P : Priority;

begin
The_Task := Dual_Event(Timing_Event’Class(Event)).TaskID;



Combining EDF and FP Scheduling: Analysis and Implementation in Ada 2005 13

P := Get_Priority(The_Task);
Set_Priority(P+10, The_Task);

end Change_Band;
end Dual_Event_Handler;

The specific task ID is obtained by two view conversions, the parameter Event is
converted first to a class-wide type and then to the specific type Dual Event. The
run-time system does not know about the extended type but the underlying type is not
changed or lost, and is retrieved using the view conversions.

Now consider a high integrity task that has a base priority 4 in the EDF level and 14
in the upper FP level. Initially it must run with priority 14 to make sure all its initiali-
sation is complete. It has a period of 50 ms and a relative deadline set to the end of its
period (i.e. also 50 ms). Its promotion point is 30 ms after its release.

task Example_Hard is
pragma Priority(14);

end Example_Hard;

task body Example_Hard is
Dual_E : Dual_Event := (Timing_Event with TaskID => Current_Task);
Start_Time : Time := Clock;
Period : Time_Span := Milliseconds(50);
Promotion : Time_Span := Milliseconds(30);

begin
Dual_E.Set_Handler(Start_Time + Promotion,

Dual_Event_Handler.Change_Band’access);
Set_Deadline(Start_Time + Period);
Set_Priority(4); -- now dispatched according to EDF
loop
-- application code of the task
Start_Time := Start_Time + Period;
Dual_E.Set_Handler(Start_Time + Promotion,Dual_Event_Handler.

Change_Band’access);
Set_Priority(4);
Delay_Until_And_Set_Deadline(Start_Time,Period);

end loop;
end Example_Hard;

If the event triggers then the task’s priority will be raised to 14 and it will be subject
to fixed priority dispatching; as a result it will complete the execution of its code by
its deadline (guaranteed by the scheduling analysis). It will then set its new release
time (Start Time), set its event handler again and lower its priority back to the value
within the EDF range. Its deadline will be quite soon and so it is likely to continue
executing into its delay statement.

If the system is not heavily loaded, the hard task will complete its invocation before
the promotion point. The second call of Set Handler will then cancel the previous
call.

A final point to note with this example concerns the use of protected objects by the
tasks. If such an object is used by a hard task then it must have a ceiling in the 11..20
range, otherwise an error would occur if the task with its promoted priority calls the
object. Using the event handler to also change the ceiling priorities of such protected
objects is unlikely to be justified.



14 A. Burns, A.J. Wellings and F. Zhang

7 Conclusions

This paper has considered the means by which EDF and FP scheduling can be used
together to produce a hybrid scheme that has many of the benefits of the individual
approaches. From EDF comes efficiency, from FP comes predictability. With this com-
bination it is possible to run systems that have a number of critical tasks that require the
determinacy of FP together with soft tasks that utilize most of the remaining capacity
of the processor.

Two aspects of the integration of EDF and FP have been covered. First the integra-
tion of the forms of analysis available – specifically, RTA for FP and PDA (with QPA)
for EDF. Secondly, integration of the implementations via the programming model
available in Ada 2005. This enables industrially relevant systems to be produced that
make use of FP and EDF, and moveover allows a late binding to the scheduling scheme
to be employed. Indeed a dynamic approach is discussed that allows tasks at run-time
to migrate between scheduling routines.

References

1. N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new
scheduling theory to static priority preemptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

2. T.P. Baker. Stack-based scheduling of realtime processes. Real-Time Systems, 3(1), March
1991.

3. S.K. Baruah and A. Burns. Sustainable schedulability analysis. In IEEE Real-Time Systems
Symposium (RTSS), pages 159–168, 2006.

4. S.K. Baruah, R.R. Howell, and L.E. Rosier. Feasibility problems for recurring tasks on one
processor. Theorectical Computer Science, 118:3–20, 1993.

5. S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptive scheduling of hard real-time sporadic
tasks on one processor. In IEEE Real-Time Systems Symposium (RTSS), pages 182–190,
1990.

6. S.K. Baruah, A.K. Mok, and L.E. Rosier. Hybrid-priority scheduling of resource-sharing
sporadic task systems. In IEEE Real-Time Systems and Applications Symposium (RTAS),
2008.

7. G. Bernat and A. Burns. Combining (n m)-hard deadlines with dual priority scheduling. In
Proceedings 18th IEEE Real-Time Systems Symposium, pages 46–57, 1997.

8. R.J. Bril, W.F.J. Verhaegh, and E-J.D. Pol. Initial values for on-line response time calcu-
lations. In Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS),
pages 13–22, 2003.

9. R. Brukardt(ed). Ada 2005 reference manual. Technical report, ISO, 2006.
10. A. Burns and A. J. Wellings. Concurrency and Real-Time Programming in Ada 2005. Cam-

bridge University Press, 2007.
11. A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages. Addison

Wesley Longman, 4th edition, 2009.
12. G. Buttazzo. Rate monotonic vs. EDF: Judgement day. Real-Time Systems Journal, 29(1):5–

26, 2005.
13. R.I. Davis and A. J. Wellings. Dual priority scheduling. In Proceedings 16th IEEE Real-Time

Systems Symposium, pages 100–109, 1995.



Combining EDF and FP Scheduling: Analysis and Implementation in Ada 2005 15

14. R.I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests for fixed priority
pre-emptive systems. IEEE Transaction on Computers, 57(9):1261–1276, 2008.

15. M.G. Harbour and J.C.P. Gutirrez. Response time analysis for tasks scheduled under EDF
within fixed priorities. In IEEE Real-Time Systems Symposium (RTSS), pages 200–209, 2003.

16. M. Joseph and P. Pandya. Finding response times in a real-time system. BCS Computer
Journal, 29(5):390–395, 1986.

17. J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic responsiveness in a hard real-
time environment. In Proceedings 8th IEEE Real-Time Systems Symposium, pages 261–270,
1987.

18. J.Y.T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation (Netherlands), 2(4):237–250, 1982.

19. C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. JACM, 20(1):46–61, 1973.

20. I. Ripoll and A.K. Mok. Improvement in feasibilty testing for real-time tasks. Journal of
Real-Time Systems, 11(1):19–39, 1996.

21. B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task scheduling for hard real-time systems.
Real-Time Systems, 1:27–69, 1989.

22. M. Spuri. Analysis of deadline schedule real-time systems. Technical Report 2772, INRIA,
France, 1996.

23. F. Zhang and A. Burns. Analysis of hierarchical EDF preemptive scheduling. In IEEE
Real-Time Systems Symposium (RTSS), pages 423–435, 2007.

24. F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF scheduling.
Technical Report YCS 426, University of York, 2008.

25. F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF scheduling.
IEEE Transaction on Computers – to appear, 2008.

26. K.M. Zuberi, P. Pillai, K.G. Shin, and K.G. Emeralds. A small memory real-time microker-
nel. In ACM Symposium on Operatinf Systems Principles, pages 277–291, 1999.


