
Implementing Transactions in a Distributed
Real-Time System without Global Time

A. Burns and Y. Chen
Department of Computer Science

University of York, UK
email: burns@cs.york.ac.uk

Abstract—A simple algorithm is presented for implementing
and analysing real-time transactions executing on a distributed
platform. The algorithm does not require global time, but does
not suffer from excessive jitter.

I. INTRODUCTION

In distributed real-time systems it is necessary to implement
application code as transactions that incorporate processing
elements on one or more processors and communications
across one or more networks [3]. For distributed systems
built upon a time-triggered architecture [2] the implementation
and analysis of transactions is straightforward. With event-
triggered architectures that do not require or support a global
time base the implementation of transactions is not as simple
if output jitter needs to be controlled. In this short paper we
provide an implementation scheme and associated analysis for
event-triggered systems. Note even when the basic architecture
is event-triggered there will still be the need to support
periodic tasks and therefore periodic transactions. We therefore
assume the existence of local clocks on each node. Although
there is no global time service, any two clocks will be assumed
to have bounded drift.

To constraint the flow of work through the system some
form of flow control is needed. But again this does not
necessarily require global time. Also output jitter, at the end of
the transaction, need to be bounded. Issues of composability
require bounded behaviour at all nodes of the systems and
it can be argues that end-to-end latency can be trade again
composability [4] – this is not however discussed in this paper.

II. STANDARD ANALYSIS WITH GLOBAL TIME

Consider, as a means of illustrating the approach, a simple
periodic transaction that has two processing parts τ1 and τ2

executing on different processors, and a communication link
l. Task τ1 inputs data from the environment, does some initial
processing and then passes its ‘result’ to the link. Task τ2

takes this results, undertakes further processing and produces
an output for the environment. The transaction is simply: τ1

l→
τ2. Task τ1 is a pure periodic task that has a defined period T
and has a simple structure such as the following:

Start_Time := clock
write Start_Time to link
next_release := Start_Time
loop
input from environment
undertake processing

write result to link l
next_release := next_release + T
delay_until next_release

end loop

Using standard response time analysis it is possible to
calculate R1 the worst-case response time of this task. It
will also be possible to estimate the worst-case transmission
time for the link, Rl. The calculation of Rl will, of course,
depend upon the network protocol. Note the values R1 and Rl

will be known prior to execution and will constitute common
knowledge in the system.

In a time-triggered system any reading of a local clock is
defined to give a global value. The code for τ2 could therefore
take the following form:

read Start_Time from link
next_release := Start_Time + R_1 + R_l
loop
delay_until next_release
read from link l
undertake processing
write result to the environment
next_release := next_release + T

end loop

The advantage of this structure is that τ2 is immediately
executing with the right period and is guaranteed (within the
bounds of the analysis) to have data available on the link
when it executes the read operation. The read operation is
non-blocking; if when a read is attempted no data is available
then there is a fault that can, potentially, be dealt with.

The disadvantage comes from the need to support a global
time base and the pessimism that arises from assuming that
the communicated data can arrive as late R1 + Rl after the
release of τ1. Although both of these values are genuinely
worst-case, it is not in general true that a transaction can suffer
both worst-case situations at the same time. And hence there
may be pessimism in the offset value used to separate the
executions of τ1 and τ2.

When there is no global time base then all that is known at
the second processor is the common knowledge of the period
of the transactions. Any data arriving on the link may have
been transmitted early in the cycle or towards the actual worst-
case latency on transmission.

III. ANALYSIS WITHOUT GLOBAL TIME

The simplest way to implement a transaction on a dis-
tributed platform without global time is to allow each task
(apart from the first one) to execute the following simple loop.:



loop
read from link
undertake processing
write to next link

end loop

Unfortunately this suffers from extreme output jitter. It is
also difficult to derive an estimate of the worst-case behaviour
as transactions can catch up with one another. Typically some
form of rate control is applied to stop data been passed on
‘too early’. In the following this idea is extended to produce
a new protocol called NGT (No Global Time).

Assume that the read operation on the link has the following
semantics. It blocks until data is available, and it returns, as
well as the data, the earliest time the data was available to
be read. So if the data is already available when the call
of read is made, the operation succeeds immediately and the
time returned is the time that the network interface placed
the data in the appropriate buffer for the application code.
If the data is not available the call is held until the data is
communicated and the time returned is then the current clock
value. The code for τ2 is as follows (but note τ1 no longer
communicates its start time). The first task is assumes to start
at time 0; in the following t is the time returned from the link
(as defined above). A global set of times is used to illustrate
the behaviour of the protocol – but these values are not needed
or the protocol to function.

next_release := 0
read from link l returning t
loop
undertake processing
write result to the environment

(or next link)
next_release := max(next_release,t) + T
delay_until next_release
read from link l returning t

end loop

So the arrival of the data sets up the period of the task.
Initially, if the data arrives early in the cycle, the read operation
will subsequently block and the effective ‘period’ of the task
will be greater than T . But once the maximum latency for the
data has been experienced τ2 will behave as a purely periodic
task will period T .

For example, assume time starts at 0, the period of the
transaction is 20, the response times of τ1 are initially 5,
7, 7, 6, 8, 5 and the transmission times of the resulting
communication are 12, 13, 14, 14, 12, 12. Task τ2 would
behave as follows. Its first read operation would block until
the data arrive at time 17 (5+12). It would then calculate its
next release to be at time 37 (max(0,17)+20). Its second read
would again block until time 40 (20+7+13). The delay time
would now be 60 (max(37,40)+20).

The third data item arrives at time 61 (40+7+14) which
will force the following loop to start at time 81. But now the
worst case has been experienced. The 4th data message arrives
at time 80 (60+8+12), so the read operation at time 81 now
does not block and the task loops with a fixed period of 20 at
times 101, 121 etc. (ie. an offset of 21). As long as the worst-
case latency for the message has already been experienced
the loop will now be purely periodic and all read operations

will be non-blocking. Its start was however characterised by
periods of 37, 23, 21, and 20 before this 20 value became
fixed.

In terms of schedulability analysis, assuming a period of 20
is safe. The task will initially have a longer period, but this will
not undermine any guarantee delivered by the schedulability
test (as long as the test is sustainable[1] – which all standard
tests are).

To complete an assessment of the example, note that the
time triggered approach would require τ2 to have an offset
of 22. So it starts with a more regular execution but it has a
longer latency in its normal phase.

A. Clock drift and infrequent worst-case behaviour
To cater for clock drift an occasional slightly shorter period

can be added (i.e. a loop of 19). If this is too much the
algorithm will force a 21 value on the subsequent iteration.
Note if the clock drift is in the other direction (τ2’s processor
clock running quicker) then the the algorithm will automati-
cally extend one period by a small amount – a read operation
will block.

If the worst-case message delay occurs very infrequently an
application can decide to occasionally bring the period back
from its maximum value (for example a one-off 19). This
may result is a later period of 21 occurring. Overall jitter is
increased but average (and normal) latency is reduced.

B. Fault recognition
One advantage of the time-triggered approach is that a fault

(data not arriving) is immediately recognised. Without a global
time service this is not as straightforward. There are however
some bounds that can be derived. Once the algorithm has
stabilised then all reads should be non-blocking so any delay
can be interpreted as an error. However due to the reasons
outlined above (e.g. clock drift) it would be necessary to give
a tolerance on data arriving late.

A safe upper bound on a timeout value can be calculated
as follows. With no other knowledge of actual execution and
communication times the largest gap between two arrivals of
the data is 2T . Hence a timeout value of T is an upper bound
(i.e. delay in the loop is T after the first arrival, and then
wait up to T for the data to arrive). However an improvement
on this can be obtained if one records how early data does
arrive. If W is the maximum time that data has been in the
input buffer waiting to be read then the timeout value can be
reduced to T −W . The code would have the following form:

next_release := 0
read from link l returning t
W := 0
loop
undertake processing
write result to the environment
next_release := max(next_release,t) + T
delay_until next_release
select
read from link l returning t

timeout T-W
undertaken alternative action

W := max(W, clock-t)
end loop



IV. SIMULATION RESULTS

To evaluate the validity and performance of this NGT pro-
tocol a set of simulation experiments were undertaken. Here
we report on one such experiment. The hardware platform
was assumed to consist of ten nodes in a pipeline. A single
repeating transaction runs through these nodes, with a single
task per node. The period of the transaction (and hence the
‘period’ of each task) was 200ms. Each task had a maximum
response time of 180ms, and each communication link had
a maximum transmission time of 20ms. Actual response and
communication times were obtained from a normal distribution
constrained to have these maximum values.

Figure 1 illustrates the end-to-end latency values for the
first 5,000,000ms of execution (ie. 25,000 executions of the
transaction). Initially the latency is less than 1000ms, but
this value grows until an interval of approximately 1800ms
is obtained at the end of the simulation. For comparison it
should be noted that the time-triggered protocol (TTP) would
have a fixed latency of 1800ms plus the final task’s execution.
So an overall bound of 1980ms.

The NGT protocol produces a behaviour that approaches
that of the time-trigger protocol (TTP). It corresponds to the
worst-case actual behaviour of each task and communication
link. If each worst-case behaviour can reach its theoretical
limit then at that point NGT will give the same results as
TTP. In the simulations the worst-case can be reached and so
as the simulations continue the latency increases.

If the real upper bounds are below the ‘worst-case’ values
used in the static analysis (as will often be the case), NGT
will stabilise on a value below the theoretical worst-case. It
reflects only the worst-case situations actually experienced by
the system.

To reduce even this improved end-to-end latency, one can
apply the ‘recovery’ techniques described earlier. In Figure 2
the period of each task is reduced from 200ms to 199ms every
10 invocations if the data was found to have arrived within this
bound on each of these 10 invocations. Jitter is controlled by
only making a change occasionally, but as a result the end-to-
end latency is rarely above 1600ms.

V. CONCLUSION

A simple algorithm has been presented that allows a peri-
odic transaction to dynamically set its own parameters on a
distributed platform without a global time service. The tasks
of the transaction, once each has experiences its maximum
latency for its input data, will execute as regular periodic
tasks with a fixed period. An advantage of the proposed
scheme is that the maximum latency through the transaction
is minimised. There is no need to set a potentially pessimistic
offset for later components of the transaction. Rather the
protocol learn how long each task must wait to get a smooth
flow of data through the system.

The only requirement on the hardware platform is that data,
as it arrives on an input link, must be time-stamped with the
local time of arrival. This is a straightforward operation for a
network interface card.

The proposed scheme can deal with clock drift and is able to
respond to omission failures (of the input data). It is also able
to bring back the worst-case behaviour in a controlled way.
So, for example, if the communications media experience a
glitch that pushed the end-to-end latency out to an excessive
level then the protocol would, over time, bring this value back.
But would do so in a way that had a small effect on output
jitter.

REFERENCES

[1] S.K. Baruah and A. Burns. Sustainable schedulability analysis. In IEEE
Real-Time Systems Symposium (RTSS), pages 159–168, 2006.

[2] G. Fohler. Joint scheduling of distributed complex periodic and hard
aperiodic tasks in statically scheduled systems. In Proceedings 16th IEEE
Real-Time Systems Symposium, 1995.

[3] J.P. Gutierrez, J.G. Garcia, and M. González Harbour. On the schedu-
lability analysis for distributed real-time systems. In proceedings 9th
Euromicro Workshop on Real-Time Systems, pages 136–143, 1997.

[4] S. Matic and T.A. Henzinger. Trading end-to-end latency for compos-
ability. In RTSS, pages 99–110. IEEE, 2005.



Fig. 1. No Recovery

Fig. 2. With Recovery


