
Dual Priority Scheduling: Is the Processor
Utilisation bound 100%?

Alan Burns
Department of Computer Science

University of York, UK

EXTENDED ABSTRACT

Fixed priority (FP) schemes have the disadvantage that
processor utilisations less than 100% must be tolerated if a
system is to be guaranteed off-line. By comparison earliest
deadline first (EDF) scheduling can theoretically utilise all of
a processor’s capacity. In this paper the dual priority scheme
is revisited: here a task may execute in two phases; each phase
has a static priority assigned, the transition from one phase to
another is made at a fixed offset in time from the release of
the task.

In their seminal paper of 1973 Liu and Layland [2] intro-
duced the fixed priority (FP) scheme known as rate monotonic
priority assignment, and the dynamic priority scheme known
as earliest deadline first (EDF). Their theoretical treatment
produced the well known utilisation (U ) bounds for a set of n
periodic tasks with period T equal to deadline D; and com-
putation time, C. For FP the bound converges, approximately,
on the value 0.69 (69%) for large n. For n equal to 2 it is
close to 0.83. For EDF the bound is 1 for all n.

In 1993 a dual priority assignment scheme was introduced
[1]. This paper contained the conjecture:

Conjecture 1: For any task set with total utilisation less
than or equal to 100% there exists a dual priority assignment
that will meet all deadlines.

This remains an open question. Search techniques have
failed to find a counter example. Even if one exists then there
remains the question as to what is the utilisation bound? is
this is a function of the number of tasks (n)? and if not ‘dual’
priority then ‘triple’?, or ‘quad’?, or what? At some level (m),
‘m-priority’ assignment can be made to emulate EDF and
hence there does exist a ‘static’ scheme that can obtain the
100% bound – but is it the dual priority scheme?

The dual priority scheme is a minimal dynamic scheme
that allows a task to change (increase) its priority during its
execution. Each task has at most two priority levels: many
tasks will continue to have only one priority. At run-time only
standard preemptive priority based scheduling is required. A
standard RTOS (with a priority change primitive – which is
a commonly supported feature) could therefore support task
sets with the same utilisation bound as EDF. A dual priority
scheme could also be used with priority-based non-preemptive
communication protocols such as CAN. Here an EDF-based
protocol is not possible, but a dual-priority scheme, in which
the priority of a message is increased if it has been in a node’s

output buffer for a predefined interval of time, is certainly
feasible with only a minor change to the CAN protocol.

In addition to the usual notation each task has an interme-
diate deadline Si at which time it undergoes a step change
(increase) in priority. For all tasks: 0 ≤ Si ≤ Ti. Each task
has a phase 1 priority P 1

i and if Si < Ti a phase 2 priority
P 2

i with P 1
i < P 2

i .
The following assumptions are used. Any task, in either

phase, can be preempted by any other task running at a higher
priority. Tasks do not suspend themselves other than at the end
of their computations. The time required to perform context
switching, priority changes etc is ignored (i.e. assumed to be
zero). A single processor is assumed.

A simple example will illustrate the benefits of this scheme.
Table I gives the details of a three task system, each task has
T = D. Note that priority 1 is high and 4 is low. The total
utilisation is 100%, and the LCM of the task periods is 24.

T C P P 2 S U
τ1 6 3 2 50%
τ2 8 2 3 25%
τ3 12 3 4 1 11 25%

TABLE I
EXAMPLE TASK SET

If the dual phasing is ignored (i.e. the tasks are treated as
having single priorities) then the task set is not schedulable by
rate monotonic priority assignment (or any other static priority
assignment scheme as rate monotonic is optimal). The lowest
priority task (τ3) can only execute for two ticks before its first
deadline. But if τ3 has its priority raised at tick 11 to above
τ2 then all deadlines are met.

Another task set that requires all tasks to have a priority
change is given in Table II.

T C P P 2 S U
τ1 28 21 4 1 9 75%
τ2 100 15 5 2 84 15%
τ3 160 16 6 3 130 10%

TABLE II
EXAMPLE TASK SET

The current state of the dual priority conjecture is:
• For n = 2 a proof has been obtained (so U = 1 rather

than U = 0.83 for standard FP) – see Appendix.



• No counter example found with extensive searches for
n = 3.

• No counter example found for n > 3, but search is
computationally expensive as:

– Simulation up to the LCM needed as the scheduling
test.

– No formulae exists for computing the migration
points (the Ss).

• The phase 1 priorities are probably Rate Monotonic.
• The phase 2 priorities are possible also Rate Monotonic

with all phase 2 priorities higher than all phase 1 priori-
ties.

• For some task sets the highest priority tasks may have
Si = 0.

• A range of promotion points may all lead to a schedulable
system.

• The promotion points are a function of task computation
times (ie. not just task periods).

The open question is therefore: is the utilisation bound for
the dual priority scheme 1? And if it is, how are the promotion
points (Ss) computed? If it is not, what is the bound for the
dual priority scheme, and is there a m-priority scheme that
does provide the maximum bound – and is m then a function
of n?

One possible method of tackling this question is to consider
the behaviour of the EDF scheme. Whilst EDF tasks do not
have static priorities, EDF jobs do. There is therefore a fixed
number of partial orders for job executions. Does the dual
priority scheme have a similar number?

REFERENCES

[1] A. Burns and A. J. Wellings. Dual priority assignment: A practical method
of increasing processor utilisation. In Proceedings of the Fifth Euromicro
Workshop on Real-Time Systems, IEEE Computer Society Press, pages
48–53, Oulu, Finland, 1993.

[2] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. JACM, 20(1):46–61, 1973.

APPENDIX - PROOF FOR TWO TASKS

Consider two tasks, τ1 and τ2 with T1 < T2 and hence priority
of τ1 greater then the priority of τ2. Assume total utilisation is the
worst-case value of 1:

C1/T1 + C2/T2 = 1 (1)

Assume τ2 has a promotion point at time g before its deadline
(ie. g = T2 − S2). For a two task system τ1 does not need to be
promoted. Consider an arbitrary deadline of τ2, as D2 = T2 then this
deadline can be represented by the time pT2 – for some value of p
(assuming the system starts its execution at time 0). Finally let l be
the shortest interval from a previous release of τ1 and the point pT2

– see figure 1.
At point pT2, τ2 should should have executed for time pC2; τ1

will have executed for a number of complete invocations:

((pT2 − l)/T1)C1

plus a partial computation of maximum size: l−g. This implies that:

((pT2 − l)/T1)C1 + pC2 + l − g ≤ pT2 (2)

l

pT2

First task

g

pT2

Second task

Fig. 1. Two task execution

Substituting for C1 from Eqn (1) in Eqn (2) produces:

(pT2 − l)(1− C2/T2) + pC2 + l − g ≤ pT2

Expanding the first terms and canceling a number of balanced
terms allow this relation to be simplified to:

lC2/T2 ≤ g

Now the value l depends on which deadline of τ2 is considered,
but its maximum value is the maximum distance between a multiple
of T1 a corresponding ‘next’ release of τ2. Hence the maximum value
of l is equal to T1 −H , where H is the highest common factor of
the integers T1 and T2. This gives the final bound on g of

(T1 −H)C2/T2 ≤ g (3)

Note if T2 is a multiple of T1 then H is equal to T1 and g can be
zero, ie. no promotion point needed. This result would be expected
as task sets with utilisation of 1 are schedulable in this circumstance.
Also if T1 and T2 are co-primes then Eqn (3) becomes:

(T1 − 1)C2/T2 ≤ g

The other constraint on g is that τ1 must remain schedulable at its
deadlines. Here the worst case is when two deadlines coincide. Now
all of time g can be used by τ2, and hence

g ≤ T1 − C1 (4)

Now a value of g must exist (and hence the two tasks be
schedulable) if Eqns (3) and (4) can both be satisfied for any feasible
task set (ie. one satisfying Eqn(1)). If this were not the case then

T1 − C1 < (T1 −H)C2/T2,

which implies
T1 − C1 < (T1)C2/T2,

giving
1− C1/T1 < C2/T2,

and hence

1 < C2/T2 + C1/T1

which is clearly false.
This provides the proof that all two task systems have a dual

priority scheme that will guarantee schedulability if the utilisation
of the tasks is feasible (not more than 1). Moreover, the promotion
time is provided by any value of g satisfying Eqns (3) and (4).

As an example consider a simple task set with T1 = 8, C1 = 4,
T2 = 12 and C2 = 6; H has the value 4 and so the promotion point
for τ2 must be at least 2 (from its deadline) and no more that 4. A
simple simulation shows that values of 2, 3 and 4 will all lead to
schedulability.


