
Timing Faults and Mixed Criticality Systems

Alan Burns1 and Sanjoy Baruah2

1 The University of York, UK
2 The University of North Carolina, USA

Abstract. Many safety-critical embedded systems are subject to certi-
fication requirements. However, only a subset of the functionality of the
system may be safety-critical and hence subject to certification; the rest
of the functionality is non safety-critical and does not need to be certi-
fied, or is certified to a lower level. The resulting mixed criticality system
offers challenges both for static analysis and run-time monitoring. This
paper is concerned with timing failures and how they can arise and be
tolerated. The main causes of these errors are faults in the estimation
of worst-case execution times (WCETs). For different levels of critical-
ity, different forms of static analysis for WCET are employed. This give
rise to a novel implementation scheme for the fixed priority uniproces-
sor scheduling of mixed criticality systems. The scheme requires that
jobs have their execution times monitored (as is usually the case in high
integrity systems). This results in higher levels of schedulability than
previously published.

1 Introduction

An important class of faults in many computer-based systems is that which
relates to the time at which key interactions with the system’s environment
take place. In general, faulty interactions occur either too early or too late.
To avoid premature I/O is usually straightforward, most real-time programming
languages and operating systems provide a delay primitive that allows the system
to ‘wait’ until the environment is ready. More difficult, is to ensure that the
system executes quickly enough to meet the deadline constraints there may be
on its I/O operations.

Real-time software is usually constructed as a multi-tasking concurrent pro-
gram where each task gives rise to a series of jobs on which deadline constraints
are assigned. To verify that all deadlines are met for all valid executions of the
program usually requires two forms of analysis. First, timing analysis determines
the worst-case execution time (WCET) of each task (and hence of each job of
each task). Second, scheduling analysis determines the worst-case completion
time for each job when its execution competes with all the other tasks in the
system. Knowing the worst-case completion time (also known as response time)
enables a simple comparison with the job’s deadline to be made. Scheduling
analysis uses the resource management rules of the implementation to deter-
mine the order in which tasks make use of the available resources. In this paper

we restrict ourselves to single processor systems which are scheduled using the
standard fixed priority scheme.

At run-time it is difficult to recover from a deadline miss; time cannot be
reversed and hence all that can be done is to attempt to repair the damage caused
by the timing fault. The cause of this failure is usually traced to a fault in the
timing analysis – an underestimation of WCET; but it can also be attributable
to faulty scheduling analysis or system overload. Here we focus on faulty timing
analysis that could deliver optimistic WCET values. Most high integrity systems
will include run-time monitoring facilities that will allow a WCET violation to
be identified ‘as it happens’. This error recognition can allow error recovery to
be programmed with the result that all deadlines are met (even though the
functional quality of the output may be downgraded).

One of the ways that scheduling analysis has been extended in recent years
is the removal of the assumption that all tasks in the system have the same
level of criticality or importance. Models have been produced that allow mixed
criticality levels to co-exist on the same execution platform. For systems that
contain components that have been given different criticality designations there
are two, mainly distinct, issues: run-time robustness [1] and static verification [2,
3].

Run-time robustness is a form of fault tolerance that allows graceful degra-
dation to occur in a manner that is mindful of criticality levels: informally speak-
ing, in the event that all components cannot be serviced satisfactorily the goal
is to ensure that lower-criticality components are denied their requested levels
of service before higher-criticality components are.

Static verification of mixed-criticality systems is closely related to the
problem of certification of safety-critical systems. The current trend towards
integrating multiple functionalities on a common platform (for example in In-
tegrated Modula Avionics, IMS, systems and in the Automotive Open System
Architecture, Autosar) means that even in highly safety-critical systems, typi-
cally only a relatively small fraction of the overall system is actually of critical
functionality and needs to be certified. In order to certify a system as being
correct, the certification authority (CA) must make certain assumptions about
the worst-case behaviour of the system during run-time. CA’s tend to be very
conservative, and hence it is often the case that the assumptions required by
the CA are far more pessimistic than those the system designer would typically
use during the system design process if certification was not required. However,
while the CA is only concerned with the correctness of the safety-critical part
of the system the system designer wishes to ensure that the entire system is
correct, including the non-critical parts. We illustrate with a contrived example.

Example 1 Consider a system to be implemented on a preemptive uniprocessor,
that is comprised of three jobs J1, J2, and J3. All three jobs are released at time
zero. Job J1 has a deadline at time-instant 2, while the other two jobs have their
deadlines at time-instant 3.5. Jobs J2 and J3 are high-criticality and subject to
certification, whereas J1 is low-criticality and hence not.

– The system designer is confident that each job has a worst-case execution
time (WCET) not exceeding 1. Hence executing the jobs in earliest deadline
first (EDF) order will ensure that all three complete by their deadlines.

– However, the CA requires the use of more pessimistic WCET estimates dur-
ing the certification process, and allows for the possibility that jobs J2 and
J3 may each need 1.5 time units of execution3.

If the system were indeed scheduled using EDF, the CA would determine that in
the worst case, J1 executes over [0, 1) and the job from among J2 and J3 that
is next chosen for execution will execute for 1.5 time units, thereby causing the
other high-criticality job to miss its deadline at time 3.5. The system scheduled
using EDF would therefore fail certification.

On the other hand if we were to assign greater priority to the high-criticality
jobs, then they would both meet their deadlines even under the worst-case sce-
narios envisioned by the CA. However the low-criticality job J1 will miss its
deadline even when each job executes for at most 1 time unit (as predicted by
the system designer).

It turns out that a “correct” scheduling strategy4 for this system is as follows:

– Execute J2 over [0, 1).
– If J2 completes execution at time-instant 1, then execute J1 over [1, 2) and
J3 over [2, 3.5), thereby ensuring that all deadlines are met.

– If J2 does not complete execution by time-instant 1, then discard J1 and
continue the execution of J2, following that with the execution of J3 over
[1.5, 3). Both the high-criticality jobs will complete by their deadlines in the
worst-case scenario envisioned by the CA.

The reader may verify that under this scheduling strategy, the system both passes
certification, and meets all deadlines when it behaves as expected to by the system
designer. ut

Static verification is concerned with the necessary timing (WCET) analysis
and scheduling analysis that will ensure that all tasks in a system are guaranteed
(to meet their deadlines) in a manner commensurate with their criticality level.
Robustness is a form of fault tolerance that will allow graceful degradation to
occur that is again mindful of criticality levels. In this paper we focus on static
verification.

Related work. In prior work [4, 5], we have studied mixed-criticality (MC) sys-
tems implemented on a preemptive uniprocessor platform that can be modeled,
as in the example above, as finite collections of jobs. However, most real-time

3 The CA required method may also determine that the low-criticality job J1 needs
more than 1 time unit to complete execution; however, let us assume for now that
the system is implemented to abort the execution of J1 if it executes for more than
1 time-unit.

4 The notion of a correct scheduling strategy is formally defined later in this document.

systems are better modeled as collections of recurrent tasks that are specified us-
ing, e.g., the sporadic tasks model [6, 7]. Schedulability analysis of such systems
is typically far more difficult than the analysis of systems modeled as collections
of independent jobs, since (i) a sporadic task system can generate potentially
unboundedly many jobs during any one run; and (ii) the collection of jobs gen-
erated during different runs of the system may be different. Vestal [2] initiated
the study of certification-cognizant scheduling of such sporadic task systems,
and proposed a static fixed-priority (FP) algorithm, based on a specialization
of Audsley’s priority-assignment technique [8], for assigning priorities optimally
to the tasks in such a system. Some other works (e.g., [3, 9]) have considered
algorithms that are not fixed-priority, for scheduling mixed-criticality systems in
a certifiably correct manner.

2 System Model

A system is defined as a finite set of components K. Each component has a
defined level of criticality, L. Each component contains a finite set of tasks. Each
task, τi, is defined by period, deadline, computation time and criticality level:
(Ti, Di, Ci, Li). These parameters are however not independent, in particular
the following relations are assumed to hold between L and the other parameters
in any valid mixed criticality system:

– The worst-case computation time, C, will be derived by a process dictated
by the criticality level. The higher the criticality level, the more conservative
the verification process and hence the greater will be the value of C.

– The deadline of the task may also be a function of the criticality level. The
higher the criticality level, the greater the need for the task to complete well
before any safety-critical timing constraint and hence the smaller the value
of D.

– Finally, though less likely, the period of a task could depend on criticality.
The higher the criticality level, the tighter the level of control that may be
needed and hence the smaller the value of T .

These relations are formalised with the following axioms: if a task, τi is moved
to criticality level L1

i from criticality level L2
i then

L1
i > L2

i ⇒ C1
i ≥ C2

i

L1
i > L2

i ⇒ D1
i ≤ D2

i

L1
i > L2

i ⇒ T 1
i ≤ T 2

i

At run-time a task will have fixed values of T , D and L. Its actual compu-
tation time is however unknown; it is not directly a function of L. The code of
the task will execute on the available hardware, and apart from catching and/or

dealing with overruns the task’s actual criticality level will not influence the
behaviour of the hardware. Rather the probability of failure (actual computa-
tion time being greater then C) will reduce for higher levels of L (due to C
monotonically increasing with L).

In a mixed criticality system further information is needed in order to un-
dertake schedulability analysis. Tasks can depend on other tasks with higher or
lower levels of criticality. In general a task is now defined by: (T , D, C, L),
where C is a vector of values – one per criticality level, with the constraint:

CL1 > CL2 ⇒ L1 > L2

for any two criticality levels L1 and L2.

The general task τi with criticality level Li will have one value from its
Ci vector that defines its representative computation time. This is the value
corresponding to Li, ie. CLi

i . This will be given the normal symbol Ci.

In more detail, a task τi is characterized by

– A criticality Li, which is a positive integer.

– A WCET function Ci : N+ → R+; Ci(`) denotes the WCET of each jobs
of τi, estimated at a level of assurance consistent with criticality level `.
We assume that Ci(`) ≤ Ci(` + 1) for all `; i.e., the WCET estimates are
monotonically non-decreasing with increasing criticality level.

– A relative deadline parameter Di.

– A period parameter Ti.

We assume that Ci(Li) ≤ Di for each τi. That is, we assume that each task’s
representative computation time is small enough to be able to complete prior to
its deadline, if it were to execute in isolation – clearly, any task not satisfying
this property cannot possibly be certified correct. We also restrict our attention
here to task systems in which Di ≤ Ti for each τi.

Definition 1 (Behaviours) During different runs, any given sporadic task sys-
tem will, in general, exhibit different behaviours: different jobs may be released
at different instants, and may have different actual execution times. We define
the criticality level of a behaviour to be the smallest criticality level such that
no job executed for more than its WCET at this criticality level.

As previously stated, two distinct issues have been addressed concerning the
scheduling of mixed-criticality systems: static verification, and run-time robust-
ness.

Static verification. From the perspective of static verification, the correctness
criterion expected of an algorithm for scheduling mixed-criticality task systems
is as follows: for each criticality level `, all jobs of all tasks with criticality ≥ `
will complete by their deadlines in any criticality-` behaviour .

Run-time robustness. Static verification is concerned with certification – it re-
quires that all deadlines of all tasks τi with Li ≥ ` are guaranteed to be met,
provided that no job executes for more than its level-` WCET. Run-time ro-
bustness, in addition, seeks to deal satisfactorily with transient overloads due
either to errors in the control systems or to the environment behaving outside
of the assumptions used in the analysis of the systems. Even in behaviours that
have a high criticality level by Definition 1 above, it may be the case that all
jobs executing beyond their WCET’s at some lower criticality level did so only
for a short duration of time (i.e., a transient overload can be thought to have
occurred from the perspective of the lower criticality level). A robust scheduling
algorithm would, informally speaking, be able to “recover” from the overload
once it was over, and go back to meeting the deadlines of the lower-criticality
jobs as well [10].

In this paper we consider only the issues surrounding static verification, and
evaluate three possible priority assignment schemes:

– Partitioned Criticality (PC) – a standard scheme sometimes called criticality
monotonic priority assignment

– Static Mixed Criticality (SMC) – a previously published scheme, reviewed
in Section 3;

– Adaptive Mixed Criticality (AMC) – a novel scheme, introduced in Section
4.

In Partitioned Criticality, priorities are assigned according to criticality, so all
jobs of criticality L1 have a higher priority than all jobs of criticality L2 if
L1>L2. Within a criticality, priorities are assigned according to a standard op-
timal scheme such as deadline monotonic priority assignment[11] (for tasks with
constrained deadlines, i.e., those that have relative deadline no greater than pe-
riod: D ≤ T). Each job is assumed to have an execution time no greater than its
representative value. This partitioned approach has the advantage that a timing
error in a low criticality job (i.e., executing for longer than its ‘worst-case execu-
tion time’ will not impact on any higher criticality jobs. No run-time monitoring
is required.

However, the kinds of performance guarantees that can be made in scheduling
mixed-criticality systems depend upon the forms of support provided by the run-
time environment upon which the system is being implemented. An important
form of platform support is the ability to monitor the execution of individual
jobs, i.e., being able to determine how long a particular job has been execut-
ing. For instance, many safety critical systems that have replicated computing
systems (channels– see, e.g., [12]) monitor execution times so that erroneous be-
haviour can be identified and the associated channel closed down (and possibly
restarted). A strong case can be made for this ability to be part of the standard
mechanisms for safety-critical applications.

Such functionality is already commonly available on many real-time plat-
forms and is widely assumed in, for example, many implementations of servers
(such as the Constant Bandwidth Server (CBS) [13] or their fixed priority coun-
terparts [14–16]), or in real-time “open” environments that support the policing

or budget-enforcement of individual jobs or of collections of jobs in order to
ensure that they do not exceed their execution allowances [17].

The other two priority assignment schemes (SMC and AMC) utilise forms of
execution time monitoring and allow the priorities of different criticality jobs to
be interleaved. This improves schedulability. The Static scheme (SMC) does not
allow a job to execute for more than its representative execution time, Ci – this
is similar to the approach introduced by Vestal [2]. The Adaptive scheme (AMC)
goes further: for each criticality level L, it does not allow jobs of criticality L to
execute if any job (of equal or higher criticality) executes for more than C(L).
The main contribution of this paper is the introduction and evaluation of this
Adaptive Mixed Criticality scheme. The static approach is reviewed in Section
3; the adaptive scheme is introduced in Section 4.

For ease of presentation, in this paper we will restrict our attention to dual-
criticality systems: systems in which there are only two criticality levels: HI
(high) and LO (low), with HI>LO.

Each dual-criticality job is thus characterized by a 5-tuple of parameters:
Ji = (ai, di, χi, ci(lo), ci(hi)), where

– ai ∈ R+ is the release time, and di ∈ R+ the deadline. We require that
di ≥ ai.

– χi ∈ {lo,hi} denotes the criticality of the job. A hi-criticality job (a Ji with
χi = hi) is one that is subject to certification, whereas a lo-criticality job
(a Ji with χi = lo) is one that does not need to be certified.

– ci(lo) specifies the worst case execution time (WCET) estimate of Ji that is
used by the system designer (i.e., the WCET estimate at the lo criticality
level).

– ci(hi) specifies the worst case execution time (WCET) estimate of Ji that
is used by the certification authorities (i.e., the WCET estimate at the hi
criticality level).

Each sporadic task in the MC model is also characterized by a 5-tuple of
parameters: τk = (χk, Ck(lo), Ck(hi), Dk, Tk), with the following interpretation.
Task τk generates a potentially infinite sequence of jobs, with successive jobs
being released at least Tk time units apart. Each such job has a deadline that
is Dk time units after its release; we will assume in this paper that Dk ≤ Tk.
The criticality of each such job is χk, and it has lo-criticality and hi-criticality
WCET’s of Ck(lo) and Ck(hi) respectively.

3 Static Mixed Criticality - SMC

With this scheme all jobs can execute up to their representative execution time
Ci but are prevented from executing further – they are either aborted or, if error
recovery is desirable, suspended until it is safe for them to execute again. Means
of programming recovery are explained elsewhere [10].

We now describe (a slight variation) of Vestal’s algorithm [2] for assigning
priorities to sporadic task systems, scheduled by the SMC scheme, to yield a
certifiably correct scheduling strategy.

In essence, SMC assigns priorities to the tasks in the MC sporadic task
system by applying the Audsley strategy [8]. That is, it first identifies some task
which may be assigned the lowest priority; having done so, this task is removed
from the task system and a priority assignment is recursively obtained for the
remaining tasks.

To completely specify this strategy, it remains to specify how it is determined
whether a particular job may be assigned lowest priority. Suppose we are seeking
to determine whether τi, with criticality level χi ∈ {lo,hi}, can be the lowest-
priority task. Mixed-criticality semantics specify that τi should meet its deadline,
provided all jobs of all tasks in the system execute for at most their χi-WCET.
If each job of each task τj may execute for as much as its χi-WCET Cj(χi), it
follows from response-time analysis (RTA) that the maximum response time of
τi’s jobs is given by the smallest fixed-point solution of the following recurrence:

t =
∑
∀ j

⌈
t

Tj

⌉
Cj(χi) (1)

This recurrence can be solved using standard techniques from RTA; if the
solution is no larger than Di then τi can indeed be assigned lowest priority.

Example 2 Consider an example task system τ comprised of three tasks, as
follows:

τi χi Ci(lo) Ci(hi) Di Ti
τ1 lo 1 - 2 2
τ2 hi 1 2 10 10
τ3 hi 20 20 100 100

It is evident (since τ3’s WCET, at both criticality levels, exceeds both D1

and D2), that neither τ1 nor τ2 can possibly be assigned lowest priority. We seek
to determine whether τ3 can be assigned lowest priority.

Based on the arguments above, we see that τ3 may be assigned lowest priority
if it would meet its deadline as the lowest-priority job. According to RTA, the
worst-case response time of any of τ3’s jobs is equal to the smallest positive
solution to the following recurrence is ≤ 100:

t =

⌈
t

2

⌉
· 1 +

⌈
t

10

⌉
· 2 +

⌈
t

100

⌉
· 20

It is easily verified that 68 is a solution to this recurrence, since for t = 68 the
RHS evaluates to (34+7·2+1·20) = 68, and hence the smallest positive solution
is ≤ 68 (in fact, the smallest positive solution is 68). Since 68 is no larger than
τ3’s deadline, we conclude that task τ3 may indeed be assigned lowest priority.

However, the reader may verify that if C2(hi) had been equal to 5 then the
response-time of τ3 would not be smaller than τ3’s deadline of 100, and we would
therefore fail to assign priorities to this particular task system. We shall return
to this example later. ut

4 Adaptive Mixed Criticality - AMC

Upon a platform that can monitor how much individual jobs have been execut-
ing, the following adaptive run-time scheduling algorithm exploits this ability to
obtain enhanced performance over the static scheme. The algorithm is provided
with a mixed-criticality sporadic task system along with an assignment of unique
distinct priorities to the tasks in the system. Dispatching of jobs for execution
occurs according to Algorithm dispatch, which is given in Figure 1.

Algorithm dispatch:

1. There is a criticality level indicator Γ , initialized to lo.
2. While (Γ ≡ lo), at each instant the waiting job generated by the task with highest

priority is selected for execution.
3. If the currently-executing job executes for more than its lo-criticality WCET with-

out signalling completion5, then Γ ← hi.
4. Once (Γ ≡ hi), jobs with criticality level ≡ lo will not receive any further ex-

ecution. Henceforth, therefore, at each instant the waiting job generated by the
hi-criticality task with highest priority is selected for execution.

5. An additional rule could specify the circumstances when Γ gets reset to lo. This
could happen, for instance, if no hi-criticality jobs are active at some instant in
time. (We will not discuss the process of resetting Γ ← lo any further in this doc-
ument, since this is not relevant to the certification process – lo-criticality certifi-
cation assumes that the system never exhibits any hi-criticality behaviour, while
hi-criticality certification is not interested in the behaviour of the lo-criticality
tasks.)

Fig. 1. Run-time dispatching algorithm used in AMC

4.1 Criticality-Aware Assignment of Priorities (CAAP)

We now describe a priority-assignment scheme called CAAP (for Criticality-
Aware Assignment of Priorities), that may be used to assign priorities for run-
time dispatching according to Algorithm dispatch of Figure 1. As in the SMC
algorithm CAAP, too, assigns priorities according to the Audsley strategy [8].
That is, CAAP first seeks to identify some task which may be assigned the lowest
priority; having done so, this task is removed and CAAP (recursively) seeks to
obtain a priority assignment for the remaining tasks.

We introduce some notation: Let Llo (Lhi, respectively) denote an upper
bound on the length of the longest busy interval when any lo-criticality (hi-
criticality, resp.) behaviour of τ–i.e., any behaviour in which no job executes for
more than its lo-criticality (hi-criticality, resp.) WCET. It is evident that any
lo-criticality task τi satisfying Di ≥ Llo may be assigned lowest priority: since
no lo-criticality behaviour can span the entire interval between the release of

any job of τi and its deadline, no such job will miss its deadline if τi is assigned
lowest priority. Similarly, any hi-criticality task τi satisfying Di ≥ Lhi may be
assigned lowest priority.

Based on widely-known results from Response-Time Analysis (RTA) [18, 19]
it is straightforward to observe that Llo can be set equal to the smallest positive
value of t satisfying

t =
∑
∀j

⌈
t

Tj

⌉
Cj(lo) (2)

We seek to determine Lhi next. Without loss of generality, let us suppose that
the longest busy interval in any hi-criticality behaviour occurs on a sequence of
jobs of τ in which the first job arrives at time zero. Let t1 denote the time-instant
at which the criticality level indicator Γ sees its value changed from lo to hi.
(That is, t1 is the first instant at which some job does not signal completion
despite having executed for its lo-criticality WCET.) According to rule R4 of
Algorithm dispatch no job of any lo-criticality task will receive any execution
after time-instant tk. Hence for any τj with χj = lo, at most dt1/Tje jobs of τj
may execute in this longest busy interval.

Since Llo is, by definition, an upper bound on the length of the largest busy
interval in any lo-criticality behaviour, it follows that t1 ≤ Llo. Hence the total
amount of execution by jobs of lo-criticality tasks in this longest busy interval
of any hi-criticality behaviour is bounded from above by

∑
j:χj=lo

(
dLlo/Tje ·

Cj(lo)
)
. And for any value of t, the total amount of execution of hi-criticality

jobs over the interval [0, t) in any hi-criticality behaviour is bounded from above
by
∑
j:χj=hi

(
dt/Tje · Cj(hi)

)
. It therefore follows that Lhi, an upper bound on

the length of the longest hi-criticality busy interval, can be set equal to the
smallest value of t that is ≥ L(lo), satisfying

t =
∑

j:χj=lo

⌈
Llo

Tj

⌉
Cj(lo) +

∑
j:χj=hi

⌈
t

Tj

⌉
Cj(hi) (3)

Plugging the value for Llo obtained by solving Equation 2 into recurrence
Equation 3, we can determine the value of Lhi by using standard techniques for
determining fixed-points.

τi χi Ci(lo) Ci(hi) Di Ti

τ1 lo 1 - 2 2
τ2 hi 1 5 10 10
τ3 hi 20 20 100 100

Table 1. Task system for Example 3

Example 3 Consider again the task system of Example 2, with task τ2’s hi-
criticality WCET increased from 2 to 5. (This modified task system is reproduced
in Table 1.) As seen in Example 2, SMC fails to assign priorities to this task
system; let us now examine how CAAP would fare.

It is evident (since τ3’s WCET, at both criticality levels, exceeds both D1

and D2), that neither τ1 nor τ2 can possibly be assigned lowest priority. We seek
to determine whether τ3 can be assigned lowest priority.

– Let us first compute Llo, the upper bound on the length of the longest busy
interval for any lo-criticality behaviour. According to Equation 2, Llo is
equal to the smallest positive solution to the following recurrence:

t =

⌈
t

2

⌉
· 1 +

⌈
t

10

⌉
· 1 +

⌈
t

100

⌉
· 20

It may be verified that this smallest positive solution is equal to 50; hence
Llo ← 50.

– Next, let us compute Lhi, the upper bound on the length of the longest
busy interval for any hi-criticality behaviour. According to Equation 3, Lhi

is equal to the smallest positive solution to the following recurrence:

t =

⌈
50

2

⌉
· 1 +

⌈
t

10

⌉
· 5 +

⌈
t

100

⌉
· 20

(here, we are using the fact, derived above, that Llo = 50.) It is easily verified
that this has a fixed point at t = 90, meaning that Lhi ← 90.

We had observed that τi may be assigned lowest priority if Lχi
≤ Di. Since

Lχ3
= Lhi = 90 while D3 = 100, we conclude that task τ3 may indeed be

assigned the lowest priority.
We had noted (at the end of Example 2) that SMC fails to assign priorities

to this example task system. This task system thus bears witness to the fact
that there are task systems that AMC with CAAP can schedule in a certifiably
correct manner, that SMC cannot.

ut

Run-time complexity. Notice that the values of Llo and Lhi, as defined by Equa-
tions 2 and 3, depend only upon the tasks in the task system τ , and that these
values are monotonically non-increasing with decreasing τ (i.e., the values of Llo

and Lhi for a given τ will not be larger than for any subset of the tasks in τ).
Hence for each of ` ∈ {lo,hi}, the task of criticality level ` for which it is “most
likely” that it can be assigned the lowest priority, is the one with the largest
relative deadline. This observation is formalized into the following fact:

Fact 1 Tasks with the same criticality level may be assigned priority by CAAP
in deadline-monotonic order.

Hence in seeking to determine whether some task may be assigned lowest
lowest priority, there are only two potential candidates to consider: the lo-
criticality task with the largest relative deadline and the hi-criticality task with
the largest relative deadline. This implies that we need solve Recurrences 2 and
3 a total of at most O(|τ |) times in order to assign priorities to the tasks in the
MC sporadic task system τ (where |τ | denotes the number of tasks in τ).

5 Analysis of CAAP

Demand bound function and load. For any “regular” (i.e., non-MC) sporadic task
system, and for any non-negative real-number t, the demand bound function [7] of
the task system for an interval-length t, denoted dbf(t), represents the maximum
cumulative execution requirement by jobs of the task system that can both arrive
in, and have their deadlines within, any contiguous interval of length t. The load
λ of the task system is defined as maxt>0 dbf(t)/t.

We will extend the definitions of demand bound function and load to mixed-
criticality task systems, by defining separate lo-criticality and hi-criticality ver-
sions of these metrics for each MC system. Let τ denote such a task system.
Informally speaking, dbflo(t) and λlo will denote the dbf and load parameters
for the regular sporadic task system that, in the expectation of the system de-
signer, represents the behaviour of the system. dbfhi(t) and λhi, on the other
hand, will denote the dbf and load parameters for the regular sporadic task
system that the certification authorities believe represents the behaviour of the
part of the system that they seek to certify. More formally, dbflo(t) denotes the
demand bound function for the “regular” sporadic task system{

(Ci(lo), Di, Ti) | τi ∈ τ
}

;

and λlo is defined as follows:

λlo
def
= max

t>0

(
dbflo(t)/t

)
. (4)

dbfhi(t) and λhi are defined in a similar vein. dbfhi(t) is the demand bound
function of the regular sporadic task system{

(Ci(hi), Di, Ti) | τi ∈ τ ∧ χi = hi
}

;

and

λhi
def
= max

t>0

(
dbfhi(t)/t

)
. (5)

Observe that in order for MC task system τ to be scheduled correctly, it
is necessary that neither λlo or λhi exceeds 1; if either were > 1 it would not
be possible to guarantee that all behaviours of that particular criticality can be
scheduled by even a clairvoyant scheduling algorithm. More generally, if we had
a speed-s processor – a processor that completes s units of execution per time

unit – then (λlo ≤ s
∧
λhi ≤ s) is a necessary (albeit not sufficient) condition

for τ to be schedulable on this processor in a certifiably correct manner.
In Lemma 1 below, we prove that from the perspective of schedulability by

Algorithm dispatch (described in Figure 1), the CAAP priority assignment
scheme strictly dominates deadline-monotonic (DM) priority assignment: any
task system schedulable in a certifiably correct manner by DM is also scheduled
in a certifiably correct manner by CAAP, whereas the converse of this is not
true.

Lemma 1 (i) Any mixed-criticality system that is successfully scheduled by Al-
gorithm dispatch using DM priorities can also be scheduled by this algorithm
using CAAP priorities. (ii) There are task systems that successfully scheduled
by Algorithm dispatch using CAAP priorities that are not schedulable by this
algorithm using CAAP priorities.

Proof Sketch: In determining which task be assigned lowest-priority task at
each stage, CAAP considers all the tasks that have not yet been assigned prior-
ities, including the one with the largest deadline. Hence if the largest-deadline
task is the only one that can be assigned lowest priority, CAAP will discover
this fact. Therefore any task system that is schedulable using the DM priority
assignment is also schedulable using the CAAP priority assignment.

To see that the converse is not true, observe that the system consisting of
the following two tasks

τi χi Ci(lo) Ci(hi) Di Ti
τ1 hi 0 10 10 ∞
τ2 lo 5 5 5 ∞

is scheduled under CAAP priorities (in which τ2 gets lower priority than τ1),
but not under DM priorities. ut

In the remainder of this section, we derive quantitative bounds on the perfor-
mance of Algorithm dispatch when scheduling a task system according to DM
priorities. As a consequence of Lemma 1 above, our quantitative bounds hold
for the CAAP priority assignment as well.

The reason we have chosen to derive the bounds for DM priorities and then
appeal to Lemma 1 to draw conclusions about CAAP, rather than directly de-
rive the bounds for CAAP, is that this DM-based approach allows us to reuse
a prior result given in Theorem 1 below. This result characterizes the deadline-
monotonic (DM) scheduling of regular (i.e., not mixed-criticality) constrained-
deadline sporadic task systems; it links the load of such a system with the
response-time of the lowest-priority task and the amount of blocking [18] that the
task may experience (in addition to interference by the higher-priority tasks).

Theorem 1 (from [20]) Consider a DM-scheduled instance τ , in which the
lowest priority (i.e., largest relative deadline) task has a relative deadline D.
Suppose further that this lowest-priority task is subject to blocking for an amount
B < D. Suppose that the worst-case response time of this lowest-priority task is

≥ R, for some R ≤ D. The load λ(τ) of τ is bounded from below by the value of
x that solves the following equation

x = ln
(R/D
x+ B

D

)
(6)

ut

We now derive, in Theorem 2, a sufficient DM-schedulability condition for
mixed-criticality systems in terms of the lo-criticality and hi-criticality load
parameters (λlo and λhi, as defined in Equations 4 and 5) of the system.

Theorem 2 Any mixed-criticality system τ satisfying

eλhi
(
λhi + λlo × eλlo

)
≤ 1 (7)

is guaranteed to be schedulable by the scheduling algorithm of Section 4 when
priorities are assigned according to deadline-monotonic (DM) order. (Here, e
denotes the base of the natural logarithms: e ≈ 2.71828...)

Proof: We will derive properties that must be satisfied by every task system
that is not correctly scheduled by the scheduling algorithm of Section 4 when
priorities are assigned according to deadline-monotonic (DM) order; the negation
of these properties will yield sufficient schedulability conditions.

Let τ denote a minimal task system that is not schedulable by the scheduling
algorithm of Section 4 under DM priorities.6 We consider separately the two
possibilities that the lowest-priority (i.e., largest deadline) task in τ is a lo-
criticality or a hi-criticality task.

§ 1. If the lowest-priority task is lo-criticality, τ not being DM-schedulable
means that the regular task system

{(
Ci(lo), Di, Ti

)}
τi∈τ

is not DM-schedulable.
It is therefore the case that when τ is scheduled using DM scheduling the lowest-
priority task has a response-time greater than its relative deadline. Applying
Equation 6 of Theorem 1 to this scenario, we can therefore set R← D, where D
denotes the relative-deadline of this lowest-priority task. Furthermore since no
task in such a system experiences any blocking, we set B ← 0 and conclude that
the load of the system – λlo – must be larger than the value of x satisfying the
equation x = ln(1/x). This value of x is the well-known mathematical constant
called the Ω (“Omega”) constant, and has a value ≈ 0.567 (see also [21]).

§ 2. Now consider the case when the lowest-priority task in τ is a hi-criticality
task. Let D denote its deadline. Let Rlo denote a lower bound on its worst-
case response time in any lo-criticality behaviour, and Rhi a lower bound on its
worst-case response time in any hi-criticality behaviour.

By applying Equation 6 of Theorem 1 to this lo-criticality behaviour, we
conclude that

6 That is, τ is not scheduled correctly, but every subset of τ is. In particular, the task-
set obtained from τ by removing the lowest-priority task in τ is DM-schedulable.

λlo = ln
Rlo/D

λlo

⇔ λlo × eλlo =
Rlo

D
(8)

Equation 8 bounds the lo criticality response-time of the lowest-priority task
in terms of the lo-criticality load λlo and the relative deadline of the lowest-
priority task.

Let us now attempt to bound the hi-criticality response-time of the lowest-
priority task. Consider any hi-criticality behaviour of the system; without loss of
generality, assume that the lowest-priority task has a job arrive at time-instant
zero. Let t1 denote the time-instant at which the run-time scheduling algorithm
of Section 4 changed the criticality level indicator Γ from lo to hi. It is evident
that t1 < Rlo (since the lowest-priority task would have completed execution
by time-instant Rlo in any lo-criticality behaviour). The response-time of the
lowest-priority task would therefore be no worse than if it were to be blocked for
a duration Rlo by lo-criticality jobs, in addition to being interfered with by all
the greater-priority hi-criticality tasks. That is, we can bound the effect of all
the lo-criticality tasks by a single blocking term of duration Rlo, and consider
only the interference from hi-criticality tasks (which together have load equal to
λhi). To model this scenario in Equation 6 of Theorem 1, we would set B ← Rlo,
to get

λhi = ln
Rhi/D

λhi + (Rlo/D)

⇔ λhi × eλhi +
Rlo

D
× eλhi =

Rhi

D
⇔ (By Equation 8)

λhi × eλhi + λlo × eλloeλhi =
Rhi

D

⇔ eλhi
(
λhi + λlo × eλlo

)
=
Rhi

D

Now for the lowest-priority task to not be DM-schedulable, its response-time
Rhi must exceed its deadline D; i.e., the RHS of the expression above must
exceed 1. Equivalently,

eλhi
(
λhi + λlo × eλlo

)
≤ 1

is a sufficient condition for DM-schedulability. This is exactly what is claimed
by the theorem, which is therefore proved. ut

To better understand the implications of Theorem 2, let us first consider the
special cases when one of λlo and λhi is equal to zero. If λlo = 0, Inequality 7
becomes

λhi × eλhi ≤ 1.

-

6

(0,0) 0.567λhi

0.567

λlo

.
...........................

...........................
.........

........................
.......................

..
.....................

.....................
..............

....................
............

..............
...................
..................

...
.........

...............
..
................

...............
..
...............
.............
.......

.............
..........

.............
.............

.............
.............
...

.............
.............
.....

0.310

0.310

Fig. 2. Bound on the lo-criticality load (λlo) as a function of hi-criticality load (λhi).

If λhi = 0, then Inequality 7 becomes(
e0(0 + λlo × eλlo) ≤ 1

)
⇔
(
λlo × eλlo ≤ 1

)
The solution to the equation x × ex = 1 is again the Ω constant (≈ 0.567).

We therefore conclude that when either of λlo or λhi equals zero, the other being
no larger than Ω is sufficient to ensure that the scheduling algorithm of Section 4
schedules the system in a certifiably correct manner under DM priorities. This
turns out to be a direct generalization of a result in [21], stating that any regular
(non-MC) sporadic task system with load≤ Ω is DM-schedulable. Further, based
on the result in [21] which states that there are regular sporadic task systems with
load exceeding Ω by an arbitrarily small amount that are not schedulable by any
fixed-priority scheduling algorithm, we may conclude that there are MC sporadic
task systems with λlo > Ω or λhi > Ω (or both) by an arbitrarily small amount,
that are not schedulable correctly by any fixed-priority scheduling algorithm.

In Figure 2, we have plotted the region of values of λlo and λhi satisfying
Inequality 7; all MC systems that have their λlo and λhi parameters map onto
points between the axes and the curved line are guaranteed to be scheduled in
a certifiably correct manner under DM priorities.

If we were to set λlo = λhi
def
= λ in Inequality 7, we would get

eλ(λ+ λ× eλ) ≤ 1

⇔ λ× eλ + λ× e2λ ≤ 1 ,

the solution to which is ≈ 0.310. Based on the observation we had made earlier,
that in order for a MC system to be scheduled in a certifiably correct manner on a
speed-s processor by any scheduling algorithm (including an optimal clairvoyant
one) it is necessary that both λlo ≤ s and λhi ≤ s, we conclude

Theorem 3 Any MC task system that can be scheduled by an optimal clairvoy-
ant algorithm in a certifiably correct manner upon a given preemptive unipro-
cessor platform can be scheduled in a certifiably correct manner by the AMC
scheduling algorithm under DM priorities, upon a processor that is ≈ 1

0.310 or
≈ 3.23 times as fast.

6 Comparing the AMC and SMC algorithms

The result of Theorem 2 crucially depends upon the fact that AMC scheduling
algorithm is able to recognize when some job exceeds its lo-criticality WCET,
thereby signalling that the current behaviour of the system is a hi-criticality
one. Since the SMC algorithm (Section 3) does not exploit this feature, no sim-
ilar load-based bounds can be derived; this is formally stated in the following
theorem.

Theorem 4 The SMC algorithm may fail to schedule MC systems with both λlo
and λhi arbitrarily close to zero, in a certifiably correct manner.

Proof: Consider the task system consisting of the following two tasks: {τ1 =
(lo, ε,∞, 1, 1), τ2 = (hi, 1, 1, 1/ε, 1/ε)}, where ε is an arbitrarily small positive
real number. If τ1 is assigned lowest priority, it will miss its deadline in the lo-
criticality behaviour where its job arrives simultaneously with τ2’s job, and both
jobs seek to execute for their lo-criticality WCET’s of ε and 1 respectively. If
τ2 is assigned lowest priority, then it will miss its deadline in the hi-criticality
behaviour where its job arrives simultaneously with τ1’s job and τ1’s job, which
has a hi-criticality WCET of infinity, executes for more than (1

ε − 1) units of
execution.

The hi-criticality load of this system is equal to 1
1/ε or ε. The lo-criticality

load is equal to (ε1 + 1
1/ε), which equals 2ε. For ε arbitrarily small, these are

both arbitrarily small, and hence this 2-task MC system bears witness to the
correctness of Theorem 4. ut

Theorem 4 compared the AMC and SMC algorithms in terms of sufficient
schedulability conditions. We now show (Thm. 5) that AMC strictly dominates
the SMC algorithm: by showing that (i) every task system that can be scheduled
in a certifiably correct manner by SMC can also be scheduled in a certifiably
correct manner by AMC (with CAAP) (Lemma 2); and (ii) there are task sys-
tems schedulable by AMC, that SMC cannot schedule in a certifiably correct
manner.

Lemma 2 If SMC successfully assigns priorities to the tasks in task system τ ,
then so does AMC with CAAP.

Proof Sketch: Suppose that SMC (as described in Section 3) determines that
some task τi ∈ τ may be assigned lowest priority. This implies that the smallest
positive solution of Equation 1 is ≤ Di. We will show that this task may also
be assigned lowest priority under CAAP. We consider separately the cases when
this lowest-priority task τi is a lo-criticality task (χi = lo) and when it is a
hi-criticality task (χi = hi).

– In the case when χi = lo, notice that Equation 2 is identical to Equation 1.
Recall that L(lo) is, by definition, equal to the smallest positive solution to
Equation 2. Hence, the fact that the smallest positive solution of Equation 1
is ≤ Di implies that L(lo) is also ≤ Di. Since τi is a lo-criticality task, it
is consequently possible under CAAP to assign it the lowest priority.

– It remains to consider the case when χi = hi. Since we assumed that τi has
been assigned lowest priority by the technique of Section 3, it must be the
case that the smallest positive solution to Equation 1 is ≤ Di. Equation 1
can be rewritten as

t =
∑
∀j

⌈
t

Tj

⌉
Cj(hi)

=
∑

j:χj=lo

⌈
t

Tj

⌉
Cj(hi) +

∑
j:χj=hi

⌈
t

Tj

⌉
Cj(hi)

≥
∑

j:χj=lo

⌈
L(lo)

Tj

⌉
Cj(lo) +

∑
j:χj=hi

⌈
t

Tj

⌉
Cj(hi)

(9)

Upon comparing Inequality 9 above to Equation 3, it becomes evident that
the smallest positive solution to Equation 9 (and hence, to Equation 1) is no
smaller than the smallest positive solution to Equation 3. Recall that L(hi)
is defined to be equal to the smallest positive solution to Equation 3. We
may therefore conclude that L(hi) ≤ Di, which in turn implies that CAAP
may assign lowest priority to τi.

We thus see that for any task system for which SMC identifies a lowest-priority
job, CAAP for AMC does likewise. The lemma proves, by repeated applications
of this argument. ut

Examples 2 and 3 bear witness to the fact that there are MC sporadic task
systems to which SMC cannot assign priorities in a certifiably correct manner,
whereas AMC and CAAP can; the task system depicted in Table 1 is such an
example. It follows from Lemma 2 that every task system that can be scheduled
in a certifiably correct manner by SMC can also be scheduled in a certifiably
correct manner by AMC with CAAP, allowing us to conclude that at least from
the perspective of certifiable correctness,

Theorem 5 AMC with CAAP dominates the priority assignment technique of
SMC. ut

7 Conclusions

Due to the rapid increase in the complexity and diversity of functionalities that
are performed by safety-critical embedded systems, the cost and complexity of
obtaining certification for such systems is fast becoming a serious concern [22].
We believe that in mixed-criticality systems, these certification considerations
give rise to fundamental new resource allocation and scheduling challenges which
are not adequately addressed by conventional real-time scheduling theory.

In this paper, we consider the fixed-priority (FP) scheduling, upon preemp-
tive uniprocessors, of mixed-criticality systems that can be modeled using a
mixed-criticality generalization of the sporadic tasks model. We have studied
two priority-assignment algorithms: one that assumes limited run-time support
for mixed criticalities (SMC), and a new one, AMC with CAAP, that required
additional run-time support but is able to provide superior schedulability/ cer-
tifiability guarantees when provided with such support. Both these priority-
assignment algorithms have relatively efficient implementations: of the same or-
der of run-time complexity as schedulability analysis for “regular” (i.e., non-MC)
sporadic task systems; once priorities have been assigned, run-time scheduling
is not much more complex than for non-MC systems. This offers up an interest-
ing contrast with non-FP scheduling of MC sporadic task systems, in which the
current state of the art, as represented in [9], is an algorithm with potentially
pseudo-polynomial run-time complexity.

Acknowledgements

The authors would like to thank Rob Davis for his useful comments. The work
presented here forms part of work funded by the Tempo project (EPSRC funded)
in the UK. Baruah’s research was supported in part by NSF grants CNS 0834270,
CNS 0834132, and CNS 1016954; ARO grant W911NF-09-1-0535; AFOSR grant
FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033.

References

1. de Niz, D., Lakshmanan, K., Rajkumar, R.: On the scheduling of mixed-criticality
real-time task sets. In: Proceedings of the IEEE Real-Time Systems Symposium.
(2009) 291–300

2. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proceedings of the IEEE Real-Time Systems
Symposium, Tucson, AZ, IEEE Computer Society Press (2007) 239–243

3. Baruah, S., Vestal, S.: Schedulability analysis of sporadic tasks with multiple
criticality specifications. In: ECRTS. (2008) 147–155

4. Baruah, S., Li, H., Stougie, L.: Towards the design of certifiable mixed-criticality
systems. In: Proceedings of the IEEE Real-Time Technology and Applications
Symposium (RTAS), IEEE (2010)

5. Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., Megow,
N., Stougie, L.: Scheduling real-time mixed-criticality jobs. In Hlinený, P., Kucera,

A., eds.: Proceedings of the 35th International Symposium on the Mathematical
Foundations of Computer Science. Volume 6281 of Lecture Notes in Computer
Science., Springer (2010) 90–101

6. Mok, A.K.: Fundamental Design Problems of Distributed Systems for The
Hard-Real-Time Environment. PhD thesis, Laboratory for Computer Science,
Massachusetts Institute of Technology (1983) Available as Technical Report
No. MIT/LCS/TR-297.

7. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the 11th Real-Time Systems Symposium,
Orlando, Florida, IEEE Computer Society Press (1990) 182–190

8. Audsley, N.: On priority assignment in fixed priority scheduling. Information
Processing Letters 79 (2001) 39–44

9. Li, H., Baruah, S.: An algorithm for scheduling certifiable mixed-criticality sporadic
task systems. In: Proceedings of the Real-Time Systems Symposium, San Diego,
CA, IEEE Computer Society Press (2010) 183–192

10. Baruah, S., Burns, A.: Implementing mixed criticality systems in Ada. In Ro-
manovsky, A., ed.: Proceedings of Reliable Software Technologies - Ada-Europe
2011, Springer (2011) 174–188

11. Leung, J., Whitehead, J.: On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation (Netherlands) 2 (1982) 237–250

12. Burns, A., Littlewood, B.: Reasoning about the reliability of multi-version, di-
verse real-time systems. In: Proceedings of IEEE Real-Time Systems Symposium
(RTSS), IEEE Computer Society (2010) 73–81

13. Abeni, L., Buttazzo, G.: Integrating multimedia applications in hard real-time
systems. In: Proceedings of the Real-Time Systems Symposium, Madrid, Spain,
IEEE Computer Society Press (1998) 3–13

14. Bernat, G., Burns, A.: New results on fixed priority aperiodic servers. In: Pro-
ceedings 20th IEEE Real-Time Systems Symposium. (1999) 68–78

15. Caccamo, M., Sha, L.: Aperiodic servers with resource constraints. In: Proceedings
of the IEEE Real-Time Systems Symposium. (2001)

16. Bernat, G., Burns, A.: Multiple servers and capacity sharing for implementing
flexible scheduling. Real-Time Systems Journal 22 (2002) 49–75

17. Zabos, A., Davis, R., Burns, A., Harbour, M.G.: Spare capacity distribution using
exact response-time analysis. In: 17th International Conference on Real-Time and
Network Systems. (2009) 97–106

18. Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.: Applying new
scheduling theory to static priority preemptive scheduling. Software Engineering
Journal 8 (1993) 284–292

19. Joseph, M., Pandya, P.: Finding response times in a real-time system. BCS Com-
puter Journal 29 (1986) 390–395

20. Baruah, S.: Efficient computation of response time bounds for preemptive
uniprocessor deadline monotonic scheduling. Technical report, Available at
http://www.cs.unc.edu/~baruah/Pubs.shtml (2010)

21. Davis, R., Rothvoss, T., Baruah, S., Burns, A.: Exact quantification of the sub-
optimality of uniprocessor fixed priority pre-emptive scheduling. Journal of Real
Time Systems 43 (2009) 211–258

22. Barhorst, J., Belote, T., Binns, P., Hoffman, J., Paunicka, J., Sarathy, P., Score-
dos, J., Stanfill, P., Stuart, D., Urzi, R.: White paper: A research agenda for
mixed-criticality systems (2009) Available at http://www.cse.wustl.edu/˜ cdg-
ill/CPSWEEK09 MCAR.

