
The Application of the Original Priority Ceiling
Protocol to Mixed Criticality Systems

A. Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

Abstract—Mixed Criticality Systems (MCSs) have been the
focus of considerable study over the last six years. This work
has lead to the definition of a standard model that allows
processors to be shared efficiently between tasks of different
criticality levels. This model, however, often assumes that the
tasks are independent of each other; which is an unrealistic
restriction. In this paper tasks of the same criticality are allowed
to shared resources that require mutually exclusive access. Such
resources are usually protected by some form of priority ceiling
protocol (PCP). But it is not clear that the more common form
of this protocol (sometimes called the Immediate Priority Ceiling
Protocol, or the Stack Resource Protocol) is appropriate for MCS.
Here we evaluate the original form of the PCP and propose a
new MCS-aware protocol called MCS OPCP. This protocol allows
lower criticality tasks to transfer budgets when a task runs out
of its own, or the resource, budget before it has completed its use
of the resource. Without this provision the task would need to be
suspended whilst holding a resource lock. We show that higher
criticality tasks are not impacted by the protocol. An assessment
of MCS OPCP in terms of its impact on schedulability analysis
is provided.

I. INTRODUCTION

Although the formal study of mixed criticality systems
(MCSs) is a relatively new endeavor, starting with the paper
by Vestal (of Honeywell Aerospace) in 2007 [13], a standard
model has emerged (see for example [3], [2], [6], [11], [8]).
This model usually defines the tasks to be independent of each
other. This is clearly an unacceptable restriction for realistic
industrially relevant software. It is however far from clear to
what extent data should flow between criticality levels. There
is a strong objection to data flowing from low to high criticality
applications unless the high criticality component is able to
deal with potentially unreliable data – this happens with some
security protocols [4]. Even with data flowing in the other
direction there remains the scheduling problem of not allowing
a high criticality task to be delayed by a low criticality task that
has either locked a shared resource for longer than expected
or is executing at a raised priority ceiling level for too long.
In this paper we look at sharing within a criticality level. We
restrict ourselves to single processor systems scheduled using
fixed priorities; a general sporadic task model is assumed.

For non-MCSs there are a number of priority inheritance
protocols [12] that allow for the efficient sharing of resources
between tasks. Here ‘efficient’ means delivering bounded
priority inversion. Most effective amongst these protocols are
those based on priority ceilings [9], [12], [7], [1]; with these

protocols:
• A job is blocked at most once during its execution.
• Deadlocks are prevented.

There are two main variants of the priority ceiling protocol
(PCP): the original one (described below and identified by the
acronym OPCP) and the one in which the task has its priority
immediately raised to the ceiling priority of the resource
when it accesses the resource. This later version is the one
supported by programming languages such as Ada and Java,
many operating systems and many standards such as OSEK
and Autosar. It is known as the Stack Resource Protocol, or
the Immediate Priority Ceiling Protocol (IPCP) or Priority
Ceiling Emulation. The protocol has the following additional
properties:
• If a job experiences blocking it will take place prior to

the job actually executing.
• Once a job starts executing, all the resources it needs will

be available.
• No additional preemptions are introduced.

In the following we argue that for mixed criticality systems
with inter-criticality level resource sharing, there are some
advantages in re-evaluating the original form of the protocol.
We will assume, initially, that there are just two criticality
levels: LO and HI (with LO < HI).

II. MCS MODEL

For dual criticality systems the standard model for MCSs
has the following properties [13], [2]:
• A mixed criticality system is defined to execute in either

of two modes: a HI-criticality mode or a LO-criticality
mode.

• Each task is characterised by its criticality level, L (equal
to either LO or HI), the minimum inter-arrival time
of its jobs (period denoted by T ), deadline (relative to
the release of each job, denoted by D) and worst-case
execution time (one per criticality level for HI-criticality
tasks, denoted by C(HI) and C(LO); and just a single
C(LO) value for LO-criticality tasks).

• The system starts in the LO-criticality mode, and remains
in that mode as long as all jobs execute within their low
criticality computation times (C(LO)).

• If any job execute for its C(LO) execution time without
completing then the system immediately moves to the
HI-criticality mode.



• As the system moves to the HI-criticality mode all LO-
criticality tasks are abandoned. No further LO-criticality
jobs are executed.

• The system remains in the HI-criticality mode.
• Tasks are assumed to be independent of each other (they

do not share any resource other than the processor).
In this paper we remove the assumption that tasks are inde-
pendent of each other, we also allow LO-criticality tasks to
run (in some form) in the HI-criticality mode as long as their
impact on HI-criticality tasks is constrained so as to prevent
any deadline misses in these tasks.

III. MCS MODEL WITH RESOURCE SHARING

The standard model for MCS is easily extended to include
resources. Contained within the system are m shared resources
(r1, ..., rm). Tasks may access (under mutual exclusion) these
resources, but we make no assumptions as to when or how
often each job accesses these shared resources during its exe-
cution. We do assume however that tasks do not self-suspend
whilst accessing a resource1. The worst-case execution time of
task τi when using resource rk is denoted by cki . For resources
used in both critically modes there will be (as with tasks) two
views as to the resource access time: cki (LO) and cki (HI) with
cki (LO) ≤ cki (HI)2.

For single criticality systems using a PCP there is, for each
task, τi a blocking term, Bi which is the maximum ckj over all
resources (rk) that are used by a lower priority task (τj) and
a task of equal or higher priority than τi. For a dual criticality
model there would therefore be two versions of this blocking
term: Bi(LO) and Bi(HI). Note the actual task and the actual
resource that leads to these maximum blocking terms may
differ in the two criticality modes. Although it is possible for
Bi(HI) to be less than Bi(LO) the analysis involves less
stages if we assume Bi(HI) ≥ Bi(LO).

We use the Adaptive Mixed Criticality Method 1 (AMC-rtb)
approach [2] to illustrate how a blocking term is introduced
into the analysis model. The analysis first computes the worst-
case response times for all tasks in the LO-criticality mode
(denoted by Ri(LO)). This is accomplished by solving, via
fixed point iteration, the following response-time equation for
each task τi:

Ri(LO) = Bi(LO)+Ci(LO) +
∑

j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO).

(1)
If any task executes for more than Ci(LO) or any resources

takes more than cki (LO) to complete then a criticality mode
change occurs. Note that a resource request taking more than
cki (LO) may not result in the blocking term Bi(LO) being

1A task running out of budget and being de-scheduled whilst accessing a
resource is not considered to be self-suspending. This is however a situation
that is far from ideal and techniques are developed in this paper to prevent
this happening.

2For simple resources it is likely that, in practice, cki (LO) = cki (HI), but
the general model would allow cki (LO) to be assigned a lower value.

violated for some task, but it is the quality that can be
monitored at run-time.

During and after the criticality change we are only con-
cerned with HI-criticality tasks, so for these tasks:

Ri(HI) = Bi(HI)+Ci(HI)+
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI)

+
∑

τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO) (2)

which ‘caps’ the interference from LO-criticality tasks. Note
the summations are now over hpH(i) and hpL(i), the sets
of higher and lower criticality (higher priority) tasks.

Although many papers assume that LO-criticality tasks are
abandoned once the system moves to the HI-criticality, this
is not a realistic strategy. Some form of recovery scheme is
needed for these LO-criticality tasks. One simple approach
would be to lower their priorities to, in effect, a background
level. But this would not impact on a task executing with an
inherited higher priority from executing with a resource. Some
other form of robust protocol is required. For example:

1) abandon the resource;
2) suspend the LO-criticality task.
With the first approach, when the budget on the resource is

exhausted or the C(LO) budget on the entire job is exhausted
(while it holds the resource) the resource is ‘pulled’ from the
job. The resource is returned to its previous state and the job
must re-access it. Other jobs may get it first of course, but the
resource is not locked unnecessarily. The disadvantage of this
approach is that the resource update must be implemented as
an atomic action. Also, an error in which ckj (LO) is actually
insufficient will mean that the task τj will loop indefinitely
accessing the resource, having its code aborted and then
retrying (and re-failing).

The second scheme is equivalent to the job itself running out
of budget. It will not execute again until the task’s next release.
When next released it will be allowed to continue to execute
within the resource (for up to ckj (LO) again). This has the
advantage that any lower priority HI-criticality task will have
a blocking term no higher than Bi(LO). So the constraints
of the LO-criticality execution mode continue to be satisfied;
however, this behaviour is extremely detrimental to the LO-
criticality tasks as a lock on a shared resource is being held by
a task that is in effect suspended. To ease this situation one can
envisage a protocol in which capacity (budget) is transferred
from a stalled LO-criticality job to the out-of-budget LO-
criticality task that has the lock. Such a protocol is relatively
easy to support with OPCP; and we define one in Section V-A.

IV. THE ORIGINAL PRIORITY CEILING PROTOCOL, OPCP
The original form of the priority ceiling protocol protocol

builds on the simpler priority inheritance protocol which just
says that if τi has locked3 a resource which is then required

3We use the term lock although a physical OS lock is not strictly necessary
with a priority ceiling protocol.



by higher priority task τj then τi will inherit the priority of
τj for the duration of the time it holds the lock. In addition to
this rule, for OPCP, a task is only allowed to lock a resource
if its active priority is higher than the current system ceiling.
And this value is the maximum ceiling value of all currently
locked resources (excluding any the task has locked itself).

Consider the example represented in Table I. There are four
LO-criticality tasks (L1, ..., L4) and two high criticality tasks
(H1 and H2). There are also three resources (r1, r2 and r3).
The table is ordered by the task’s priorities (L1 has the highest
priority) and gives the usage relation between the tasks and
resources. The execution times for the resources are: c1i =
5 ∀i, c2i = 7 ∀i and c3i = 10 ∀i. The priority ceilings of the

Task Priority User r1 Uses r2 Uses r3

L1 1 •
H1 2 •
L2 3 • •
H2 4 •
L3 5 • •
L4 6 •

TABLE I
EXAMPLE SYSTEM OF TASKS AND RESOURCES

three resources are: P (r1) = 1, P (r2) = 2 and P (r3) = 3.
The blocking terms introduced by IPCP or OPCP, for use in
the scheduling analysis, are: BL1 = 5, BH1 = 7, BL2 =
10, BH2 = 10, BL3 = 10 and BL4 = 0. These are easily
computed; for example, H2 can be blocked by L3’s use of
r1 or L4’s use of r3. Any priority ceiling protocol ensures
that only one block per job is actually experience, so BH2 =
max(5, 10) = 10.

An illustrative execution of this example is when L3 ex-
ecutes first and locks r1, H1 is then released and preempts
L3 as it has a higher priority. H1 then attempts to access r2,
OPCP prevents this access (even though the resource is free) as
H1’s priority (2) is not greater then the current system ceiling
(which has the value 1 as r1 with priority ceiling 1 is locked
by L3). L3 will now execute with priority 2 until it unlocks r1;
it priority then returns to 5, H1 will preempt and be allowed
to lock r2.

V. MCS PRIORITY CEILING PROTOCOLS

In this section we shall explore two properties of OPCP that
are advantageous for MCS. First a partitioning of the resources
using criticality, and secondly capacity sharing between LO-
criticality tasks; these both contribute to the definition of an
MCS OPCP.

A. An MCS OPCP

For a dual criticality system let the collection of m resources
be split into two sets, h and l. With h = h1, ..., hm1 and
l = l1, ..., lm2, and m1+m2 = m. The first set is used only by
high criticality tasks, the second by only low criticality tasks.
The resource execution times for HI-criticality task τi when
accessing resource k in h is denoted, as before, by cki (LO)

and cki (HI). For a resource s in l there is just one execution
time per task – csj(LO), where τj is the LO-criticality task
accessing the resource.

The proposed MCS OPCP protocol has the following char-
acteristics:
• All resources are assigned a ceiling priority.
• A task can only access a resource if the task and resource

are of the same criticality.
• At run-time the system maintains two system ceiling

values, one per criticality level; they each represent the
current highest ceiling priority of a locked resource.

• At run-time a task can only lock a resource if its priority
is strictly greater than the system ceiling for its criticality
level (again excluding resources that the task has locked
itself).

• A task will inherit the priority of any task of higher
priority that it is blocking.

The consequences of these rules is that a task can only be
directly blocked by a lower priority task of the same criticality.
So in the earlier illustration from the example (in Table I),
H1 would be able to lock r2 even while L3 has the lock on
r1. However, the worst-case blocking value (in the scheduling
analysis) does increase as it must now involve two terms, one
derived from set h the other from set l. Equation (1) becomes:

Ri(LO) = Bhi(LO) +Bli(LO) + Ci(LO) +∑
j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (3)

where, Bhi(LO) is the maximum LO-criticality resource
execution time for a resource used by HI-criticality tasks (one
with priority less than τi, one with priority equal or higher);
Bli(LO) is defined similarly. Equation (2) is updated in the
same way:

Ri(HI) = Bhi(HI) + Bli(LO) + Ci(HI)

+
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI)

+
∑

τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO) (4)

The example (in Table I) illustrates some interesting prop-
erties of MCS OPCP. First the resources are appropriately
partitioned with r1, r3 ∈ l and r2 ∈ h. The priority ceiling
values remain the same. If the execution times allocated
earlier are interpreted as implying LO-criticality values then
c1i (LO) = 5; i = L1, L2 or L3, c2i (LO) = 7; i = H1 or H2
and c3i (LO) = 10; i = L2, L3 or L4. Finally, the single
required HI-criticality value is given by c2i (HI) = 12; i =
H1 or H2.

The blocking terms for equation (3) (i.e. the LO-criticality
mode analysis) are as given in Table II. The final column gives



the blocking value if a single OPCS protocol is used, it is the
maximum of the values in columns 2 and 3. Clearly the block-
ing terms have increased for some tasks, but not all. For the HI-
criticality mode analysis (equation (4)), BhH1(HI) = 12 and
BhH2(HI) = 0, and BlH1(LO) = 5 and BlH2(LO) = 10.

Task Bl(LO) Bh(LO) Bl(LO) +Bh(LO) OPCP B
L1 0 5 5 5
H1 5 7 12 7
L2 10 7 17 10
H2 10 0 10 10
L3 10 0 10 10
L4 0 0 0 0

TABLE II
BLOCKING TIMES

The use of these (increased) blocking times represents the
worst-case behaviour. But there are other considerations in
terms of an overall evaluation of MCS OPCP. Consider the
impact on H2 in the LO-criticality mode. Under OPCP its
access to r2 could be blocked if either r1 and r2 were locked.
But under MCS OPCP it does not need to check, it is the
lowest priority of the users of r2 and hence if it is executing r2

must be free. Under MCS OPCP a task can only directly block
tasks of the same criticality and hence priority inheritance only
occurs between tasks of the same criticality. This simplifies
implementation (and therefore certification). Note with IPCP
this separation is not possible, L4 executing with r3 will
execute with priority 3 and hence directly impact H2. Of
course the worst-case behaviour via indirect blocking is the
same (e.g. H2 get interference from L2, L2 can be blocked by
L4, and hence L4 could have its priority raised to 3).

Returning to the illustrative execution involving H1; when
it attempts to lock r2 it can now only be prevented from
making progress if its priority is not strictly higher than the
system ceiling for h. This can only be the case if H2 has
locked the resource. The state of r1 and r3 are immaterial
to the behaviour of H1. This would not be the case with
OPCP or IPCP. Again this helps certification as it increases
the separation between criticality levels.

The property of MCS OPCP that a task can only be directly
blocked by tasks of its own criticality level, and that within
that level an ordinary priority ceiling protocol is designated
implies that deadlock free execution of task sets that adhere
to MCS OPCP is guaranteed.

In terms of average-case behaviour, OPCP has always had
an advantage over IPCP. With IPCP a priority change (to
ceiling value and back) occurs for all resources usages. With
OPCP it only occurs if there is an actual priority inversion.
With MCS OPCP the chances of both HI and LO priority
inversion occurring is even more unlikely. It might be possible
to computed that the probability of a lower priority task being
preempted while it held the lock on a resource, and that a task
that needs the resource subsequently executes, is less than,
say, 10−3. With MCS OPCP the probability of this happening
to both a resource from h and a resource from l will be

close to 10−6 (as the events can reasonably be defined to
be independent). So, from Table II, the blocking term for,
for example, L2 would be 17 with probability 10−6 or 10
with probability 10−3. Probabilistic scheduling analysis [5],
[10] could easily factor this into its analysis framework. Note
for an increased number of criticality levels this probability
decreases significantly. For five levels the probability of a task
suffering blocking from all the levels could be argued to be
less than 10−15!

B. Budget Inherence with MCS OPCP

If a LO-criticality task is suspended due to an exhausted
resource budget then it will have no impact on other tasks
until a further LO-criticality task attempts to use the resource.
With OPCP there is a direct relationship between the lock
holding tasks and the blocked task. And with MCS OPCP
the blocked task must be of the same criticality. Hence is it
relatively straightforward to define a protocol for LO-criticality
task’s use of resources:
• Only allow a LO-criticality task (τj) to attempt to lock a

resource (rk) if its remaining budget (from Cj(LO)) is
greater than ckj (LO).

• If the resource budget (ckj (LO)) is exhausted τj is sus-
pended.

• If another task (τi) attempts to access rk then budget
capacity is transferred from τi to τj .

Enough budget is transferred to allow τj to complete its
operation on the resource. Note τj and τi are of the same
LO-criticality.

This protocol has some consequences for both HI and LO
criticality tasks:
• LO-criticality task τi has had budget ‘misappropriated’

and this may impact on its ability to meet its deadlines.
But this is clearly a less serious impact than suspending
τi until τj at some future point releases the lock on rk.

• If the priority of τi is greater than that of τj then budget
is passing from high priority to lower priority; this cannot
have a negative impact on any other task in the system
(HI or LO).

• If the priority of τi is less than that of τj then as τi is
executing it must have the highest priority of any runnable
job. Hence there are no runnable HI-criticality tasks with
priority greater than τi or τj . The movement of capacity
from τi to τj therefore cannot impact on any runnable
HI-criticality task.

None of these consequences seem to be problematic.
The result of using budget inheritance is that LO-criticality

tasks execute more robustly, whilst HI-criticality tasks are
unaffected. At run-time no tasks have their priorities changed,
and hence static unchangeable priorities can be used. A system
that allows LO-criticality tasks to change their priorities is
open to a security breach in which they are changed to
unacceptable levels. Budgets are only moved between LO-
criticality tasks and this happens using a protocol that cannot
impact on HI-criticality tasks. The only real down-side to using



MCS OPCP is the extra blocking terms in the scheduling
analysis.

VI. MORE THAN TWO CRITICALITY LEVELS

Many papers on mixed criticality constrain themselves to
only address dual criticality system. This restriction helps to
clarify descriptions, and has been utilised here. However, it
is important that protocols do generalise to a realistic number
of criticality levels. Perhaps up to five levels may be needed
(see, for example, the IEC 61508, DO-178B, DO-254 and ISO
26262 standards).

MCS OPCP naturally generalises to more than two levels.
A set of resources per level is defined and a current system
ceiling level per set is used at run-time. Each set can give
rise to a blocking term in the schedulability analysis. But as
indicated earlier, the likelihood of any job actually suffering
this worst-case scenario decreases with the number of levels
and opens the way to a probabilistic interpretation for the
blocking term.

Budget inheritance is only between tasks of the same criti-
cality and hence this also scales to multiple levels of criticality.
There is an inevitable increase in run-time complexity, but for
up to five levels this should not be a significant issue. Note
where there are five levels of criticality the four lowest need
to be monitored and could benefit from budget inheritance.
The highest criticality level is always dealt with differently;
there is nothing to be gained from constraining its tasks. If
they overrun the best response is to allow them to continue
and hopefully recover without further intervention other than
removing the impact of all lower criticality tasks.

With a number of distinct levels it is actually unlikely that
any resource will have, say, five different estimates of the
worst-case execution time for its operators/methods. These
operators are ideally very simple and short compared with
the execution behaviours of the tasks in the system. Hence it
is quite likely that even with five criticality levels there may
only be, say, two levels for the resources.

VII. CONCLUSIONS

This paper has focused on single processor systems on
which, for single criticality systems, the Immediate Priority
Ceiling Protocol (IPCP) is almost universally accepted as the
protocol to use for protected access to shared resources (e.g.
critical sections that must be accessed under mutual exclusion).
For mixed criticality systems it is not clear that IPCP is the
right protocol. However it is clear that resource sharing within
critically levels is a necessary part of any usable task model.

In this paper we argue that the issue of priority ceiling
protocols for MCS requires further study. We attempt to
contribute to this study by considering the properties of the
original version of PCP. We define a new protocol for mixed
criticality systems based on this original version which we
refer to as MCS OPCP. This protocol separates all resources
into sets, one per criticality level. An OPCP is then defined
per set. With MCS OPCP a task can only be directly blocked

if a resource is locked by a lower priority task of the same
criticality level.

An analysis of MCS OPCP shows that worst-case blocking
is increased (over global IPCP or OPCP), but there are a
number of advantages to its use. It aids separation, and its
average run-time overhead is likely to be significantly less
than a global IPCP scheme. It could also form a component
of a probabilistic view of schedulability analysis for mixed
criticality systems. Finally, it retains the property of deadlock-
free behaviour.

REFERENCES

[1] T. Baker. A stack-based resource allocation policy for realtime processes.
In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 191–200,
1990.

[2] S. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed
criticality systems. In IEEE Real-Time Systems Symposium (RTSS),
pages 34–43, 2011.

[3] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In ECRTS, pages 147–155, 2008.

[4] K. Biba. Integrity considerations for secure computer systems. Mtr-
3153, Mitre Corporation, 1977.

[5] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. L. Bello, J. M. López,
S. L. Min, and O. Mirabella. Stochastic analysis of periodic real-time
systems. In RTSS, pages 289–300, 2002.

[6] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic sprodic tasks. In ECRTS, pages 135–144, 2012.

[7] J. Goodenough and L. Sha. The priority ceiling protocol: A method for
minimizing the blocking of high priority Ada tasks. Proc. of the 2nd
International Workshop on Real Time Ada Issues, ACM Ada Letters,
8(7):22–31, 1988.

[8] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems. In IEEE
RTSS, pages 13–23, 2011.

[9] B. Lampson and D. Redell. Experience with processes and monitors in
Mesa. CACM, 23(2):105–117, 1980.

[10] D. Maxim, O. Buffet, L. Santinelli, L. Cucu-Grosjean, and R. I.
Davis. Optimal priority assignment algorithms for probabilistic real-
time systems. In RTNS, pages 129–138, 2011.

[11] F. Santy, P. Richard, M. Richard, and J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP. In Proc.
of the Euromicro Conference on Real-Time Systems, pages 155–165,
2012.

[12] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronisation. IEEE Transactions on
Computers, 39(9):1175–1185, 1990.

[13] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the IEEE
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.


