
Deadline-Aware Programming and Scheduling

Alan Burns and Andy Wellings

Department of Computer Science,
University of York, UK.

emails: alan.burns/andy.wellings@york.ac.uk

Abstract. Deadlines are the most important events in real-time systems. Real-
time programs must therefore be aware of deadlines, and be able to identify and
react to missed deadlines. Moreover, Earliest Deadline First (EDF) is the most
widely studied optimal dynamic scheduling algorithm for uniprocessor real-time
systems. In this paper we explore how a resource sharing protocol (called the
DFP – Deadline Floor inheritance Protocol), which has been proposed for lan-
guages such as Ada, can be incorporated into the language’s definition. We also
address the programming of systems that have mixed scheduling (e.g. fixed pri-
ority and EDF). The incorporation of the DFP into Ada requires some changes to
the current predefined packages. These changes are also of use in supporting the
programming of deadline-aware systems even when not scheduling by EDF.

1 Introduction

The correctness of an embedded real-time system depends not only on the system’s
outputs but also on the time at which these outputs are produced. The completion of a
request after its timing deadline is considered to be of degraded (potentially no) value,
and could even lead to a failure of the whole system. Therefore, the most important
characteristic of real-time systems is that they have strict timing requirements that must
be guaranteed and satisfied. Schedulability analysis plays a crucial role in enabling these
guarantees to be provided.

The Earliest Deadline First (EDF) algorithm is one of the most widely studied
dynamic priority scheduling policies for real-time systems. It has been proved [18] to
be optimal among all scheduling algorithms for a uniprocessor; in the sense that if a
real-time task set cannot be scheduled by EDF, then it cannot be scheduled by any other
algorithm.

The Ada 2005 standard [20] introduced EDF as one of the supported dispatching
policies and the Stack Resource Policy (SRP) was specified as the protocol for resource
sharing among EDF tasks [11]. SRP is a complex protocol, as has been shown by the
initial difficulties with its specification and implementation (see Section 3). Recently, a
new protocol for resource sharing in EDF has been proposed [7, 9]. This new protocol,
called the Deadline Floor inheritance Protocol (DFP), is simpler to understand and
more efficient to implement (while keeping all the useful properties of SRP). At the
16th International Real-Time Ada Workshop, the recommendation was agreed [22] that
SRP should be deprecated and be replaced by the DFP for single processor systems. In
this paper we further explore the motivation for this change, and consider in more detail
the impact on the language’s definition.



We review, in section 3, the current provision of Ada in its support for EDF and
SRP. The new protocol is described in Section 4, and the changes needed to incorporate
this definition into the language are outlined in Section 5. Coverage of systems that have
both fixed priority and EDF scheduling is given in Section 6. In Section 7 the impact
of the proposed changes are considered in the context of Ada’s approach to program-
ming real-time abstractions. Then, in Section 8 we briefly consider the implications of
multiprocessor systems on the protocol. Conclusions are contained in Section 9. First,
however, we give a short definition of a system model.

2 System Model

Although not restricting ourselves to the Ravenscar profile [8], the system model
assumed in this paper has many similarities to that profile. A system is assumed to con-
sist ofN tasks; all of which are defined to have a period (denoted by the symbol T ) that
is their minimum inter-arrival time, a relative deadline (D) and a worst-case execution
time (C). All tasks are executed on a single processor (or are statically partitioned onto
a set of processors). For system correctness, any task τi arriving at time tmust be able to
execute for its maximum computation time (Ci) by its deadline which is at time t+Di.

With fixed priority scheduling, each task is assigned a priority (P ), and all protected
objects are assigned ceiling priorities and a priority ceiling protocol (PCP) [19] is im-
plemented. The form of PCP usually applied is the ‘immediate’ version (IPCP) in which
a task’s priority is raised to the resources’s ceiling at the point the resource is accessed.
For optimal schedulability, a task’s priorities is derived from its relative deadline. Two
tasks with relative deadlines Di and Dj , with Di < Dj will have priorities with the
constraint Pi > Pj .

The term ‘deadline’ can be overloaded in scheduling papers. Here we explicitly use
relative deadline when concerned with the task’s D parameter. The use of deadline on
its own refers to the absolute deadline of the current invocation of the task. It could be
argued that Ada fails to fully support deadline-aware programming as relative deadlines
for tasks cannot currently be directly represented in the program’s code using language
defined types and subprograms.

3 Earliest Deadline First Dispatching and SRP in Ada

Baker [3, 2] proposed the Stack Resource Policy (SRP) for bounding priority inversion
when accessing resources in real-time systems scheduled under EDF. SRP is a general-
isation of IPCP.

With SRP, each task is assigned a number called the preemption level that correlates
inversely to its relative deadline: the shorter the relative deadline the higher the pre-
emption level. Shared resources are also assigned a preemption level that is the highest
of the preemption levels of all the tasks that may use that resource. The use of SRP
imposes a new rule to basic EDF scheduling: a task can only be chosen for execution



if its preemption level is strictly higher than the preemption levels of the resources cur-
rently locked in the system. The basic rule is, of course, a task can only be chosen for
execution if it has the earliest deadline.

The most complex part of the EDF dispatching definition in Ada is the integration
of the base Ada dispatching model (based on fixed priorities for the tasks and priority
ceilings for the protected objects) with the SRP rules and the preemption level concept.
EDF is defined to work in a given band of priority levels, which may cover the whole
range of system priorities, or a specific sub-interval of these priorities. The Ada Ref-
erence Manual (ARM) defines a means of integrating preemption levels and priorities:
preemption levels of tasks and protected objects are mapped to priorities in the EDF
priority band.

The ARM defines that, by default, the active priority of an EDF task is the lowest
priority in its EDF priority band. The task will inherit priorities as any other Ada task;
in particular, when an EDF task executes a protected operation it will inherit the pri-
ority (preemption level) of the protected object. But, for EDF tasks, the ARM defines
a further source of priority inheritance (for arbitrary task T): the highest priority P, if
any, less than the base priority of T such that one or more tasks are executing within a
protected object with ceiling priority P and task T has an earlier deadline than all such
tasks; and furthermore T has an earlier deadline than all other tasks on ready queues
with priorities in the given EDF Across Priorities range that are strictly less than P.

This rule has proved difficult to specify correctly (the original definition was shown
to be incorrect [24]) and to implement correctly [15] or efficiently [1].

There is one further drawback that is specific to the Ada definition of SRP: the
limited number of distinct preemption levels. The number of distinct preemption levels
that can be used for tasks in an EDF priority range is the size of the range minus one. In a
system with few priority levels or in a narrow EDF range this limitation could jeopardize
the schedulability of the system by causing more blocking than is necessary. It could be
argued that the implementation should provide more priority levels, but priority levels
are expensive because they affect the size and performance of many of the run-time data
structures such as the delay queues, ready queues and the entry queues.

4 The Deadline Floor Protocol

Recently, Burns introduced a new protocol for resource sharing in EDF, called the Dead-
line Floor inheritance Protocol (DFP) [7]. The DFP has all the key properties of SRP;
specifically, causing at most a single blocking effect from any task with a longer relative
deadline, which leads to the same worst-case blocking in both protocols. In an EDF-
scheduled system, the DFP is structurally equivalent to IPCP in a system scheduled
under fixed priorities.

Under the DFP, every resource has a relative deadline equal to the shortest relative
deadline of any task that uses it. The relative deadline of a resource is called deadline
floor, making clear the symmetry with the priority ceiling defined for the resources in
any PCP.

The key idea of the DFP is that the absolute deadline of a task could be temporarily
shortened while accessing a resource. Given a task with absolute deadline d that ac-



cesses a resource with deadline floor DF at time t, the absolute deadline of the task is
(potentially) reduced according to d := min(d, t+DF ) while holding the resource.

To give a concrete example, assume two tasks (A and B) with relative deadlines of
20 and 30 share a resource. The deadline floor of the resource is therefore 20. Assume
task B is released at time 100: its absolute deadline is therefore 130. At time 103 it
accesses the resource: its absolute deadline is therefore reduced to 123. While B holds
the resource, task A is released at time 105: its absolute deadline is 125, this is not
sufficient to preempt B (as 125 > 123). If B exits the resource at time 107, its absolute
deadline will change from 123 to 130; as a result A will preempt as it now has the earlier
deadline (i.e. 125 < 130).

The action of the protocol results in a single block per task, deadlock free execution
and works for nested resource usage. Whilst a task accesses a resource its deadline is
reduced so that no newly released task can preempt it and then access the resource. See
[7] for details and proof of the key properties. This is equivalent to the use of a priority
ceiling; again the only tasks that can preempt a task executing within a protected object
are tasks that are guaranteed not to use that object (unless there is a program error,
which can be caught at run-time).

The DFP does not add any new rule to the EDF scheduling, thus it leads to simpler
and more efficient implementation than the SRP [1].

5 Required Language Simplifications and Modifications

To embed the rules for the DFP within Ada, the following issues must be addressed:

– All tasks must have a relative deadline assigned via an aspect/pragma or a routine
defined in a library package.

– Protected objects must have also a relative deadline (floor) assigned via an aspec-
t/pragma.

– Default relative deadline values must be defined for tasks and protected objects
(and their types).

– Rules for EDF scheduling must be extended to include a new locking policy: Floor
Locking.

– Rules for EDF scheduling need simplifying to remove the ‘across priorities’ feature
of the current definition.

– For completeness (and parity with priority ceilings) means of modifying the relative
deadline attribute of tasks and protected objects should be defined.

First, however, some changes to library packages are needed to make the notion of
deadline (relative and absolute) first class within the tasking model. Currently, relevant
definitions are coupled to the specification of EDF scheduling. Whilst deadlines are
key to EDF scheduling, they have a wider purpose; deadlines are relevant to all forms
of real-time scheduling. Moreover, programs that wish to catch and respond to missed
deadlines need to be able to manipulate deadlines directly.



5.1 Changes to Existing Library Packages

The 2005 version of Ada introduced EDF scheduling and the subtype Deadline.
Unfortunately, we feel, it only introduced this, as we noted above, for the support of
EDF scheduling. We feel that deadline and relative deadline are fundamental concepts
in real-time and deadline-aware programming. We therefore propose that the whole
package Ada.Dispatching.EDF be renamed, repositioned and extended to support
relative as well as absolute deadlines. The new package could be as follows.

with Ada.Real_Time;
with Ada.Task_Identification;
use Ada;
package Ada.Deadlines is

subtype Deadline is Real_Time.Time;
subtype Relative_Deadline is Real_Time.Time_Span;
Default_Deadline : constant Deadline :=

Real_Time.Time_Last;
Default_Relative_Deadline : constant Relative_Deadline :=

Real_Time.Time_Span_Last;
procedure Set_Deadline(D : in Deadline;

T : in Task_Identification.Task_ID :=
Task_Identification.Current_Task);

function Get_Deadline(T : in Task_Identification.Task_ID :=
Task_Identification.Current_Task) return Deadline;

procedure Set_Relative_Deadline(R : in Relative_Deadline;
T : in Task_Identification.Task_ID :=
Task_Identification.Current_Task);

function Get_Relative_Deadline(T : in Task_Identification.Task_ID :=
Task_Identification.Current_Task)
return Relative_Deadline;

procedure Delay_Until_And_Set_Deadline(
Delay_Until_Time : in Real_Time.Time;
TS : in Real_Time.Time_Span :=
Get_Relative_Deadline);

end Ada.Deadlines;

Key changes are:

– Change of name and library position.
– Introduction of a type for relative deadline and a default value.
– Set and Get routines added for relative deadlines.
– A default relative deadline provided for Delay Until And Set Deadline.

All tasks will have a deadline and a relative deadline; default values being used if
the program does not specify specific values. As with priority, where a task has a base
and an active priority, a task will also have a base (absolute) deadline and an active (ab-
solute) deadline – see definition of the locking policy below. A call of Get Deadline
returns the base deadline of the task.

The existing aspect/pragma Relative Deadline should be redefined to take
an expression of type Relative Deadline. Note, although the same name is used
here, this is the same situation with subtype Priority and aspect/pragms Priority.
However, the definition of the aspect Relative Deadline should really be moved



from D.2.6. We suggest that it be placed, with the above package, in a new section
D.8.1. perhaps entitled Deadline-Aware Programming.

5.2 New Locking Policy

Initially, when EDF was added to Ada, the existing locking policy Ceiling Locking
was modified so that is accounted for EDF dispatching, FP (fixed priority) dispatching
and combined EDF and FP dispatching. Although there are some clear advantages in
having only a single protocol, it is now considered to have been a mistake [22], due to
the complex rules required. Here we propose a new locking policy Floor Locking.
We will not attempt to give here a full definition sufficient for the ARM, but the follow-
ing points define the semantics for this new policy.

– Whenever a task is executing outside a protected action, its active deadline is equal
to its base deadline.

– When a task executes a protected action its active deadline will be reduced to (if it is
currently greater than) ‘now’ plus the deadline floor of the corresponding protected
object.

– When a task completes a protected action its active deadline returns to the value it
had on entry.

– When a task calls a protected operation, a check is made that there is no task cur-
rently executing within the corresponding protected object; Program Error is
raised if this check fails.

A protected object is given an initial deadline floor value using the Relative Dead-
line aspect/pragma. Dynamic deadline floors could be defined in a similar way to
dynamic ceiling priorities (see Section D.5.2 of the ARM). We do not consider this
here.

With this definition of a new locking policy, the definition of Ceiling Locking
can return to its pre-2005 wording.

Note the semantics requires a check on non-concurrent access to the protected ob-
ject. It is not sufficient to check that the relative deadline of the task is not less than
the deadline floor of the object. This points to a difference with Ceiling Locking
where a comparison based on priorities is sufficient. To implement the check on inap-
propriate usage over the corresponding protected object requires only a simple ‘occu-
pied’ flag to be checked and modified. Usefully, if there is an attempt to gain access to
an occupied protected object then the task ‘at fault’ is forced, on a single processor, to
be the second task that is attempting to gain access, and it will therefore be this task that
has the exception raised. The correct task will be unaffected.

Interestingly, a simple check on non-concurrent access would also be sufficient for
the priority ceiling case. And again the exception is bound to be raised in the task ‘at
fault’. Of course, checking concurrent access, rather than correct priority/ceiling values
will only catch an actual error rather than a potential one. Inappropriate ceiling values
will be caught on first usage, inappropriate concurrent access may be very difficult to
create during testing. Although not a sufficient test, it might be advisable to also include
in the definition of Floor Locking a static check on the relative deadlines of user
tasks and the deadline floors of the used protected objects.



To ensure that locking protocols work correctly, the programmer must give the cor-
rect values for deadline floors and ceiling priorities. A run-time check prevents concur-
rent access, but a compiler-based check cannot be undertaken and hence the use of the
correct values can only be asserted by code inspection or static analysis.

5.3 New Dispatching Policy

Currently EDF dispatching is supported via the policy EDF Across Priorities. A
range of priorities is needed to account for the different priority ceilings needed for the
protected objects. The tasks themselves only execute at the base priority of this range
when they are not executing within a protected action. All ready queues are ordered by
the (absolute) deadline of the ready tasks.

To prevent confusion, and to emphasis the fact that with the new protocol only
a single priority is needed for all EDF dispatched tasks (regardless of the number of
protected objects they use), we propose a new dispatching policy. And to accommodate
hierarchical dispatching (see Section 6) we define the new policy as EDF Within
Priorities. Again we will not attempt to give a full definition appropriate for the
ARM1.

With EDF Within Priorities, all tasks with the same priority compete for
the processor using the rules for EDF dispatching. The ready queue is ordered by ac-
tive deadline. A collection of EDF dispatched tasks and the set of protected objects
they use/share will all have the same priority (and ceiling priority). But they will have
different relative deadlines (and deadline floors).

A task that has not been given an explicit deadline or relative deadline will get
the default values of Default Deadline (equal to : Real Time.Time Last)
and Default Relative Deadline (equal to Real Time.Time Span Last).
The default value for the deadline floor of any protected object is 0 (actually Time-
Span Zero). This will have the effect of making all protected actions non-preemptive
(as does the default priority ceiling).

5.4 Ravenscar-like Profile

The facilities provided by the policies EDF Across Priorities and Floor Loc-
king, and the library package Ada.Dispatching.EDF allows a Ravenscar-like
profile for EDF scheduling to be defined.

For periodic (time-triggered) tasks the profile would only allow a task to be delayed
by the use of Delay Until And Set Deadline using the default parameter for
relative delay (which is the task’s relative delay). A task would be forced to set its rel-
ative deadline using an aspect/pragma and use the default parameter for the above delay
statement. It would be unable to use the Set Deadline and Set Relative Dead-
line routines.

1 For example, consideration would need to be given to whether deadline inheritance should
occur during a rendezvous and task activation, and whether entry queues can be deadline or-
dered.



For sporadic tasks, which are typically released by the action of an interrupt handler,
Set Deadline would need to be used, but could be restricted to be allowed only
within that context.

To accomplish these restrictions is may be useful to partition Dispatching.EDF
into the part needed for a restricted profile, and that which is available to all programs.

6 Hierarchical and Mixed Scheduling

One of the advantages of the new EDF Within Priorities policy is that it unifies
Ada’s use of priority as the primary dispatching policy. It is no longer necessary to
reserve a range of priorities for a single EDF domain. If we ignore the non-preemptive
policy, we now have a clear means of supporting mixed scheduling in a hierarchical
manner:

– At all times, the task at the head of the highest priority non-empty ready queue is
the one chosen to be executed.

– Each ready queue has its own discipline to determine which task is at its head.

The disciplines supported are: FIFO, Round Robin (RR) and now EDF; i.e. FIFO
Within Priorities, Round Robin Within Priorities and now EDF Wi-
thin Priorities.

So, for example, one could have the top 16 priority levels reserved for pure FP tasks,
then the next level for EDF and next (lowest) priority level for RR. At the EDF and RR
levels there may be many task allocated. For the FP there many be few, perhaps only
one task per priority.

If two priority levels are designated EDF then tasks from the higher priority level
will always run in preference to tasks at the lower level (irrespective of deadlines). Only
if the ready queue at the higher priority is empty will the task with the shortest active
deadline from the lower ready queue be chosen for execution.

To allow tasks from any priority level to share their use of protected objects (POs)
it is necessary to ensure the locking policies are appropriately defined. First the funda-
mental priority based dispatching policy must be supported by Ceiling Locking.
If two tasks of different priority use the same PO then the ceiling priority of the PO
must be no lower that the highest priority of the client tasks. Within an EDF ordered
priority level, the policy Floor Locking must apply. It follows therefore that when
hierarchical dispatching is used both Ceiling Locking and Floor Locking will
need to be specified. The current definition of Ceiling Locking must be changed
to reflect this.

To further illustrate the behaviour of a mixed dispatching scheme, consider two
situations on a single processor system. First, assume the highest priorities are reserved
for FIFO (FP) and a single EDF ready queue is at a lower priority. Let an EDF task, τe
execute and call a PO used by a FP task, τf . The following points appertain.

– The priority of τf is higher than τe.
– If τe is executing then τf must be suspended.



– When τe calls the PO its active priority will be set to the priority of τf . Its active
deadline may also shorten, but this is irrelevant in this example.

– If τf is released, it will not execute (its base priority is not greater than the active
priority of τe and dispatching at this priority level is FIFO).

– When τe leaves the PO its priority will return to its original base level, and if τf
had been released it would now preempt.

For a second example, consider the EDF tasks at the highest priority level (Phigh)
and a set of FP tasks below. The priority ceiling of the PO will be Phigh. If an EDF
task calls the PO, its active priority will not change but its active deadline may. Now
consider the lower priority FP task τf accessing the PO:

– Priority of τe is higher than τf .
– If τf is executing then τe must be suspended (and no other EDF task will be active).
– When τf calls the PO its active priority will be set above its current level to Phigh;

its active deadline will be updated according to the DFP; no further FP tasks will
run.

– If τe is released it will not execute (its base priority is not greater than the active
priority of Phigh and, because of the DFP it cannot have an earlier absolute dead-
line).

– When τf leaves the PO, its priority will return to its original base level (its base
deadline will return to its default value), and if τe had been released it would now
preempt.

It follows from these examples that both Ceiling Locking and Floor Lock-
ing are needed, but they are not needed together. If a task calls a PO with a higher
priority then the ceiling policy applies. And if an EDF dispatched task calls a PO with
the same priority then the deadline floor policy applies. Note, of course, that a task
cannot call a PO with a lower priority as this would break the priority ceiling protocol.

7 Impact on Real-Time Programming Abstractions

Since its inception, Ada has supported real-time systems’ development. Its focus has
been on a set of low-level primitive programming mechanisms and support for real-time
dispatching policies. The low-level mechanisms (such as the “delay until” statement,
the asynchronous select statement, timing events, protected objects etc) have allowed
a wide range of real-time programming abstractions to be developed [23]. However,
almost paradoxically, up until Ada 2005 the notion of absolute deadline was not explicit
in the language. Even at Ada 2005, deadlines were only introduced to support EDF
scheduling.

We have shown earlier, that to facilitate integration of the DFP, the notions of ab-
solute and relative deadlines must become more general language concepts that are not
confined only to EDF scheduling. Of course, this is correct as even tasks that are being
scheduled FIFO within a priority level may have a deadline. Although, this has no ef-
fect on the dispatching, the program may need to undertake corrective actions if a task
misses its deadline. There are many possible actions (see, for example, Chapter 13 in



Burns and Wellings [12]). Below, we illustrate one task template that can be used to
illustrate the impact of having deadlines more explicit in the language. The template is
for a periodic task that aborts its current release if the deadline is missed, executes some
handling code and then waits for its next periodic release. Note the use of the default
relative deadline in the Delay Until And Set Deadline statement.

with Ada.Real_Time; use Ada.Real_Time;
with Ada.Deadlines; use Ada.Deadlines;
...

task type Periodic_Task(Period_In_Milliseconds : Positive;
Rel_Deadline_In_Milliseconds : Positive);

task body Periodic_Task is
Interval : Time_Span := Milliseconds(Period_In_Milliseconds);
Rel_Deadline : Time_Span :=

Milliseconds(Rel_Deadline_In_Milliseconds);
Next_Release_Time : Time;

begin
Set_Relative_Deadline(Rel_Deadline);
Next_Release_Time := Clock;
Set_Deadline(Next_Release_Time + Rel_Deadline);
loop
select

delay until Get_Deadline;
-- handle deadline miss here

then abort
-- undertake the work of the task

end select;
Next_Release_Time := Next_Release_Time + Interval;
Delay_Until_And_Set_Deadline(Next_Release_Time);

end loop;
end Periodic_Task;

...

Although there is not a significant difference between this and the original template,
the programmer’s intention is clearer.

8 Multiprocessor Considerations

Ada 2012 [21] supports the notion of a dispatching domain, which consists of one or
more processors on which tasks can be globally scheduled. Each processor in the system
can only exists in one dispatching domain. A task can only be allocated to a single
dispatching domain. In the case where a task is allocated to a multiprocessor dispatching
domain, there is an option to fix that task to only be dispatched on a single processor
in that domain. Hence, Ada 2012 has the flexibility to support global, partitioned and
semi-partitioned systems, as well as algorithms that fix computational intensive tasks
to a single processor and schedule less computational intensive tasks globally around
them [13].



Dispatching domains in conjunction with the two-level dispatching model in those
domains gives the system developer a significant level of control over how tasks are
allocated and scheduled in multiprocessor (and multicore) systems.

Although there has been some success in determining the necessary support for
scheduling, the issue of how best to support multiprocessor lock-based resource control
protocols is still far from clear. New results are emerging [16, 4, 5, 14, 6, 10], but it is
too soon for programming languages/operating systems to adopt a particular approach
[17].

This paper has discussed the Deadline Floor Protocol in the context of single proces-
sor systems. Just like the Stack Resource Protocol, the desirable properties (mentioned
in Section 4) are not maintained when protected objects can be simultaneously accessed
from multiprocessors. For example, multiple blocks per task and deadlocks are possi-
ble. Furthermore, mutual exclusion is not guaranteed by the protocol itself; hence a
lock is required, along with a FIFO spinning-based access mechanism. Until more op-
timal solutions become available, this approach, in conjunction with the default ceiling
and default floor, will ensure that a protected action is implemented non-preemptively
with predictable blocking times. The programmer will have to ensure that any nested
accesses do not lead to deadlock.

9 Conclusions

Arguably since its inception, Ada has supported a two-level dispatching model. Ini-
tially, in Ada 83, this was preemptive priority-based scheduling at the top level, and
FIFO at the low level (that is, within a priority). Progressively, over the years, the lan-
guage has added support for non-preemptive priority-based scheduling (at the top level)
and round-robin and EDF (within priority levels). Unfortunately, the introduction of
EDF scheduling in Ada 2005 required the support of the Stack Resource Policy and
its integration into the two-level scheduling scheme. This corrupted the pure two-level
scheduling model and required a range of priorities to support a single EDF secondary
dispatching level. Since Ada 2005, better understanding of EDF scheduling has been
obtained. One result is a new resource control protocol, the DFP. The integration of this
protocol into the Ada dispatching model allows a return to the pure two-level model.
With this integration, Ada can support

– preemptive or non-preemptive priority-based dispatching at the top level, and
– a mixture of FIFO, RR or EDF dispatching at the secondary level.

The integration requires that deadlines become a more widely visible concept in the
language’s definition. This has advantages as even for priority-based systems, the need
to recover from deadline misses requires deadlines to be set and manipulated. Having
deadlines directly expressible in the language makes deadline-aware programming and
scheduling more visible and hence more maintainable.

Acknowledgements

The authors would like to thank Marina Gutierrez, Mario Aldea and Michael González
Harbour for useful discussions on the implementation of the DFP.



References

1. M. Aldea, A. Burns, M. Gutirrez, and M. G. Harbour. Incorporating the deadline floor
protocol in Ada. ACM SIGAda Ada Letters – Proc. of IRTAW 16, XXXIII(2):49–58, 2013.

2. T. Baker. A stack-based resource allocation policy for realtime processes. In Proc. IEEE
Real-Time Systems Symposium (RTSS), pages 191–200, 1990.

3. T. Baker. Stack-based scheduling of realtime processes. Journal of Real-Time Systems, 3(1),
March 1991.

4. A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson. A flexible real-time locking
protocol for multiprocessors. In 13th International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA ’07, pages 47–56. IEEE Computer Society,
2007.

5. B. Brandenburg and J. Anderson. Optimality results for multiprocessor real-time locking. In
Real-Time Systems Symposium (RTSS), pages 49–60, 2010.

6. B. Brandenburg and J. Anderson. Real-time resource sharing under cluster scheduling. In
Proc. EMSOFT. ACM Press, 2011.

7. A. Burns. A Deadline-Floor Inheritance Protocol for EDF Scheduled Real-Time Systems
with Resource Sharing. Technical Report YCS-2012-476, Department of Computer Science,
University of York, UK, 2012.

8. A. Burns, B. Dobbing, and G. Romanski. The Ravenscar tasking profile for high integrity
real-time programs. In Reliable Software Technologies, Proc. of the Ada Europe Conference,
Uppsala, pages 263 – 275. Springer Verlag, 1998.

9. A. Burns, M. Gutirrez, M. Aldea, and M. G. Harbour. A Deadline-Floor Inheritance Protocol
for EDF Scheduled Embedded Real-Time Systems with Resource Sharing. IEEE Transac-
tion on Computers, available online, 2014.

10. A. Burns and A. Wellings. A schedulability compatible multiprocessor resource sharing
protocol - MrsP. In Proceedings of ECRTS, pages 282–291, 2013.

11. A. Burns, A. Wellings, and T. Taft. Supporting deadlines and EDF scheduling in Ada. In Re-
liable Software Technologies, Proc. of the Ada Europe Conference, pages 156–165. Springer
Verlag, LNCS 3063, 2004.

12. A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages. Addison
Wesley Longman, 4th edition, 2009.

13. R. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys, 43(4):35:1 –35:44, 2011.

14. D. Faggioli, G. Lipari, and T. Cucinotta. The multiprocessor bandwidth inheritance protocol.
In Proc. of the 22nd Euromicro Conference on Real-Time Systems (ECRTS), pages 90–99,
2010.

15. M. Fairbairn and A. Burns. Implementing and validating EDF preemption-level resource
control. In M. Brorsson and L. Pinho, editors, Proc. of Reliable Software Technologies -
Ada-Europe 2009, volume LNCS 7308, pages 193–206. Springer, 2012.

16. P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of real-time task sets in
single and multi-processor systems-on-a-chip. In Proc. 22nd RTSS, pages 73–83, 2001.

17. S. Lin, A. Burns, and A. Wellings. Supporting lock-based multiprocessor resource sharing
protocols in real-time programming languages. Concurrency and Computation: Practice
and Experience, 2012.

18. C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. JACM, 20(1):46–61, 1973.

19. L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to real-
time synchronisation. IEEE Transactions on Computers, 39(9):1175–1185, 1990.



20. S. Taft, R. Duff, R. Brukardt, E. Ploedereder, and P. L. (Eds). Ada 2005 Reference Manual,
ISO/IEC 8652/1995 (E) with Technical Corrigendum 1 and Amendment 1. Technical report,
ISO, available Springer LNCS 4348, 2005.

21. S. Taft, R. Duff, R. Brukardt, E. Ploedereder, P. Leroy, and E. S. (Eds). Ada 2012 Reference
Manual, ISO/IEC 8652/2012 (E). Technical report, ISO, available Springer LNCS 8339,
2012.

22. A. Wellings. Session summary: Locking protocols. ACM SIGAda Ada Letters, Proc. of
IRTAW 16, XXXIII(2):123–125, 2013.

23. A. J. Wellings and A. Burns. Real-time utilities for Ada 2005. Reliable Software Technolo-
gies - Ada Europe 2007, Lecture Notes in Computer Science, 4498:1–14, 2007.

24. A. Zerzelidis, A. Burns, and A. Wellings. Correcting the EDF protocol in Ada 2005. In Proc.
of IRTAW 13, Ada Letters, XXVII(2), pages 18–22, 2007.


