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Abstract— Wireless Sensor Networks (WSNs) consist of mul-

tiple, distributed nodes each with limited resources. With their 

strict resource constraints and application-specific characteris-

tics, WSNs contain many challenging trade-offs. This paper 

proposes a bio-inspired load balancing approach, based on 

pheromone signalling mechanisms, to solve the trade-off be-

tween service availability and energy consumption. We explore 

the performance consequences of the pheromone-based load 

balancing approach using: 1) a system-level simulator; 2) de-

ployment of real sensor testbeds to provide a competitive 

analysis of these evaluation methodologies. The effectiveness of 

the proposed algorithm is evaluated with different scenario 

parameters and the required performance evaluation tech-

niques are investigated on case studies based on sound sensors.  

Keywords: system-level simulation; prototype; load balancing; 

optimisation; WSN; bio-inspired 

I.  INTRODUCTION 

Wireless Sensor Networks (WSNs) consist of small, self-
powered electronic nodes, each equipped with limited re-
sources: embedded processors, memory, batteries, radio 
transceivers and environmental sensors.  WSNs are envis-
aged for industrial, civil and military purposes to monitor, 
track and detect events according to application require-
ments. Processing capabilities and energy restrictions are the 
major obstacles to achieving high performance in terms of 
service availability and quality of service (QoS). A vision to 
overcome the trade-off between service availability and en-
ergy consumption uses distributed, self-organising algo-
rithms to support the WSN hardware devices. For this pur-
pose, we propose a bio-inspired load balancing technique 
based on pheromone signalling mechanisms. 

In this research, a task mapping optimisation is used to 
solve the trade-off between energy efficiency and event de-
tection, providing effective resource management by control-
ling service times of the network components. Task mapping 
is defined as the assignment of tasks to network nodes and 
the definition of the task set execution sequence, aiming to 
achieve specific performance objectives [1]. Unlike static 
task mapping optimisations, the proposed technique in this 
paper applies runtime optimisations in order to reflect the 
dynamic nature of WSNs.  

This paper explores two important WSN issues. The 
main goal of this research is to show the effects of a bio-
inspired load balancing technique based on pheromone sig-
nalling. By developing our proposed technique, we target to 
minimisation of the energy consumption and maximisation 
of service availability.  

Finding the best experimental methodology to investigate 
and demonstrate the benefits of the work is always a key 
issue for researchers. The second goal of this research is to 
provide a clear comparison between evaluation methodolo-
gies. For this purpose, evaluation of the proposed load bal-
ancing technique uses both a system-level simulation model 

and a real node hardware deployment to show the beneficial 
points of each performance evaluation methodologies. Ad-
vantages of simulation versus node deployment (and vice 
versa) are discussed and analysed for the proposed load bal-
ancing techniques.  

The highly dynamic nature of WSN applications re-

quires self-organised, autonomous behaviour to overcome 

the fundamental resource challenges of WSNs. We propose 

a solution to distribute work load over the network compo-

nents in an equal manner, balancing nodes energy levels. 

The pheromone signalling mechanism proposed is inspired  

by the biological knowledge on the behaviour of bees [2-4] 

when assigning responsibility to members of a hive for con-

trol and distribution purposes. As abstract agents individual 

bees have many similarities with sensor nodes, as do bee 

colonies with WSNs. The required similarities are in terms 

of individual well-being (bee/node) and collective welfare 

(colony/WSN).  

The paper is organized as follows. Section II reviews the 

related work in the areas of task mapping and routing proto-

cols in WSNs, whereas our specific problem definition is 

presented in Section III. Section IV covers pheromone sig-

nalling based load-balancing algorithm together with the 

required biological background. Section V describes the 

evaluation techniques and explains the objectives of system 

level simulation and real sensor deployment. The paper is 

closed with the analysis of the experimental results in Sec-

tion VI and the main conclusion of this study in Section VIII. 

II. RELATED WORK 

The concept of task mapping refers to distributing re-

sponsibility for performing work across the entities of a 

distributed system such as a sensor network. Task mapping 

schemes can be static (or offline) [5-7], or dynamic (at run-

time). Some schemes are intended for homogeneous WSNs 

(with identical node hardware) and some for heterogeneous 

WSNs (taking advantage of the enhanced capabilities of 

some nodes). The control of the task mapping is also impor-

tant, with some schemes requiring central coordinators to 

assign responsibility [8] and some allowing distributed deci-

sions [9]. 

Pathak and Prasanna [10] present a static WSN task 

mapping solution that aims to minimise WSN energy con-

sumption and balance energy usage across network nodes. 

The protocol operates using mixed-integer programming 

and exploits heuristics to find an acceptable solution. Zeng 

et al [11-12] present a static mapping approach based on a 

Genetic Algorithm (GA), which aims to improve response 

time and limit energy usage. However, this approach results 

in overloading, as the mapping cannot adapt effectively to 

network conditions. Jin et al [12] use a GA with a fitness 
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function that considers network lifetime as well as the time 

taken to execute task sets. This dynamic approach balances 

energy usage while extending the network lifetime. Mio-

randi et al [13] also present a genetic approach, involving 

genome mutation and crossover. BTMS [1] is a scheme for 

homogeneous networks inspired by zygote differentiation, 

that aims to improve network lifetime and speed up task 

mapping and scheduling. Nodes begin in a default state and 

then dynamically differentiate to perform distinct tasks ac-

cording to their location. DNRS [14] is an artificial immune 

system scheme which aims to limit energy consumption 

while retaining event detection reliability.  

The problem of distributed task mapping in WSNs sys-

tems also has similarities with the research traditions of 

WSN cluster formation and dynamic topology control [15]. 

One key difference here is that the load balancing algorithm 

described in this paper is targeted at the application layer. 

The load balancing nominates the nodes which respond to 

sensed events, rather than controlling routing (network 

layer) and MAC (link layer) activity. 

Load balancing research in the WSN MAC layer has 

traditionally focused on clustering schemes, in which the 

protocol selects clusterhead nodes as coordinators of a re-

gion, bearing responsibility for a system task permanently 

or temporarily. In LEACH [16], a form of dynamic cluster 

selection is presented in which nodes periodically rotate 

cluster head responsibilities to balance their energy con-

sumption. Nodes probabilistically become clusterheads with 

probabilities governed by their remaining energy. Other 

nodes transmit data to the clusterhead first, and the cluster-

heads can be organised hierarchically to assist with delivery 

back to the sink. Therefore nodes with the highest remaining 

energy take on the burden of routing and aggregating mes-

sages from their relevant workers more often. In HEED [17] 

the residual energy of a node is also the primary factor in 

cluster nomination decisions, however power levels upon 

cluster reception are also considered in order to improve the 

decisions made.  PEGASIS [18] improves on LEACH by 

avoiding duplication of transmissions between cluster 

nodes, and introduces aggregation of data at the cluster 

heads.  

The organising metaphor of biological systems contain-

ing collective motion has been useful in developing general 

algorithms for distributed systems and searches over large 

problem sets. This comprises the field of SI (swarm intelli-

gence). Cases studied include flocks of birds, shoals of fish 

[19], herds of sheep [20] and, bacteria colonies [21]. These 

swarms are characterised by a large number of simple 

agents working together to collectively obtain useful solu-

tions in terms of high performance efficiency. Collective 

motion changes the social network structures and establishes 

social ties between the individuals [22]. Groups of animals 

such as shoals of fish increase individual and group well-

being by synchronising their motion. Conforming to this 

swarm metaphor, the artificial bee colony algorithm (ABC) 

has been explored in the solution of optimisation problems 

[23]. In this model, bees represent search agents and their 

environment’s the space of potential solutions, with high 

quality candidate solutions representing a pollen source that 

serves to encourage further exploration of the region by 

additional bee agents. 

In the networking context, protocols have been devel-

oped in which network packets are treated as biologically 

inspired agents. In the Beehive protocol [24] packets search 

for efficient routes through an IP network in a process mod-

elled after the foraging behaviour of bees. Similar work 

targeted specifically at WSNs is Beesensor [25] in which 

routing is performed via classes of packets following differ-

ent types of bee behaviour: for example as scouts and fora-

gers. The redundancy introduced by Beesensor is capable of 

increasing the proportion of delivered packets compared to 

AODV [26], although it experiences increased latency due 

to the possibility for bee packets to select suboptimal routes 

during exploration. A general framework through which a 

set of biological agents can attempt to simultaneously sat-

isfy multiple possibly conflicting objectives (such as la-

tency, energy efficiency and delivery success in a WSN) is 

provided in MONSOON [27]. 

Previous work has also mapped the insect colony model 

more directly to WSN hardware, with individual nodes rep-

resenting individual insects, status within the hive corre-

sponding to node responsibilities, and signalling chemicals 

corresponding to data packets. Recent work has applied bee 

protocols specifically to WSN load balancing [28]. This 

protocol covers similar ground in allocating queen bees to 

fulfil sensing tasks, although it provides a different interac-

tion process which features queen bees mating with workers 

in order to determine the future queens. 

The load balancing approach contained in this paper has 

several differences from the related work. Firstly, protocol 

behaviour is independent of the energy of particular nodes, 

depending only on their geographic placement and topology 

structure. Although the remaining energy parameter is 

transparently available in simulations, in hardware is it dif-

ficult to exactly assess available energy from the battery 

voltage obtained in low-cost WSN devices [29], so remov-

ing the dependence on it is an advantage. The protocol also 

provides a stability property, in that a lone node with no 

peers will become and always remain a queen node after a 

given delay, unlike in other protocols where nodes may be 

probabilistically switched off for some intervals. 

III. PROBLEM STATEMENT  

This paper addresses two main challenges. The first 

challenge is to maximise service availability while minimis-

ing the energy consumption, and to achieve that goal we 

propose a pheromone-based load balancing algorithm. The 

second challenge is to use two different evaluation method-

ologies (simulation and test hardware deployment) and pro-

vide a comparative analysis between those evaluation con-

cepts. We now define the metrics and the case study we will 

use when addressing those challenges. 

Service availability is measured by the number of ser-

vices that are successfully completed, over the total number 

of requested services within a period of time. A service is 

composed of a number of inter-communicating tasks, so a 

service is completed only if all its tasks are executed by the 

WSN nodes. We use task mapping as a way to balance the 

load over network nodes, i.e. to decide which node should 



execute the tasks of each requested service. Therefore, a 

service will not complete if at least one of its tasks (i) is 

mapped to a node that runs out of energy whilst executing it, 

or (ii) is not mapped to any node.  

In this paper, we use a sound sensing network as a case 

study. Recording and processing each sound captured by a 

sensor node is considered a service, and the load balancing 

objective in this case study is to process all sounds in an 

energy-efficient way. The proposed dynamic load balancing 

technique introduces some redundancy in order to sustain a 

high level of service availability, but the level of redun-

dancy is controlled in order to minimise energy dissipation. 

IV. PHEROMONE SIGNALLING BASED LOAD BALANCING 

ALGORITHM 

In this framework, we propose our dynamic load balanc-
ing technique aiming at minimisation of the energy con-
sumption and maximisation of service availability. In our 
technique we used as a biological metaphor the bee’s phero-
mone stimulation, which is correlated with WSN concepts as 
shown in Table 1.  

In Table 1, queen bees refer to the sensor nodes responsi-
ble for managing task mapping and execution (the Queen 
Nodes, or QNs) and they are differentiated from other sen-
sors to indicate their duties. This differentiation is a logical 
concept that does not make specific assumptions on the un-
derlying nodes, so it can be applied to homogenous or het-
erogeneous platforms. Worker bees refer to the non-queen 
sensor nodes of the network (the Worker Nodes, or WNs). 
All QNs and WNs are capable of sensing the environment, 
queuing and executing tasks, and communicating with other 
nodes within range. However, in our approach only QNs will 
voluntarily execute tasks (i.e. react to a sensed event or a 
service request). The level of a virtual pheromone (Queen’s 
substance), which appears as Pheromone Level in Table 1 
determines whether a node can differentiate itself as a 
Queen. Finally, the lifetime of a bee is related to the opera-
tional lifetime of the sensor nodes (e.g. how long they oper-
ate unattended before their battery dies). 
TABLE 1: CORRELATION BETWEEN BEE’S PHEROMONE STIMULATION AND 

SENSOR    NETWORKS 

 

The Pheromone Signalling (PS) Algorithm is the most 

important part of the load balancing technique. The objec-

tive of the algorithm is to enable node differentiation at a 

scale that produces sufficient QNs to handle all the required 

system functionality (e.g. service requests, event detection) 

QN’s can either execute tasks on themselves or map tasks to 

available WNs. The algorithm should also avoid unneces-

sary redundancy (e.g. several nodes sensing, processing and 

notifying the same event multiple times). 

The basic strategy of the algorithm is based on the prem-

ise that QNs periodically propagate pheromone to their net-

work neighbourhood. The pheromone levels propagate with 

hop distance to the source, for example two hop neighbours 

receive less pheromone than direct neighbours. All nodes 

accumulate pheromone received from QNs, and if at a par-

ticular time the pheromone level of a node is below a given 

threshold, this node will differentiate itself into a QN. The 

pheromone level at a node also decays over time, if no other 

pheromone is received to counteract this decay. This ensures 

nodes become a QN when they are too far (in a multi-hop 

topology) from other QNs, or when they have/ have not 

received pheromone for a given time. We now formalise the 

PS algorithm by describing its three parts which are exe-

cuted on every node of the network - two of them periodi-

cally and one on demand. 

The pseudo code for the first periodic stage, referred to 

as the differentiation cycle, appears in Listing 1. It executes 

on every node of the network every TQN time units.  On each 

iteration, a node checks its current pheromone level hi 

against a predefined level thresholdQN and differentiates 

itself into a QN (or maintains its QN status) if that level is 

below the threshold. If it is a QN, it propagates pheromone 

to its network neighbourhood. Each pheromone dose hd is 

represented as a two-position vector. The first element of 

the vector denotes the distance in hops to the QN that has 

produced it (and therefore is initialised as 0 in line 4 of List-

ing 1). The second element is the actual dosage of the 

pheromone. 
LISTING 1: PS DIFFERENTIATION CYCLE 

1 every TQN  do 
2      if    <              

3     =true 
4 broadcast hd = {0, hQN}  
5       else 
6       =false  
 

The second part of PS deals with the propagation of the 

pheromone released by QNs as described above. It is not a 

periodic activity, and happens every time a node receives a 

pheromone dose. Its pseudo code appears in Listing 2. Upon 

receiving a pheromone dose, a node checks whether the QN 

that produced it is sufficiently near for the pheromone to 

affect it. It is achieved by comparing the first element of pd 

with a predefined thresholdhopcount.  

 
LISTING 2: PS PHEROMONE PROPAGATION 

1    when    is received 
2      if (                           

3                     
4        broadcast hd’ = {         ,                   }   
 

If the pd has travelled over a greater number of hops than 

the threshold, the node simply discards it. If not, it adds the 

received dosage of the pheromone to its own pheromone 

level hi and allows the propagation of the pheromone to its 

neighbourhood. The propagated dose must represent the fact 

that pheromone decays with the distance to the source, so it 

does that by incrementing the hop count and by multiplying 

the dosage by a decay factor  0 < KHOP DECAY  <  1.   

Finally, the third part of the algorithm, shown in Listing 

3, is a simple periodic decay of the pheromone level of each 

node, which happens every TDECAY time units and multiplies 

hi by a decay factor 0 < KTIME DECAY  <  1.     

Bees and Phero-

mone Stimulation 

Sensor Network 

Queen Bee Sensor node responsible for task mapping 

and execution 

Worker Bees Sensor node 

Pheromone Level Parameter used for Queen Node selection 

Lifetime of  Bee  Operation Lifetime of the Sensor Node 



                     LISTING 3: PS DECAY CYCLE 

1 every TDECAY  do 
2                       

V. EVALUATION TECHNIQUES 

Designing and experimentally evaluating the perform-

ance of the algorithms pertaining to WSNs is a fundamental 

focus of the research in this area [30]. Existing evaluation 

concepts are categorised as system-level simulators, low-

level simulators, and prototypes. Since WSNs are applica-

tion-specific environments, researchers choose the best-fit 

concept depending on their target application area. Several 

design factors play an important role while choosing the 

best-fit performance evaluation technique and they can be 

listed as: flexibility, scalability, complexity, implementation 

time, performance efficiency, financial cost and accuracy.  

 
TABLE 2:  COMPARISON BETWEEN THE PERFORMANCE EVALUATION 

TECHNIQUES. 

 

 

In Table 2, three performance evaluation techniques are 

compared against each other. Design factors are marked 

with either L, M or H for each performance evaluation tech-

niques, in which L refers to low, M refers to medium and H 

refers to high. As is shown in Table 2, system-level simula-

tion models are cost-efficient and marked as low cost.  Fi-

nancial costs of prototypes are high, whereas low-level 

simulation models are listed as medium cost-efficient per-

formance evaluation techniques. System-level simulation 

models are known to have short implementation duration, 

high scalability and flexibility while providing high per-

formance efficiency.  Prototypes are considered as not flexi-

ble and not scalable, so listed as low. Implementation dura-

tion of low-level simulation is greater, compared to the pro-

totypes and system-level simulation models due to their 

level of complexity. In terms of accuracy, prototypes pro-

vide the most accurate results since they provide the results 

of real sensor deployments. Low-level simulation models 

are more accurate than system-level simulation models, 

because of the broader assumptions and abstraction away of 

detail in the system-level simulation models. In terms of 

evaluating protocol performance efficiency, prototypes are 

known to be inefficient although they provide the most ac-

curate results, since they feature real WSN deployment 

hardware and operating system environments [31-33].  

In this research, we have decided to validate our ap-

proach on system-level simulation model and a small hard-

ware prototype test-bed. The important criteria that guided 

these decisions are cost, implementation duration, perform-

ance efficiency and the level of accuracy. By validating our 

approach using different performance evaluation techniques, 

we aim to compare the implementation duration, perform-

ance efficiency and the level of accuracy of the system level 

model versus prototype as well as the effect of the proposed 

load balancing technique.  

A. System-Level Simulation  

The objective of evaluating the proposed work using a 

simulator is to investigate the long term behaviour of the 

load balancing algorithm. The reason behind the required 

selection is to explore the large parameter space of the load 

balancing technique without considering the hardware ob-

stacles and time consumption of the real sensor deploy-

ments. Unlike real sensor deployments, system-level simu-

lation tools provide ease of use with broad applicability, 

which enables evaluation of long term outcomes of the pro-

posed technique on large scale deployments.  

A three-tier WSN system model is designed to represent 

network components, the services that run over it and the 

functionality that assigns services to network nodes. The 

platform model consists of a set of N nodes and a set L of 

links between the nodes.  Each node       is the tuple    

=           
  , where     is the available memory capacity 

of the node,    is its energy capacity and    is the pheromone 

level of the node. Each link      L denotes the possibility of 

direct communication between two nodes           . A ser-

vice is designed as a Directed Acyclic Graph (DAG) and can 

be represented as           which consists of a set of tasks 

T and set of inter-task communications C. Each task    ϵ T, is 

a tuple                    , where    is the supplier node,  

    is its memory footprint in bytes,    is the energy con-

sumption of the task, and      is its execution time. Each 

inter-task communication        , is also a tuple            , 

where         is the sender task and        is the receiver task 

of the communication. For the proposed framework, the 

mapping process is defined as a function from the applica-

tion domain to the platform co-domain and is represented as 

F:TN.   

An event-driven simulator has been designed to imple-

ment this model. It is controlled by the JavaSim library [34] 

and is validated with 30 different task sets.   

The level of accuracy is the only open discussion which 

is the major disadvantage of the system-level simulators. 

Duty cycling MAC protocols are out of the scope of this 

work, whereas other parameterization and discharge rates 

are taken into consideration to reflect the real world applica-

tions and achieve a high level of accuracy. 

B. TinyOS Experimental Testbed 

The experimental testbed Fig.1 is intended to evaluate 

the short-term behaviour of the protocol. It consists of 16 

homogeneous nodes (MEMSIC Iris nodes with 2.4GHz 

transceivers) together with a base station that serves to re-

ceive results and transfer them via USB to a monitoring 

computer.  

Nodes have MPR-400 sensor boards attached, which de-

tect sound events. These nodes run on the open-source 

TinyOS operating system version 2.1 [35]. A custom modu-

lar application was developed to perform multi-hop for-
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warding, sound detection, and to implement the pheromone 

protocol. Message delivery was performed using the 

TinyOS Active Message layer. The application also applies 

a randomised forwarding delay before packet dispatch, in 

order to reduce the impact of collisions when simultaneous 

detection would otherwise lead to a sudden burst of event 

generation. 

 

 
Fig. 1:  The hardware testbed in operation. 

C. Scenario, Topology and Routing Protocol 

Hardware nodes are arranged into a 4x4 regular grid and 

perform multi-hop routing in order to reach the sink node. 

Routing is pre-configured with nodes forwarding hop-by-

hop on fixed multi-hop relaying chains towards the sink 

node with ID 1, as depicted in Fig.2. The intent of this 

shortest path routing in pre-configured chains is to simulate 

a standard forwarding protocol applied in a simple, known 

test deployment, in regular terrain, avoiding the complexi-

ties of route setup/teardown. 

 

 
 

Fig. 2: The topology of multi-hop routing chains, shortest path.  

 

During the experimental deployment, nodes are located 

sufficiently close for packet transmission/reception to occur 

across the entire network. The simulation scenario assumes 

nodes can only communicate directly with their immediate 

neighbours, to emulate the conditions of a real large-scale 

deployment. However, since Iris nodes typically achieve 

transmission ranges up to 50m indoors [36], it is necessary 

to restrict the communicating nodes in software so packets 

from nodes that are not one-hop neighbours within the to-

pology are rejected. 

To evaluate the performance of the protocol, a timer in 

the application layer originates a sequence of fixed trigger 

events, corresponding to detections of a periodic sound 

source in the environment. The pheromone algorithm is 

executed as described in Section IV B, assigning statuses of 

QN and WN to nodes dynamically (they change as execu-

tion proceeds). Queen nodes respond to the periodic detec-

tions by transmitting an event notification, while worker 

nodes ignore these events at the application layer. Further 

down the protocol stack, multi-hop forwarding is then used 

at all nodes of the routing chain (queen and worker alike) to 

relay data on event detections and packet transmissions back 

to the sink node for analysis at the monitoring computer. A 

baseline experiment is also performed in which the phero-

mone protocol is not executed and all nodes report sensed 

events, in order to assess the advantages of the load balanc-

ing protocol. 

 
TABLE 3:  ENERGY RELATED PARAMETERS 

D. Parameter Choices 

Several important parameters of the balancing technique 

are shown in Table 4. In the experimental results we have 

also inspected the importance of pheromone propagation 

period and pheromone decay period.  

 
TABLE 4:  PS RELATED PARAMETERS 

 

Parameters/ Platforms Real Deployment Simulation 
KHOP DECAY  ~ 0.25  ~ 0.25 

            0.14,0.28,0.56 14 

              0.5 0.5 

TDECAY (s) 7.2 7200,5000,3000
,2000 

thresholdhopcount. 2 2 

hQN 50 50 

 

VI. EXPERIMENTAL RESULTS 

This section presents the experimental results. The goal 

of the hardware results in subsection A is to show the be-

haviour of the system on a small scale, demonstrating per-

formance advantages on a real sensor deployment on 

TinyOS operated system. The intent of the system-level 

simulation results in subsection B is to evaluate load-

balancing performance of the pheromone algorithm on a 

large scale, including lifetime issues and their effect upon 

performance.  

A. TinyOS Hardware Testbed Experiment Results 

Fig. 3 shows the total number of event detections re-

ceived over time and the number of packets transmitted in 

the network in total. Results are measured for the phero-

mone signalling algorithm, compared to a baseline case with 

no load balancing. An event covering the entire network 

occurs at 600 ms time interval. Therefore the smaller the 

numbers of event detect the better, since this represents 

minimal duplication. The results demonstrate that following 

stabilisation (after 40s) the load balancing algorithm pro-

duces a significantly smaller number of detections, reducing 

the total event load to approximately a third. The reduction 

in packet transmission load is even more significant, given 

that preventing duplicate events being registered avoids the 

additional routing load that these events generates in other 

network nodes. There is an initial decay in beginning event 

Configuration Parameters Platform Model 

Battery Capacity (mAh) 1500 

Idle Discharge Rate (uAs) 300 

Wireless Communication Discharge Rate 

per Byte at 30kbps (uAs) 

0.6  

Task Communication Discharge Rate  

(uAs) 

3000 



detection 20-40 at a second interval as the network stabilises 

and a suitable number of nodes become QNs. 

 
Fig. 3: Energy impact of the event processing on 4x4 mesh network topol-

ogy. 

 

 
Fig. 4: The impact of queen threshold upon event detection and packet 
transmission load on a 4x4 mesh network topology. 

 

Fig. 4 shows the impact of queen hormone threshold 

thresholdQN upon the measured event processing and packet 

transmission load. These series are not greatly influenced by 

doubling the queen threshold from 0.14 to 0.28.  However, 

if the queen threshold is doubled again to 0.56, then the 

differentiation algorithm in Listing 1 tolerates a stable state 

with additional queens in the network. This leads to an ap-

proximately 10% increase in the total redundant event proc-

essing. Total packet transmissions also increase approxi-

mately 16% due to processing these events, and the addi-

tional hormone propagations of the extra queens. This illus-

trates that if aggressive load balancing for energy efficiency 

is the priority, then queen threshold should be minimised. 

However, if redundancy in event detection is preferred, then 

large queen thresholds are acceptable. 

B. System-level Simulation Model 

Fig. 5 shows the percentage of the detected events (a), 

and the percentage of alive nodes (b).Idle, Baseline, BS and 

PS are the scenarios shown in Fig.5. Idle represents maxi-

mum lifetime of the nodes when the nodes are idle. Baseline 

is a scenario referred to as a dynamic mapping technique, 

without dynamic re-mapping. BS represents an existing self-

organisation mechanism, which applies both dynamic map-

ping and re-mapping techniques [37-38]. In BS, nodes that 

have an energy level less than the defined threshold re-map 

their tasks to a neighbour which hold the maximum energy 

level.  PS is our load balancing technique presented in Sec-

tion IV. 

     

 
       (a) 

   
(b) 

Fig. 5: Experimental results:  On 4x4 mesh network topology (a) % 

Events detected, (b) % Alive nodes. 

 

According to Fig. 5 (a) and (b), the percentages of de-

tected events and alive nodes are lowest in baseline sce-

nario. Due to the effect of the dynamic re-mapping tech-

nique, the percentage of alive nodes is increased as well as 

the percentage of detected events. The major difference is 

shown by the PS scenario. The detected event percentage 

remains constant after the first week, in which the number 

of QNs stabilises. As the nodes are balanced in terms of 

usage, their remaining energy levels are quite similar to 

each other. As a result the percentage of alive nodes does 

not drop dramatically and remains steady until the end of 

week 8. At the end of the week 8, 70% of the nodes run out 

of energy at the same time. This proves the balancing the 

load over the nodes. The number of nodes is calculated at 

the end of each time interval, whereas detected events (ser-

vice availability) are calculated for individual time intervals.  

Sensitivity analysis is partially applied to the proposed 

technique to show the impacts of the PS parameters as men-

tioned in Section V. A variety of pheromone decay interval 

is evaluated on our PS technique to show the effects of the 

required parameters on percentage of detected events and 

alive nodes on a 4x4 network in Fig. 6.  

Simulation duration is also improved to illustrate the 

longer term effects of the approach on the same topology.  

TDECAY time unit plays an important role on performance. As 

the TDECAY time unit shortens the number of QNs increases. 

As a result, the number of detected events increases. Since 

the number of QNs affects energy use, the energy consump-
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tion of the network increase as well, whereas longer TDECAY 

time parameters allow lengthening of the network lifetime.   

 

 
(a) 

 
(b) 

Fig. 6: Experimental results: effects of different phormone decay period  on 
4x4 Mesh Network topology using : (a) % Events detected, (b) % Alive 

nodes. 

                                                                      

                                                         (a) 

 
(b) 

Fig. 7: % Events detected (a), % alive nodes (b) for 7x7 Mesh Network 

topology. 

 

Fig. 7 shows the effects of our load balancing technique. 

Impacts of the pheromone decay interval are also shown on 

Fig. 7 where simulation duration is increased to 13 week. 

Larger scale and longer simulation duration allows to ana-

lyse the overall impact of the technique and effects of the 

TDECAY time unit. 

 

In every case, the PS algorithm provides an optimised so-

lution in terms of service availability and energy consump-

tion, regardless from the decay interval. Shorter decay inter-

val means higher number of QNs, where PS 7200-2000 

provides the highest percentage of detected events. Due to 

the high number of QNs, PS 7200-2000 do not improve the 

percentage of the alive nodes as much as percentage of de-

tected events due to the redundant allocations.  
 

VII. CONCLUSIONS 

In this paper, we have proposed a load balancing algo-
rithm based on a pheromone signalling mechanism. We 
showed the long term benefit of the proposed technique via a 
system level simulation model. The short term energy effi-
ciency benefits of our load balancing technique have been 
evaluated on real sensor deployment. The advantages and 
disadvantages of these two performance evaluation method-
ologies have been highlighted.  

We have two major goals: solving the service availability 
versus energy consumption trade-off with the proposed algo-
rithm, and demonstrating good performance via the two 
evaluation methodologies of system-level simulation and 
hardware deployment.   

Simulation results show that our technique provides 
longer network lifetime, while increasing the service avail-
ability over longer time scales consistent with a real deploy-
ment. Hardware results for a 4x4 grid with multi-hop routing 
have demonstrated a corresponding reduction in duplicate 
event detection count (to approximately a third of the base-
line event detections), and total packet transmissions. This 
equates to a substantial energy efficiency benefit. The impact 
of queen threshold levels has also been studied in hardware, 
verifying that a small threshold of 0.14 provides 10% fewer 
duplicate detections than 0.56. Moreover, it is important to 
compare the performance evaluation concepts used. As noted 
earlier, three important factors are cost, implementation du-
ration, performance efficiency and the level of accuracy 
provided.  Cost-wise, it was expensive and time-consuming 
to obtain, debug, and configure the sensor nodes for the real 
sensor deployment, whereas we used open source tools to 
develop a system-level simulation model that could be flexi-
bly reconfigured to model different scenarios quickly.  
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