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Abstract—Load balancing techniques for distributed embedded
systems tend to be very parameter-rich, and finding adequate
parameters for a given scenario is not trivial. Furthermore,
the parameter values that are adequate for one scenario are
rarely applicable to another that has, for instance, a different
application profile or network topology. In this paper, we present
a search-based parameter tuning approach that aims to automate
the process of configuring a parameter-rich load balancing tech-
nique. It considers the service availability and energy dissipation
figures obtained by each configuration of the load balancing
technique, and uses those values to explore the parameter space
towards optimised solutions. To accelerate the search, we also
present a number of improvements to the simulator used to
evaluate each configuration. The proposed parameter tuning
approach is then evaluated by analysing the best configurations
it can find for several scenarios, and we use Principle Component
Analysis to identify which of the parameters have the most critical
effect on the quality of the solutions.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of sensor nodes

that have limited energy supply, sensor devices, a short-range

radio and on-board processing capabilities. Techniques for

low power design with high quality of service (QoS) have

been attracting a great deal of attention in the last decade [1]

to manage the limited resources of the WSNs in the most

effective manner.

One way to cope with the energy limitations and processing

capabilities of WSNs is to balance the processing load over

the entire network. This, therefore, requires us to distribute

responsibility for performing work across the entities of a

distributed system such as a sensor network. In the past,

many static techniques have been proposed to identify and

distribute processing responsibility for load balancing. How-

ever, static techniques are poor and inefficient due to their

lack of knowledge of the network. On the other hand, dynamic

techniques, either at runtime or on-demand, have better control

over the networks. This is highly desirable for load balancing

procedures that can extend the network lifetime, as well as

increase both service availability and QoS.

In our initial work [2],[3], we have proposed a highly

dynamic and robust load balancing technique which can cope

with the adaptability and self-organisation issues of WSNs.

Our pheromone signalling based load balancing technique,

PS, is inspired by the pheromone stimulation process that

is responsible for queen selection in beehives. By adapting

that process into a distributed and asynchronous resource

management protocol, we have enabled each node to decide

whether it should be responsible for a given service request

using only information available locally. Ideally, such a dis-

tributed decision making process would enable all services

to be available when requested, and balance the service load

across the network to avoid excessive energy consumption by

a few overloaded nodes without significant sacrifice on service

availability. In adaptive algorithms like PS, performance met-

rics highly depend on the set of selected parameters and as a

result finding a good set of parameters is of key importance.

However, tuning the PS’s parameters is not easy and requires

time due to its complicated biological background.

Network Size

Network Density

Topology

Application Workload

Network 

Performance

Parameter 

Selection
PS LOAD 

BALANCING

Fig. 1: Automating the parameter selection for the PS.

The main goal of this research is to automate the PS

parameter selection process. For this purpose, we have created

a parameter selection tool to find a set of parameters which

will provide the highest possible network performance (max-

imum service availability and minimum energy consumption)

for the PS load balancing technique for any given network

configuration regardless of the network size, density, topology,

or the application workload. In our initial work, we have

illustrated the effects of the important parameters on PS using

a variety of different sets of parameters. Intuitive parameter

selection (based on trial and error) achieved a high level

of service availability whilst minimising energy consumption

for a fixed network schema (mesh network). However, the

set of parameters used for the PS algorithm is biologically

inspired, and trying to understand the effects of each parameter

requires time and effort. Moreover, as the network configu-

ration changes the set of parameters that is feed to the PS

algorithm also has to change. This makes the PS algorithm



less likely to be used by end-users even though it is an

effective technique. As a result, we have decided to implement

a systematic technique to tune the parameters for the given

network schema. As Fig. 1 illustrates, the parameter selection

tool accepts as inputs the network configurations and outputs

the set of parameters that is used by the PS algorithm for the

given network schema. The parameter selection tool applies a

well-known search metaheuristic Simulated Annealing (SA) to

remove the complexity of the PS technique for the end-user.

The second goal of this research is to accelerate the

search metaheuristic towards finding fit solutions quicker by

improving the simulation infrastructure. We use SA with a

fitness function that considers service availability as well as

network lifetime, in order to measure of the “goodness” of the

parameters. Finding the best way to investigate the fitness of

the search and demonstrate the benefits of improved simulation

infrastructure is a key part of this research. For this purpose,

the fitness evaluation of the proposed global search uses a fast,

system-level simulation model, to exploit the beneficial points

of the proposed simulation infrastructure like time efficiency

and accuracy. Advantages of our improved fast simulator

versus the initial simulator proposed in [2], [3] (and vice versa)

are discussed and analysed for the SA search metaheuristic.

II. RELATED WORK

A. Metaheuristic Search

Metaheuristic search techniques are a set of generic algo-

rithms that are concerned with searching for (near) optimal

solutions to a problem within a large multi-modal search space

and have been used to find solutions to many NP-complete

problems [4]. Clarke et al [4] divide search metaheuristic

techniques into two: local search techniques and evolutionary

search using genetic algorithms. Hill-climbing, simulated an-

nealing and tabu search is categorised as local search, whereas

evolutionary search using genetic algorithms (GA) is cate-

gorised separately as population based search metaheuristics.

All the moves applied in SA are based on relative desirability/

undesirability of particular local information. They are easy to

program and time efficient due to their low level of complexity.

Unlike GAs, SA is applied to single individuals rather than

a population. Since the solution domain is sampled through

all the population in GA, evaluation of the fitness function

might be costly and take a long time without converging to the

global optima. Although exhaustive search algorithms cover

the whole search space, they are impractical, computationally

unaffordable and time inefficient for multi criteria metrics

with several parameters. Therefore, we propose search-based

parameter tuning based upon SA, which is known as practical,

time and cost efficient.

SA is a stochastic optimization procedure for obtaining ap-

proximate solutions to combinational optimisation problems.

SA is an iterative process where the system starts rearranging

itself until an improved configuration (the particular solution)

is found. Once the solution is found, then that particular

solution becomes the new starting point for the further re-

arrangements. This will continue until the system achieves

the stopping criteria, where no further improvements can be

found. This simple idea is often used to find feasible solutions

which can converge to an optimal solution. Kirkpatrick et al

[5] took the annealing concept and applied it to optimisation

problems, and since then SA has been successfully used in

many diverse fields of computer science; artificial neural

networks [6], pattern detection [7], NoCs [8], mobile ad hoc

networks [9], model-driven engineering [10] and software

verification [11], as well as WSNs. Some of the applied work

on WSNs in this section is as follows. Kannan et al [12],

[13] present a simulated annealing metaheuristic for WSNs

that aims to localise network nodes accurately for centralised

architectures. Their technique reduces large scale localisation

errors (flip ambiguity) significantly by applying static accurate

position determination by SA. The fitness function measures

the sum of squared distance over all pairs. Slijepcevic and

Potkonjak [1] present a search heuristic which aims to find

the optimal number of network nodes. Deterministic node

placement in clusters is also implemented to maintain high

network coverage with minimum energy consumption. The

fitness function subtracts an approximate measurement of the

minimally constraining heuristic from the most constrained

heuristic in terms of number of nodes. PSO [14] is an

evolutionary programming technique inspired from swarm op-

timization to minimise energy consumption while maximising

the total data gathering of the group of sensors and equalising

the number of the nodes on each cluster is the objective of

the required technique. Wang at el [15] exploits a novel fault-

tolerant distributed multiclass classification fusion approach

using error correcting codes (DCFECC) that provides excellent

fault-tolerance in WSNs. Park and Srivastava [16] present a

centralised task decomposition, transformation and assignment

solution using simulated annealing to maximize the lifetime

of the network and/or minimize the latency. Their work also

includes a distributed task migration algorithm at run-time

which occurs based on the results of the SA search. The fitness

function measures total energy consumption (which is the sum

of communication and computation consumption for all tasks)

weight of latency, weight of maximum energy consumption

and penalty. Montemanni et al [17] combines mixed integer

programming with a simulated annealing heuristic to achieve

minimum power consumption for broadcasts. The Euclidean

distance between nodes, channel loss exponent, and power

required to transmit from source to destination are calculated

and used as a parameter to measure the sum of the transmission

powers of all the nodes.

B. Load Balancing

The concept of load balancing in WSNs refers to distribut-

ing work load over the network components. This concept has

been applied at both the network level, and the application

level, and it has significant impact on low power consumption.

At the network level, work load refers to packet transfer

and communication, whereas at the application level it refers

to execution and processing the data (e.g. monitoring the

environment, sensing the temperature). Both network and
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Fig. 2: Three important stages of PS algorithm: Differentiation, Propagation and Decay Cycles. *Green Indicates Queen Node

application level load balancing target efficient utilisation of

resources to extend the network lifetime. Research that has

focused on network level load balancing considers successful

packet delivery ratio, error rate, latency, link failures and

bandwidth usage. In [18] a reliability-based distributed routing

algorithm is implemented to achieve low-power consumption.

This dynamic approach keeps the network responsive to link

dynamics by sending broadcast beacon packets periodically

and updating route information. Trumler et al [19] present

AMUN – self-organising middleware that distributes the work

load of service-oriented applications. Their proposed technique

is inspired by the human hormone system and provides near

optimal resource usage for large-scale systems. The distributed

algorithm uses organisational information about hormones to

piggy-back on top of the messages that are exchanged between

nodes. In the Beehive protocol [20] packets search for efficient

routes through an IP network in a process modelled after

the foraging behaviour of bees. Research that has focused on

application level load balancing distributes the work load by

deciding which node should execute the requested application

requirement among network entities. A static technique pre-

sented by Zeng et al [21] aims to improve network response

time and limit energy usage. However, this approach results

in overloading the network, as the mapping cannot adapt

effectively to network conditions. Miorandi et al [22] present

a genetic approach, involving genome mutation and crossover.

DNRS [23] limits energy consumption while improving reli-

able event detection. BTMS [24] uses zygote differentiation to

extend the network lifetime whilst speeding up task mapping

and scheduling. Homogeneous nodes begin in a default state

and within time nodes differentiate themselves dynamically to

perform distinct tasks according to their location.

In our initial work, PS, we presented a dynamic load

balancing technique that is applied on the application level

at runtime. PS is inspired by the pheromone signalling mech-

anism found in bees and provides distributed WSN control

that depends on local information only. PS is unique; unlike

most of the MAC layer approaches [25], [26], [20], PS is

applied at the application level. Briefly, PS is applied in three

steps: a differentiation cycle, a propagation cycle and a decay

cycle as Fig. 2 shows. The differentiation cycle occurs on

a periodic basis at every TQN time unit on each node of

the network. Each node decides to volunteer to be the node

responsible for the task/event execution process; these are

called queen nodes (QN). QN selection is based on each

node’s pheromone level, hi, and nodes who have a lower

hi than a pre-defined threshold, thresholdQN , become QNs

who then run the execution process. The second step of the

algorithm is the propagation cycle and occurs on demand just

after the differentiation cycle. When nodes become QNs, they

start propagating some level of pheromone to the environment

which indicates the resource usage in that part of the sensor

field. A high pheromone level indicates high resource usage

in that certain part of the network accordingly. The third step

of the PS is called the decay cycle. This cycle occurs on a

periodic basis on every node at every TDECAY time unit and it

indicates the elapsed time in the environment. As pheromones

disappear (decay) over time, the load balancing algorithm

reflects that process by decreasing each node’s pheromone

level. In Fig. 2 nodes are represented with circles, and the

numbers in the circles represents the pheromone level of

each node. QN’s coloured into green, whereas pheromone

propagation is illustrated by arrows. Darker arrows indicates

high levels of pheromone propagation, whereas thinner arrows

represent low level. For a more detailed explanation, see [2],

[3].

III. PROBLEM STATEMENT

This paper considers two main challenges. The first objec-

tive of this research is to automatically tune the parameters

of the PS algorithm for a given network configuration in

order to maximise service availability and minimising energy

consumption. The second challenge is to accelerate the eval-

uation of the search technique towards finding optimal pa-

rameter configurations quickly by speeding up the simulation

infrastructure. We now define the fitness function we will

use to evaluate parameter selection throughout the paper. Our

performance metrics have been defined as:

1) service availability: the number of services that are

successfully completed divided by the total number of

requested services within a period of time;



2) total energy consumption: the sum of communication and

computation energy consumption within a period of time.

In this research, a service is defined as the composition of a

number of inter-communicating tasks, and therefore a service

is considered to be successfully detected only if all of its tasks

are executed by the nodes. Accordingly, our fitness function

considers both the service availability and the number of alive

nodes. We target high service availability and aim to minimise

the number of time intervals (weeks) without service (based

on the number of the alive nodes) whilst also minimising the

total energy cost.

IV. SEARCH-BASED PARAMETER TUNING FOR PS

In SA algorithms positive improvements are always ac-

cepted, whereas negative improvements may be accepted prob-

abilistically, depending on the temperature T. According to SA

theory, the worse the move the less likely it is to be accepted.

Similarly, a negative move is less likely to be accepted the

cooler the temperature is. The temperature T starts with a high

value and gradually cools as the algorithm progresses. Certain

design decisions must be taken in order to run the simulated

annealing algorithms: 1) SA configuration values; 2) Initial

solution; 3) Neighbourhood generation; 4) Fitness function.

SA configuration values are temperature-related control pa-

rameters like the initial temperature T0 and the temperature

at any time during SA process Tk. The cooling rate, which

is often selected between 0 and 1, indicates how quickly

the temperature decreases. The frequency at which cooling is

applied also affects the search. In some SA algorithms cooling

is applied once in every neighbourhood generation, whereas

researchers who prefer to explore larger search space applies

the cooling rate more than one neighbourhood generation.

Often in SA algorithms, the parameters for the initial solution

are set to default values, such as minimum values within the

search space. Neighbourhood selection varies depending on

size of the search space based on number of parameters and

user preference. It is more likely that SA will find a good set of

parameters with highly populated neighbourhood set, however

a highly populated neighbourhood set will also increase the

cost of the search. The definition of the fitness function varies

with the application. For our SA search algorithm, our design

decisions are as follows. We set the initial temperature T0

to 100, and define the stopping criteria as Tk < 1. The

cooling rate is set to 0.9 and is applied once in every twenty

neighbourhood generations in order to explore the search space

wider. Each solution is a set of assignments to the four key

parameters of the PS technique (as explained in the II-B)

together with temperature which is represented as a tuple

S = {TDECAY , TQN , thresholdQN , QNINITIAL, Tk}. The

parameters of each solution Si ∈ S are tuned within the given

range in Table I with the provided step values.

The parameters of the initial solution are set to minimum

default values presented in Table I. Depending on the scenarios

described in Section V, 8-16 neighbours are generated in

every neighbourhood generation. Once the fitness evaluation

of the entire neighbourhood is complete, candidate solutions

TABLE I: Parameters setting for the SA

Parameters Range Step Value

TDECAY (seconds) 1000-15000 1000-4000
TQN (seconds) 2000-60000 1000-4000
thresholdQN 3-40 1-3
QNinitial 2-50 1-3

are ranked based on their fitness. Once again, depending on the

scenario, one of the candidate solutions is then accepted and

becomes the new starting point for the further rearrangements.

To reduce the complexity of the fitness function evaluation,

normalisation is applied to the performance metrics. We de-

fined our fitness function as the combination of total service

availability and the minimum number of intervals without

service detections. For a better understanding, we give an

example to visualise our performance metrics first. Simulation

results of one solution are shown in Fig. 3. Simulation time

is set to 15 weeks and we evaluate the percentage of detected

events and percentage of alive nodes weekly for each solution.

Illustrated in Fig. 3, the definition of the fitness function

is the combination of total service availability (the sum of

percentage of detected events), which is 917 and the number of

intervals without service detections, 3. The best solution is the

one who has the highest total service availability and lowest

number of intervals without service detections. Demonstrated

by the given example in Fig. 3, our proposed algorithm

targets maximum service availability and minimum energy

consumption by defining a simple, but clever, fitness function.
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Fig. 3: % events detected and % alive nodes.

The performance of metaheuristic search algorithms is often

highly dependent on the amount of the search space anal-

ysed by the algorithm. In SA algorithms, SA configuration

values (mainly temperature-related parameters, the size of the

generated neighbourhood set, and the metaheuristic-related

parameters, such as selection range and step size) determine

how much of the search space will be covered by the search

metaheuristic. Covering a large amount of the search space

increases the possibility of finding a good and accurate set of

parameters, however it will also increase the evaluation time

and cost of the search. By reducing the evaluation time of the

search metaheuristic, computational cost will also be decreased

since time and cost proportionally affect each other. In order

to decrease the evaluation time and computational cost of our

search metaheuristic, we developed the SuperFast simulator,

which is explained in the next section.



V. EVALUATION ENVIRONMENT

We have developed a fast, abstract simulator which allows

us to cover quite a large search space within a short time.

By reducing the evaluation time, we also avoid unnecessary

computational cost, which is mentioned earlier. Our SuperFast

simulator has been developed in Java. Accuracy and time eval-

uation tests of SuperFast simulator show that it is comparable

with our initial system-level simulator, Fast [2], [3].

For our initial simulator, Fast, our design objective was a

time and performance efficient simulator that has high level

of accuracy. Detailed discussion on performance evaluation

techniques and the reason behind on our choice of working

on system-level simulator is explained in our previous work as

well as the architecture of the simulator. However, we would

like explain our initial design briefly to show the differences

between Fast and SuperFast.

Fast is an event-driven simulator that uses the JavaSim

library [27] to synchronise the events of the multi-threaded

simulation engine. It has been developed in Java to use the

advantage of the encapsulation of object-oriented program-

ming. The multi-threaded nature of the simulator allow us to

see multi-hop relations between nodes, task scheduling queues

and energy consumption in terms of idle, processing and

communication of the nodes. Contention on wireless channels

was not considered during development due to the level of

complexity it would add.

We started working on SA based parametric analysis using

Fast. However, due to the complexity of the search process,

required memory space for the hardware components and

most importantly the time factor, we decided to create a more

abstract simulator than Fast which will allow us to work faster.

Removing the complexity of concurrent programming, and

lowering the accuracy in certain limits reduced the compu-

tational time and the cost of the work, without sacrificing

significant accuracy. In Table II features of simulators are

analysed from component considerations and search engine
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Fig. 4: Simulator comparison of execution duration, % service availability and # active nodes.



TABLE II: Comparison of Simulator

Features Fast SuperFast

multi-hop X X
scheduling queues X X
contention on wireless channel X X
energy consumption while idle X X

energy consumption while processing X X

energy consumption while remapping tasks X X

C
o

n
si

d
er

at
io

n

energy consumption for communication with sink X X

multi-threaded X X

S
E JavaSim library X X

points of the simulators. Disabling multi-threaded nature of

the Fast simulator and implementing sequential programming

instead of concurrent make SuperFast simulator time efficient.

Since most of the energy consumption kept and taken under

consideration in SuperFast, level of accuracy is preserved.

In Fig. 4, a detailed comparison between the Fast and

SuperFast simulators in terms of time and accuracy is shown

on 7x7 in Fig. 4 (a), (c), (d) and 28x28 in Fig. 4 (d), (e),

(f). The PS algorithm behaves the same in terms of service

availability and the number of the alive nodes in both small

and large network for both Fast and SuperFast simulators. The

differences occur due to the level of accuracy, where Fast

is more realistic and accurate. Fig. 4 (a) and (b) illustrates

the execution duration of both simulators, where SuperFast

outperforms.

VI. EXPERIMENTAL RESULTS

A. Verifying the Effectiveness of Parameter Selection Tool on

a Known Schema

This section presents the initial set of experimental results.

The goal of the first set of experiments is to demonstrate

the behaviour of the SA algorithm towards selecting param-

eters that achieve high service availability and low energy

consumption, and analyse how good our intuitive parameter

search is based on small (7x7) and large (28x28) mesh network

topologies. Three different scenarios have been prepared for

this purpose.

1) WS: Represents the behaviour of the SA when the search

uses a fixed small step size for the parameter values and

the selection of the first encountered fitter neighbour;

2) BF: Represents the behaviour of the SA when a search

changes step size dynamically (between large and small)

depending on the improvement on fitness and selects

randomly among fit neighbours;

3) LS: Represents the behaviour of the SA when a search

changes step size dynamically (between large and small)

depending on the improvement on fitness, ranks the fit

neighbours and selects the fittest neighbour;

Initially the WS scenario is implemented and we found out that

there is not only one optimal and fittest solution for the PS

algorithm. As a result, we have decided to explore the larger

search space within the shortest time as much as possible. Fig.

5 (a) on 7x7 Mesh Network, (b) on 28x28 Mesh Network

show improvements on cumulative total service availability

 

      (a) 

 

      (b) 

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

1200

Time

T
o

ta
l 
S

e
rv

ic
e
 A

v
a
il
a
b

il
it

y

7x7 Mesh Network

 

 

WS

BF

LS

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

1200

Time
T

o
ta

l 
S

e
rv

ic
e
 A

v
a
il
a
b

il
it

y

28x28 Mesh Network

 

 

WS

BF

LS

Fig. 5: Improvements on total service availability.

over time for WS, BF and LS. In the 7x7 Mesh Network initial

implementation, WS achieves high total service availability in

very low temperatures and the algorithm does not converge fast

due to small step sizes and neighbour selection. Whereas, LS

and BF search algorithms converge much faster as these sce-

narios allow larger step sizes when there is no improvement.

In both networks, the LS scenario performs the best in terms

of achieving higher service availability in a shorter time, since

the algorithm ranks neighbours and picks the fittest neighbour.

Although the WS scenario converges faster in a large network

in comparison to a small network, all three scenarios behaves

similarly on both networks in terms of achieving higher service

availability and time consumption.

In Fig. 6 shows three sample solutions for (a), (c) on 7x7

mesh network, and (b), (d) on 28x28 mesh network. For

both networks, S1 and S4 represent the intuitive parameters,

where S2, S3, S5, S6 are encountered by LS scenario on SA

algorithm. Although the encountered parameter sets do not

outperform S1, the experiments show that 1) SA algorithm

works; 2) our intuitive parameter selection is near-optimal.

Knowing the biological background and how the PS al-

gorithm works, we suspect that not all the parameters have

the same effect on the results. In order to understand the

importance of each parameter, we have decided to apply

Principle Component Analysis (PCA). The main purpose of

PCA is to maximise the variance of a linear combination of

the variables in order to scale and rank them. PCA is an

effective tool that performs dimensionality reduction in which
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Fig. 6: Visualisation of sample solutions on mesh networks.

the original data is projected to the lower dimension spanned

by leading eigenvectors of the covariance matrix of data [28].

We used the data that we gather from SA, and together with

the results of randomly selected parameters to ensure that

the results of PCA are not only based on the guided search

metaheuristics but also contains some samples to cover the

entire search space. Table III illustrates the impact of the four

parameters of PS and highlights that only TDECAY and TQN

play a role in determining the outcome of PS. The other two

parameters depend on TDECAY and TQN .

TABLE III: PCA on PS.

Parameters PCA results

TDECAY 4.1285
TQN 0.2564
thresholdQN 0.0000
QNinitial 0.0000

B. Applying Parameter Selection Tool Onto a New Schema

This section presents the second set of experimental results.

The goal of the this set of experiments is to show the

effectiveness of the parameter selection onto a new schema.

For our second set of experiments, we inspect the PS

algorithm on a sparse network with 70 nodes. For this purpose,

we have implemented an Eclipse-based (www.eclipse.org)

graphical editor to allow end-users to easily design the network

topology. Fig.7 illustrates the experimental results on the new

network configurations and compares the intuitive parameter

set, S7, with SA suggestions, S8 and S9. Although S7 performs

well with a known topology (as shown in the previous section),

it performs badly with the new network configuration as Fig.7

illustrates. On the other side, both S8 and S9 deliver some

service availability until the 11th week. In Fig.7(b), the number

of alive nodes for S8 outperforms, where the S9 does not

improve the energy consumption as much, although both of

their weekly service availability is almost the same. This shows

that the S8 parameter set balances network load better than S9

parameter set. However, finding how and why is not easy since

sparse networks are not uniform like mesh network topologies,

and so we leave this as future work.

VII. CONCLUSION

This paper had two major goals: 1) automating the param-

eter tuning for the PS load balancing algorithm to address the

trade-off between service availability and energy consumption;

2) accelerating the evaluation method towards finding fit

solutions quicker by evolving the simulation infrastructure. We

implemented a less accurate but very fast system level simu-

lator, SuperFast, and analysed its accuracy and execution time

as compared to our previous simulator. The advantages and

disadvantages of these two simulators have been highlighted

with the experimental results.

The need for systematic parameter selection on our load

balancing technique to solve the trade-off between service

availability and energy consumption in WSNs leads us to

inspect search metaheuristics. We presented a search-based

technique that uses SA to automate parameter tuning for our

PS algorithm. In the first set of experiments, we have analysed

the effectiveness of SA by creating three different scenarios on



(a)

(b) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Time (Week)

%
 E

v
e
n

ts
 D

e
te

c
te

d

Sparse Network

 

 

S7:3000-14400-14-6

S8:1500-11000-23-55

S9:7500-11000-32-55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

Time (Week)

#
 A

li
v
e
 N

o
d

e
s

Sparse Network

 

 

S7:3000-14400-14-6

S8:1500-11000-23-55

S9:7500-11000-32-55

Fig. 7: Visualisation of sample solutions on sparse network.

the known network topology. The experimental results verify

that there is more than one near-optimal solution. Based on

the first set of experimental results, PCA has been applied to

inspect the importance of each parameter of the parameter

set. The results show that only two of the parameters are

important for the PS technique. The search technique has

been modified accordingly so that SA converges faster and is

applied onto an untested network topology. The second set of

experimental results compare our intuitive parameter set and

sets of parameters found out by the SA on sparse network.

Tuned parameters by SA outperform compared to our manual

‘intuitive’ set of parameters and consequently increase the

network performance.
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