
Using Mobile Robotic Agents to Increase Service
Availability and Extend Network Lifetime on

WSRNs
Ipek Caliskanelli

Department of Computer Science
University of York

York, UK
Email: ic539@york.ac.uk

Leandro Soares Indrusiak
Department of Computer Science

University of York
York, UK

Email: leandro.indrusiak@york.ac.uk

Abstract—Wireless Sensor and Robot Networks (WSRNs) are
heterogeneous collections of sensor nodes and robotic vehicles
that communicate wirelessly. In the last decade many research
studies have attempted to address the challenging trade-offs of
Wireless Sensor Networks (WSNs) that arise due to their resource
limitations, however, much work is still to be done. A recent trend
is to merge different subclasses of cyber-physical systems together
to achieve the desired performance goals by benefiting from their
heterogeneity. This paper presents a bio-inspired robot guidance
technique that is used to improve network coverage, increase
service availability and minimise energy consumption of WSNs
using robotic agents on vehicles. We explore the performance
consequences of the Pheromone Signalling-based Load Balancing
(PS) Robot Guidance on an abstract level simulator which
provides a system perspective. The effectiveness of the algorithm
is evaluated with different network topologies and investigated
on various scenarios. Simulated experimental results on mesh
and sparse topologies validate that robot guidance based on PS
increases network lifetime.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of sensor nodes
that have limited energy supply, sensor devices, a short-range
radio and on-board processing capabilities. As the hardware
technologies improve the cost of the sensor nodes decreases.
One of the easiest solutions to maintain the required high
performance from WSNs is deploying an excessive number
of sensor nodes but this has the side effect of high compu-
tational redundancy and network overheads. An alternative
solution for managing the limited resources of WSNs more
effectively is to use techniques for low power design with
high quality of service (QoS) and low level of redundancy [1].
This approach has been applied in two ways, often referred
to as classic and distributed resource scheduling techniques.
Classic resource scheduling and load balancing techniques
apply central control mechanisms that are often deployed
statically. These techniques are poor and inefficient in term
of managing network lifetime and service availability due to
their lack of knowledge of the network and the difficulties on
handling the distributed nature, the size and the complexity of
the problem [2]. One way to cope with the energy limitations
and processing capabilities of WSNs is to use a dynamic,

decentralised approach that can handle the distributed nature,
the size and the complexity of the problem without increasing
the network redundancy either at runtime or on-demand. As
a result, recent research has focused on utilising dynamic
and distributed load balancing and scheduling techniques.
Although these distributed techniques improve the network
performance significantly, the biggest bottleneck remains to
be the nodes’ restricted hardware. A growing trend is to
merge sensornet platforms with cooperative robots and to use
a distributed resource scheduling technique for managing the
robot/sensor platform in the most resource effective way [3].
Due to their hardware being less restrictive, robotic agents are
able to manage a heavier workload than sensor nodes, and can
be used to improve the WSN performance.

In our previous work [4], [5], we define PS, a pheromone
signalling-based load balancing technique. PS takes inspiration
from the communicative behaviour of bees to address the
trade-off between service availability and network lifetime. In
this paper, we propose extending PS by introducing additional
network elements in the form of robotic vehicles. Robots are
able to move to areas of the network that are overloaded or
where sensors nodes are dying, in order to offer themselves as
processing elements. However, making decisions about where
to position themselves in the network to best increase the
service availability and network lifetime is non-trivial.

The main goal of this research is to effectively guide the
robots to increase the network coverage, which will directly
increase the service availability and extend the network perfor-
mance. Effective network coverage in this research is defined
as achieving the highest service availability by moving less.
To achieve the desired effective network coverage, we have
extended our PS technique to guide robots towards the areas
of the sensor field where the sensor nodes have run out of
battery and are unable to provide service.

II. BACKGROUND AND RELATED WORK

In our initial work, PS [4], [5], we present a dynamic
load balancing technique that is applied at run time at the
application layer. PS is inspired from the pheromone signalling
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Fig. 1. Three important stages of PS algorithm: Differentiation, Propagation and Decay Cycles. *Green Indicates Queen Node

mechanism found in bees and provides distributed WSN
control that uses local information only. PS is unique; unlike
many load balancing approaches are applied at link or network
layer [6], [7], [8] and balance only communication load, PS is
an application-layer protocol and manages both computation
and communication load. Briefly, PS is applied in three steps:
a differentiation cycle, a propagation cycle and a decay cycle
as shown in Fig. 1. The differentiation cycle takes place on
each node of the network on a periodic basis at every TQN

time units. Each node decides whether or not to volunteer to
be the node responsible for the task/event execution process:
these are called queen nodes (QN). QN selection is based
on each node’s pheromone level: nodes who have a lower
pheromone level than a pre-defined threshold become QNs.
The second step of the algorithm is the propagation cycle
and occurs on demand just after the differentiation cycle.
When nodes become QNs, they start propagating some level of
pheromone to the environment (nearby nodes) which indicates
the resource usage in that part of the sensor field. A high
pheromone level indicates high resource usage in that part of
the network accordingly. The third step of the load balancing
technique is called the decay cycle. This cycle occurs on a
periodic basis on every node at every TDECAY time units
and it indicates the elapsed time in the environment. Natural
pheromones disappear (decay) over time, and PS reflects this
process by decreasing each node’s pheromone level. In Fig.
1 nodes are represented with circles, and the numbers in the
circles represents the pheromone level of each node. QN’s are
shaded green, and pheromone propagation is depicted using
arrows. Darker arrows indicate a higher level of pheromone,
whereas thinner arrows represent a lower level of pheromone.
For a more detailed explanation of PS, see [4], [5].

To address our goal, this paper combines load balancing,
task mapping, and network coverage issues on cyber-physical
systems, applied in particular on sensornets and robots. Al-
though load balancing, task mapping, and network coverage
are different concepts, we merge these concepts in this paper
and show an abstract level representation to provide a system
perspective of WSRNs. We now present some significant
research related to these three concepts.

Load balancing is often used on WSNs at different levels

(MAC and network) to distribute network loads evenly. HEED
[9], LEACH [6], and PEGASIS [10] are some of the well
known examples of load balancing at the MAC level. On
the other side, Heartbeat [7] and Gossip [11] protocols are
good examples of network level load balancing. There are also
existing bio-inpired load balancing protocols that are inspired
by bees like Beehive [8], Beesensor [12] or by insect colonies
like MONSOON [13].

One of the ways of applying load balancing is to use task
mapping techniques in either dynamic or static manner. BTMS
[14] and DNRS [15] are two of the significant techniques
that have biological inspiration from zygote differentiation and
artificial immune systems. Both BTMS and DNRS are applied
dynamically (at run time) to optimise the network lifetime.

Network connectivity and coverage are widely researched
topics that focus on how well the sensor field is monitored
and tracked by sensors [16]. Approaches can be categorised
into three classes [17]: area coverage, point coverage, and
barrier coverage. Area coverage deals with the effective cov-
erage the entire sensor field [18], [19], whereas solutions
to point coverages deal with coverage issues between the
set of selected points. Finally, solutions related to barrier
coverage deal with minimising the probability of undetected
penetration through the barrier [20]. Most of the existing
research on network connectivity and coverage is developed at
the lower levels of OSI stack and they deal with the lower level
complexities of networks. Gage [21], however, defines system-
level functionality of network coverage as the measure of
the quality of system (QoS). Inspecting the network coverage
from a system-level perspective without dealing with the low-
level complexity of the network will bring the advantage of
integrating heterogeneous network components in a complex
system. Our research, therefore, focuses on the improving
network coverage and connectivity of WSRNs from a system-
level perspective using robotic agents on vehicles.

III. PROBLEM STATEMENT

The design objective of this research is to apply PS to guide
robots effectively towards the areas of the sensor field where
sensor nodes are not able to provide service. By developing
the robot guidance based on PS, we increase the network
coverage which also will increase the service availability



whilst extending the network lifetime. We now define the
performance metrics that we use throughout the paper to
evaluate the effects of the robotic guidance.

1) Service availability: the number of services that are
successfully completed divided by the total number of
requested services within a period of time;

2) Total energy consumption: the sum of the communi-
cation and computation energy consumption within a
period of time;

3) Total distance taken by robots: the total distance that a
robot has travelled during the simulation.

In this paper, a service is defined as the composition of a
number of inter-communicating tasks, and therefore a service
is considered to be successfully detected only if all of its tasks
are executed by at least one node. The minimum total distance
travelled by the robots, combined with the highest service
availability, indicates efficient guiding. We target, therefore,
maximising service availability whilst minimising the total
energy dissipation together with the shortest total distance
taken by robots.

IV. ROBOT GUIDANCE

This section explains the integration of robot guidance into
the PS technique. In the PS technique, the level of pheromone
indicates the resource usage in a particular area of the network.
Areas in the sensor field that have lower level of pheromone
at a given time demonstrate less resource usage as opposed
to other parts of the network. Less resource usage may due
to: (1) no events occurring in the neighbourhood; (2) events
occur in the neighbourhood that are not in the detection range
of particular node; or (3) nodes are already out of energy
in that part of the sensor field. In our previous work, we
apply our PS load balancing solution to cases (1) and (2), and
show that by distributing the network load evenly we balance
service availability and energy consumption. In this paper, we
propose a robot guidance algorithm based on PS to solve case
(3) by guiding robots into the areas where the sensor nodes
are already out of energy. Incorporating additional robotic
agents on vehicles and guiding the agents based on PS not
only balances the network load (1),(2) but also improves the
network coverage (3).

The three existing cycles of PS are explained in Section II as
the differentiation, propagation and decay cycles. In addition
to these three cycles that PS applies, we have extended PS
with the robot behaviour to solve the given problem above
(3). We now describe the robot behaviour algorithm and define
how it occurs. The standard differentiation, propagation and
decay cycles apply only on the sensor nodes, whereas the robot
behaviour only occurs on robotic agents.

While the sensor nodes are deciding whether to provide a
service or not to reduce the computational redundancy, it is
essential to underline that the robotic agents are willing to
provide service at all times to increase the network coverage.
As with sensor nodes, robotic agents can receive pheromone
from QNs if they are in communication range. Robotic agents
act as QNs – they execute all tasks assigned to them. However,

robotic agents do not propagate pheromone to other nodes in
their communication range, so as to stop the robots interfering
with the standard pheromone signalling mechanism. Listing 1
presents the robot behaviour in pseudocode. A robotic agent
moves under two conditions: 1) if a robotic agent receives
pheromone from a QN; 2) if the agent arrives at its destination
without receiving any pheromone.

Listing 1. Pseudocode of the PS-based robot guidance algorithm.
1 i f ( pheromone r e c e i v e d )
2 PS−gu id ed moving d e c i s i o n
3 e l s e i f ( a r r i v e d a t d e s t i n a t i o n w i t h o u t

r e c e i v i n g pheromone )
4 randomly move
5 e l s e
6 b r o a d c a s t communica t ion l i n k r e q u e s t
7 e s t a b l i s h l o c a l communica t ion l i n k s

If a robotic agent receives pheromone it makes a moving de-
cision and selects a target destination in the opposite direction
of the received pheromone based on PS. The moving decision
of the robotic agent is based on vector addition and its pseudo
code appears in Listing 2. Given the mathematical formulation
in the pseudocode and assuming all the network elements
(sensor nodes and robotics agents) know their location as
x and y coordinates, we calculate the angle of the received
pheromone with the use of the sender’s x and y coordinates.
To do this, we resolve the horizontal and vertical components
based on the amount of received pheromone level, hi, and the
coordinates of the sensor node. In order to find the magnitude,
we sum up all the horizontal and vertical components. In order
to determine the direction of the magnitude, we take arctangent
of the magnitude and resolve x and y coordinates. This process
happens on-demand as the robotic agents receive pheromone
from QNs.

Listing 2. Robot Moving Decision
1 i f (hi > 0)
2 f o r a l l t h e r e c e i v e d pheromones ( p ) o f t h e

node
3 diffX = pSenderX − currentCoordinateX
4 diffY = pSenderY − currentCoordinateY
5 θ = ArcTangentQuadrant(diffY , diffX)
6 componentX = p.hd ∗ cos θ
7 componentY = p.hd ∗ sin θ
8 SumX+ = componentX
9 SumY + = componentY

10 magnitude =
√
SumX

2 + SumY
2

11 θdestination = ArcTangentQuadrant(SumY , SumX)
12 a p p l y 180 d e g r e e s s h i f t t o θdestination

13 c l e a r a l l r e c e i v e d pheromones

If a robotic agent does not receive any pheromone by
the time it arrives to its destination then the robotic agents
picks a new destination at random and moves towards the
new destination to increase the service availability by helping
the sensor nodes. If a robotic agent does not receive any
pheromone and has not yet arrived at its destination that
means it is currently moving. In this case, the robotic agent
continues to move towards its calculated destination whilst
periodically broadcasting communication requests and updates
its communication links nearby nodes.



V. EVALUATION ENVIRONMENT AND EXPERIMENTAL
RESULTS

To evaluate PS, we have designed a three-tier system-
level simulation model that represents the application-layer
(consisting of tasks), platform layer (consisting of process-
ing elements) and the mapper (that maps the tasks from
the application-layer to the platform-layer). Our system-level
simulator, Fast, is written in Java and it is an abstract simulator
– trading accuracy for efficiency, scalability and flexibility. For
further details about Fast, please see [4], [5]. In this research,
we only extend platform model of our simulator (Fast), which
consists of sensors, communication links, and robots.

This set of experimental work aims to evaluate the proposed
PS-based robot guidance algorithm against three other scenar-
ios:

1) Idle represents the absence of load: all nodes of the
system do not dissipate any energy on computation
or communication with the neighbours. It shows the
maximum lifetime of the WSN (sensor nodes only)
when they are not processing.

2) Optimal represents an artificial scenario for WSNs (sen-
sor nodes only) to illustrate the highest service availabil-
ity where each service is executed by only one service
provider to ensure that no redundant processing takes
place and minimum number of network resources is
used.
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Fig. 2. Experimental results: effects of PS Robot Guidance algorithm on 7x7
Mesh Network topologies showing (a) % Service Availability, (b) # Alive
nodes.

3) PS with Random Moving Robotic Agents represents a
WSRN where robotic agents move randomly in the sen-
sor field without using PS to guide their movement. The
decision to move is controlled by a given probability.

The performance of PS depends on a set of parameters that
control the algorithm – specifying, among other things, the
frequencies at which each cycle occurs. In [22] we present an
approach to tune the parameters of PS for a given scenario.
We use this technique to the parameters for this experiment.
To ensure statistical significance, we have repeated each ex-
periment 30 times. We compare each technique on a 7x7 mesh
network and a sparse network with 70 nodes.

In Fig. 2 the percentage of the detected events and the
number of alive nodes are shown for the 7x7 mesh network
topology for Idle, PS, Optimal, PS-Guided Move and PS-
Random Move scenarios. Idle, PS and Optimal scenarios are
only applied on the 49 sensor nodes, whereas PS-Guided
Move and PS-Random Move are applied both sensors and
robots in the environment (49 sensors and three robots; 52
pieces of hardware device). PS-Random Move takes actions
based on the given probabilities. As shown in Fig. 2 (a) and
(b), the percentages of service availability and alive nodes
are lowest in the PS scenario on WSNs (no robotic agents
involved), and the highest is Optimal scenario. This means,
using additional robotic agents on the WSNs is beneficial:
robots do not interfere with the sensors, and improve network
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Fig. 3. Experimental results: effects of PS Robot Guidance algorithm on 70
Nodes Sparse Network topology showing (a) % Service Availability, (b) #
Alive nodes.



performance.
The PS-Guided Move scenario performs better, in terms

of service availability, than the PS-Random Move scenario
between week 4 and week 9 as this is the time that nodes
begin to run out of energy. Starting from the week 10 there
are no alive network nodes in the sensor field in any of the
PS, PS-Random Move and PS-Guided Move scenarios, and as
can be expected as there is no alive node, we do not observe
any advantage of using PS-Guided Move.

Similarly, in Fig. 3, Idle, PS, Optimal, PS-Guided Move
and PS-Random Move scenarios are illustrated on a sparse
network with 70 nodes in a 30m x 30m grid as a test case [23].
The transmission range of network elements (both sensors and
robots) are selected as 6m to establish a connected network. In
order to specify the minimum transmission range that ensure
connectivity, we use the topology control on sparse networks
by Santi [24]. In Fig. 3 PS-Guided Move also outperforms PS-
Random Move between week 4-9 and the difference between
the two scenarios are higher than for the mesh network. This
is due to the fact that the pheromone propagation is more
effective in large scale networks and thus is why we claim
that PS brings more advantages for large scale networks.
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Fig. 4. Experimental results: effects of PS Robot Guidance algorithm on 7x7
Mesh Network topology showing various probabilities on move (a) % Service
Availability, (b) # Alive nodes.

In Fig. 4 and Fig. 5, the effects of probabilities on deciding
whether to move is illustrated for both the PS-Guided Move
and PS-Random Move scenarios on mesh and sparse net-
works. ‘PSGM’ represents PS-Guided Move, whereas ‘PSRM’
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Fig. 5. Experimental results: effects of PS Robot Guidance algorithm on 70
Nodes Sparse Network topology showing various probabilities on move (a)
% Service Availability, (b) # Alive nodes.

represents PS-Random Move scenarios. Based on the given
probabilities, each robot decides to move or not when the
moving decision occurs. As we mention in Section IV, a
robotic agent moves under two conditions: (1) if it receives
some pheromone from a QN; or (2) if the agent arrives to its
destination without receiving any pheromone. In PS-Guided
Move, robots move based on PS Guidance when (1) occurs,
and randomly move when (2) takes place. The probabilistic
moves only occur when robots do not receive pheromone,
when they are moving randomly.

Given the probabilities on both scenarios and efficiency of
the various probabilities in terms of service availability and
number of alive nodes shown in Fig. 4 and Fig. 5, we can
conclude that fixed robots (probability 0 = no move) brings
very small benefit. On the other hand, when robots constantly
move they achieve the highest level of service availability and
lowest level of sensor energy consumption. It is an interesting
point to notice that probabilities 0.25, 0.5 and 0.75 do not
have much difference on service availability and sensor energy
consumption, however, the total distance taken by robots are
directly affected by the given probabilities. This then begs
a question: is it better to sacrifice a little from the service
availability and sensor energy usage but conserve the robots’
energy by moving less? The answer of this question is based
on the application domain and depends on how critical it is. By
implementing PS Guidance we successfully direct robots into



the areas of the sensor field where nodes are out of energy
or much network activities occur. We will try to solve the
trade-off between service availability and the total distance
taken by a robot in the future as it is not the scope of this
paper. However, we have done some basic analysis on the
total distance travelled by a robot in Fig.6 to get an idea of
the technique on the total distance taken.
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Fig. 6. Experimental results: effects of PS Robot Guidance algorithm on a
network topology showing total distance taken by a robotic agent.

Fig. 6 illustrates the effects of the moving decision proba-
bility of PS-Guided Move and PS-Random Move on the total
distance travelled by a robotic agent during the simulation.
Due to the large number of experiments performed, each
having 3 robots, we limit the results to the total distance taken
by a single robot on a network. The numbers in this figure
are not important as they change with the network topology.
However, the behaviour of the scenarios and ratio of the results
are similar to each other in all cases.

VI. CONCLUSION

In this paper, we have described an effective robot guidance
technique that uses the PS load balancing algorithm to improve
the network coverage in an attempt to address the trade-
off between service availability and network lifetime. As the
stationary sensor nodes are limited in processing capacity,
we introduce mobile robotic agents in addition to the fixed
sensornet topology. We propose to improve network coverage
by guiding the robotic agents towards the areas of the sensor
field where the sensor nodes are out of battery and are
unable to provide service. Thus, this not only improves the
network coverage but also increases the service availability
and increases the network lifetime. Experimental results on
mesh and sparse network topologies for various move-related
probabilities demonstrate that our proposed PS Robot Guid-
ance technique increases the service availability and extends
the network lifetime as a result of improved network coverage,
although the total distance travelled by the robots is large. In
the future, we would like to consider the resource limitations
of the robots, examining the tradeoff between the total distance
taken by a robot and the total service availability of the
network.
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