
Integrating Hybrid Garbage Collection with Dual Priority Scheduling

Yang Chang and Andy Wellings
Real-time Systems Research Group
Department of Computer Science

University of York, York YO10 5DD, UK
{yang, andy}@cs.york.ac.uk

Abstract

In this paper, we propose an approach to integrate a hy-
brid garbage collection algorithm (a combination of ref-
erence counting and mark-and-sweep techniques) into the
current response time analysis framework for real-time sys-
tems. Instead of collecting garbage incrementally, we put
most GC work into a periodic real-time thread, namely the
GC thread, which is scheduled according to the dual prior-
ity scheduling method. More importantly, we can perform
schedulability analysis (response time analysis) for all the
real-time threads including the GC thread.

1 Introduction

As an automatic memory management technique,
garbage collection is crucial for modern programming lan-
guages (e.g. Java). Although there have been improvements
in real-time garbage collection techniques in recent years,
they are still considered inappropriate for many types of
systems, particularly hard real-time areas. The goal of this
work is to address some of the outstanding problem areas.

Instead of performing pure tracing or reference counting,
we propose a hybrid approach which combines both refer-
ence counting and mark-and-sweep. The reasons why we
choose such a hybrid algorithm are:

First, in most tracing garbage collection algorithms, the
collectors can only reproduce free memory either at the end
or at the beginning of a GC cycle. That is, the amount of
memory that is available to the mutator threads is mono-
tonically decreasing (i.e. no replenishment) within one GC
cycle. Therefore, the total amount of allocation in that cy-
cle must be bounded. Based on such bound, the deadline
of a GC cycle can be calculated. However, as we will dis-
cuss soon, this deadline can be much shorter than that of
a hybrid algorithm. Consequently, the GC thread could be
invoked much more frequently if a pure tracing algorithm is
adopted.

Another problem of tracing collection is that all the live
objects have to be processed at least once in each GC cycle.
In our opinion, this is a waste of system resources if not
many garbage objects are generated, particularly when the
GC thread has a very short deadline and period.

On the other hand, reference counting algorithms are ca-
pable of reclaiming individual garbage object soon after it
emerges. Therefore, the amount of memory available to the
mutator threads is no longer monotonically decreasing. The
algorithm has virtually no limitation on the amount of al-
location. Now, the issue turns to be how to synchronize
reclamations and allocations, that is, how to guarantee that
enough memory can always be reclaimed before the muta-
tor threads require allocation.

Unfortunately, reference counting algorithms cannot re-
claim cyclic garbage per se. However, by combining
reference counting with mark-and-sweep collector, cyclic
garbage can be found by a single tracing collection in each
GC cycle while all the acyclic garbage objects can be re-
claimed in the GC cycles where they are generated. Al-
though there is more work to do in a GC cycle in our ap-
proach compared to the tracing algorithms, our GC cycles
often have much longer lengths. This is because the period
and the deadline (they equal each other in our system) of
our GC thread are mainly determined by the speed of cyclic
garbage cumulation rather than the speed of allocation. This
will be justified in section 5.

By combining the two approaches, we can also elimi-
nate the root scanning phase and therefore the synchroniza-
tion points [5] since reference counting can provide enough
information to the mark-and-sweep collector. This is very
important for real-time systems because root scanning can
prevent the mutator threads from executing and even for in-
cremental root scanning, the context switch time could be
unacceptable due to the limitation on the number of syn-
chronization points. For further information about how to
combine the two distinct approaches, please see the full ver-
sion of this paper [1].

When it comes to scheduling, we propose a segregated



GC thread which is actually a periodic real-time thread. By
doing so, we can integrate garbage collection into the cur-
rent response time analysis framework to see whether the
whole system (including GC) is schedulable prior to the ex-
ecution. Because garbage collection is not a user function of
the system, we hope to schedule it as infrequently as possi-
ble and also as late as possible. For this purpose, we decide
to use dual priority scheduling method [2] to schedule the
GC thread.

This paper is organized as follows: Section 2 briefly in-
troduces the related work and describes our contributions.
Section 3 presents our hybrid garbage collection algorithm.
Section 4 describes how to schedule the GC thread accord-
ing to the dual priority scheduling method. Section 5 ana-
lyzes our system for GC thread’s parameters such as prior-
ity, deadline, Fpre, WCET (worst case execution time) and
worst case response time. Finally, we present our conclu-
sion and future work.

2 Related Work

Instead of using a segregated thread to collect garbage,
Kim [3] introduced aperiodic server techniques to garbage
collection. In his approach, a sporadic server with the high-
est priority is introduced to execute a copying garbage col-
lector. To provide temporal and spacial guarantees offline,
the worst case length of a GC cycle is calculated. How
much memory, in the worst case, we need for any GC cycle
can then be decided.

Kim’s approach is based on copying collection technique
which has high algorithm complexity in both temporal and
spacial aspects due to the nature of copying. Moreover, the
whole system will fail when the garbage collection work
misses its deadline since there won’t be any free memory
for garbage collector and the mutator threads. Fundamen-
tally, this is because both garbage collector and mutator
threads are memory consumer. By contrast, only the mu-
tator threads can consume free memory in our approach so
even if our garbage collector misses its deadline, the whole
system can still function correctly except that some muta-
tor threads may suffer from further blocking (perhaps miss
deadline) because of the lack of free memory. Hence, the
system gracefully degrades.

3 Basic Algorithm

In our approach, the GC thread does mainly two things:
performing mark-and-sweep and processing the to-be-free-
list which contains all acyclic garbage and cyclic garbage
that has been recognized. Whenever the to-be-free-list is
not empty, the GC thread will traverse it and reclaim the
garbage objects. On the other hand, mark-and-sweep can

only be performed when the GC thread has nothing to do.
Notice that the execution of mark-and-sweep can also be
“preempted” by the processing of the to-be-free-list. Such
a scenario is illustrated in figure1.

Figure 1. how mark-and-sweep is preempted

When the mark-and-sweep work is completed, the cur-
rent release of the GC thread ends. (For further information,
please see [1])

4 Scheduling

As discussed previously, we require that the GC thread
should be scheduled according to dual priority scheduling
algorithm. Applying this technique to the GC thread has
the consequence that the GC thread always gives way to the
mutator threads as long as it can still meet its deadline (i.e.
it can reclaim enough memory for the mutator threads). We
define the promotion time as the release time plus the differ-
ence between the period and the worst case response time
of the GC thread. Before the promotion time, the GC thread
is executed at the lowest priority of the whole system. Oth-
erwise, it is executed at a priority given by the system de-
signer (We will introduce how to calculate priority for the
GC thread in section 5). If however the GC thread is ever
activated before its promotion time has elapsed, then the
promotion time should be increased by the length of that
activation period. That is, the length of time when the GC
thread is waiting at the lowest priority is fixed for any re-
lease. Currently, if a release of the GC thread follows its
worst case path, that release must be completed at exactly
the deadline and the GC thread is released again immedi-
ately.

So far, there are still two problems to be resolved. First,
since the GC thread can have a real response time which is
smaller than the worst case one, it can be completed before
the deadline and also the period. Therefore, there could be a
time interval during which no garbage collection work can
be performed. We simply cannot preserve enough mem-
ory for such time intervals because we cannot predict the
lengths of such time intervals. Our solution is to require
that the GC thread should be released again immediately on
its completion. That is, in our approach, the period of the



GC thread is changeable (see figure 2). In the full version
of this paper [1], we have proved that this cannot ruin the
schedulability of the real-time threads with lower priorities
than the GC thread.

Figure 2. The period of the GC thread is
changeable

The second problem is how to guarantee that the real-
time threads with higher priorities than the GC thread (low-
est/promoted) can never be blocked by the GC thread be-
cause of the lack of free memory. Notice that meeting the
deadline of the GC thread doesn’t necessarily mean that
the mutator’s memory requirements can always be satis-
fied because the mutator threads can sometimes consume all
the free memory before the GC thread can reclaim enough
garbage objects although it may reclaim enough or even
more in the near future. In our approach, we require that
before the promotion time, as long as the amount of free
memory is lower than a certain value called Fpre (We will
introduce how to calculate this value in section 5), the pri-
ority of the GC thread should be promoted. Otherwise, it
should be executed at the lowest priority until the promo-
tion time. By doing this, we always preserve enough free
memory for the real-time threads with higher priorities than
the GC thread (promoted).

5 Static Analysis

In this section, we calculate the parameters for the GC
thread. Since our GC thread is a periodic real-time thread
(albeit with varying period), we can divide the whole time
line into several blocks each of which corresponds to a GC
cycle, that is, a release of the GC thread. Some symbols can
then be defined in table 1.

Due to the limitation on space, we discuss our analysis
process without proof in this paper. However, you can find
all those proofs in [1].

The formula which can be used to calculate GC thread’s
deadline D is given below:

∑
j∈P

(⌈
D

Tj

⌉
· cggj

)
≤ H − Lmax − Fpre

3
+ CGmin (1)

With this formula, we can justify what we claimed be-
fore, i.e. our GC work’s deadline depends on the speed of
cyclic garbage cumulation rather than the speed of alloca-
tion.

Also, we present how to calculate Fpre:

Rpre =
∑

j∈hp(GC)

[⌈
Rpre

Tj

⌉
(Cj + RR · aj)

]
(2)

Fpre =
∑

j∈hp(GC)

(⌈
Rpre

Tj

⌉
· aj

)
(3)

Notice that to calculate Rpre and Fpre, we need to
know the GC thread’s priority in advance since we need
to know who belongs to hp(GC). However, if we adopt
DMPO (deadline monotonic priority ordering) mechanism,
we should have already known the deadline of the GC
thread so there’s obviously a recursion. In order to resolve
this recursion, we need to treat equation 2, 3 and 1 as a
group.

At the very beginning, assume that the GC thread has the
lowest priority among all the real-time threads. Then, we
can get the corresponding Rpre, Fpre, D and consequently
the priority corresponding to the D. If the GC priority is
the same as we assumed, that is the result. Otherwise, we
should use the new GC priority to recalculate Rpre, Fpre,
D and the new priority until the old version and the new
version of the GC thread’s priority equal each other. Un-
fortunately, this process sometimes cannot converge so we
have to manually choose a priority for the GC thread which
may violate the DMPO.

So far, we have already been able to calculate the
WCET and the worst case response time of the GC thread:
WCETGC and Rtotal respectively.

WCETGC = RR·CGmax+RR·
∑
j∈P

(⌈
D

Tj

⌉
· rgj

)
+TR·Lmax (4)

Rtotal =
∑

j∈hp(GC)

(⌈
Rtotal

Tj

⌉
· Cj

)
+ WCETGC (5)

As what happens in the normal response time analysis,
we can now compare the GC thread’s worst case response
time Rtotal with its deadline D. If Rtotal ≤ D, the GC
thread is schedulable. Moreover, we can also use the param-
eters of the GC thread (e.g. the period, D and WCETGC)to
calculate the response time of the real-time threads with
lower priorities than the GC thread. If their response time
values are smaller than their deadlines respectively, they are
also schedulable. Otherwise, the designer has to redesign
the system to reduce either the memory usage or the WCET
of some mutator thread.



Symbols Definitions

P the set of mutator threads in the whole system
Lmax the upper bound of live memory consumption of the whole system

H heap size
hp(GC) the set of all the threads with higher priorities than the GC thread (promoted)

CGi/CGmin/CGmax the amount of cyclic garbage found by the ith release of the GC thread and its minimum and maximum
value

Fpre the amount of free memory the system should preserve for the threads with higher priorities than the GC
thread

Rpre the worst case response time of the GC thread to reclaim as much memory as the mutator threads allocate
during that time

Tj the period of thread j
Cj the worst case execution time of the thread j
aj the worst case memory allocation executed in one release of the thread j

cggj the worst case amount of cyclic garbage generated in one release of thread j
rgj the worst case amount of acyclic garbage generated in a release of the thread j
RR the time needed to reclaim one unit of memory (by reference counting)
TR the time needed to trace one unit of memory (by mark-and-sweep collector)

Table 1. symbol definition

6 Conclusion and Future Work

In this paper, we described our collection algorithm,
scheduling property and some analyses for the GC thread’s
parameters. We believe that the benefit of our approach in-
cludes:

• It is commonly accepted that reference counting
garbage collection has many advantages [6, 4]. Our
approach inherits all of them.

• We make reference counting and mark-and-sweep co-
operate with each other. On the one hand, the occa-
sionally invoked mark-and-sweep can help reference
counting find cyclic garbage. On the other hand, ref-
erence counting can eliminate the root scanning phase
for the mark-and-sweep collection and make it much
less frequent so that a great amount of unnecessary sys-
tem resource consumption is avoided.

• Our approach is flexible enough so that the GC thread
can adapt to different applications automatically: the
more the cyclic garbage is generated, the shorter the
deadline could be. For a system which is mainly com-
posed of acyclic data structures, the deadline of the
GC thread could be very long so that our approach
can be very efficient. However, for a system which
is mainly composed of cyclic data structures, our ap-
proach gracefully degrades. Fortunately, the above
analysis provides the designers a way to quantitatively
determine whether our approach is suitable for their
application or not.

• We can provide real-time guarantees for all the real-
time threads as in non-garbage-collected real-time sys-
tems.

However, there are still some problems to solve. For
example, object finalization is not concerned in this paper;
correct and tight estimations of cggj and rgj are not avail-
able so far. In the future, we will try to resolve these prob-
lems and modify our approach where necessary.

Currently, we are trying to implement our algorithm for
further evaluation. The implementation will be built upon
the basis of GCJ compiler (the GNU compiler for the Java
language) and JRate library, which is a RTSJ-compliant
real-time extension to the GCJ compiler.

References

[1] Y. Chang. Integrating hybrid garbage collection with dual
priority scheduling. Technical Report YCS 388, University
of York, 2005.

[2] R. Davis and A. Wellings. Dual priority scheduling. In
Proceedings of the 16th IEEE Real-Time Systems Symposia,
pages 100–109. Real-Time Research Group, University of
York, 1995.

[3] T. Kim, N. Chang, and H. Shin. Joint scheduling of garbage
collector and hard real-time tasks for embedded applications.
Journal of Systems and Software, 58(3):247–260, September
2001.

[4] T. Ritzau. Hard real-time reference counting without external
fragmentation. In Java Optimization Strategies for Embed-
ded Systems Workshop at ETAPS 2001. Linköping University,
April 2001.

[5] F. Siebert. Hard Realtime Garbage Collection in Modern
Ojbect Oriented Programming Languages. PhD thesis, Uni-
versity of Karlsruhe, May 2002.

[6] P. R. Wilson. Uniprocessor garbage collection techniques. In
Proceedings of International Workshop on Memory Manage-
ment. University of Texas, September 1992.


