
Integrating Hybrid Garbage Collection with Dual Priority

Scheduling

Yang Chang

Real-time Systems Research Group

Department of Computer Science

University of York, York YO10 5DD, UK

yang@cs.york.ac.uk

Abstract

In this report, we propose an approach to inte-
grate a hybrid garbage collection algorithm into
the current response time analysis framework for
real-time systems. In our approach, the collection
algorithm is a combination of reference counting
and mark-and-sweep techniques so we can keep
the advantages of reference counting while elimi-
nating cyclic garbage by invoking mark-and-sweep
occasionally. Instead of collecting garbage incre-
mentally, we put most GC work into a periodic
real-time thread, namely the GC thread, which is
scheduled according to the dual priority schedul-
ing method. By performing static analysis, we can
get the GC thread’s parameters such as period,
deadline, priority and worst case execution time.
With these parameters, we can perform schedula-
bility analysis (response time analysis) for all the
real-time threads including the GC thread.

1 Introduction

As an automatic memory management technique,
garbage collection is crucial for modern program-
ming languages (e.g. Java). It has been widely and
successfully used in many general purpose comput-
ing systems. Although there have been improve-
ments in real-time garbage collection techniques in
recent years, they are still considered inappropri-
ate for many types of systems, particularly hard
real-time areas [3]. The goal of this work is to

address some of the outstanding problem areas.

Garbage collection techniques can be classi-
fied into 3 main categories: Reference Counting,
Tracing and Contaminated Garbage Collection [6].
Among these algorithms, reference counting algo-
rithms are normally more efficient and predictable.
However, they cannot find any cyclic garbage auto-
matically because of the internal references within
the cyclic data structures. Consequently, attempts
have been made to modify them to perform some
local tracing on potential cyclic structures so that
they can recognize cyclic garbage [12, 2]. Unfortu-
nately, doing this can ruin the efficiency and make
the algorithms much less predictable. Here, we
propose to use a hybrid approach which is a combi-
nation of reference counting and mark-and-sweep
(global tracing) (see section 3).

In a garbage collected system, the main factors
that influence the real-time performance include
not only the GC algorithm but also the way to dis-
patch the system resources (especially CPU time)
between the garbage collector and the mutator.

Scheduling models for garbage collection can be
classified into 3 categories: Stop-the-World, Incre-
mental and Concurrent. Potential real-time GC
scheduling properties can only come from the lat-
ter two categories. Furthermore, the incremental
scheduling methods come into two flavors: work-
based and time-based. In work-based incremental
GC, a small amount of GC work will be attached to
each allocation so that we can guarantee that the
mutator cannot be preempted by the garbage col-

1

lector for extended periods, and the GC work can
be finished before the heap is exhausted provided
that the ratio of the amount of GC work to the
amount of the allocated memory is high enough.
As noticed by Bacon [1] and Johnstone [11], in
the work-based incremental systems, the mutator
utilization1 can become very low when the muta-
tor performs allocations intensively. That is, the
mutator cannot progress during that time so that
some other threads may miss their deadlines. In
order to cope with this problem, Bacon introduces
a time-based incremental GC algorithm according
to which the time line is divided into fixed-size
pieces (according to a parameter given by the pro-
grammer). Each of these pieces is further divided
into 2 parts. One is given to the collector and the
other one is given to the mutator. How much time
should be given to the mutator is determined by
the minimum mutator utilization. Based on such a
mechanism, consistent mutator utilization can be
achieved. Notice that if a thread is released during
a GC dedicated period, it has to be delayed until
the next mutator dedicated period.

Intuitively, irrespective of work-based or time-
based, none of the incremental GC algorithms can
take advantage of idle time and a thread has to
be delayed if it is released when GC is progressing
even if it has the highest priority. Another vital
issue is that for those real-time threads with very
tight deadlines, adding the execution time of the
GC increments to their WCETs (worst case execu-
tion time) is unacceptable. Making the GC work
totally concurrent is one way to address the above
problems. In the concurrent GC algorithms, GC
work is performed by a segregated thread (with
normally the lowest priority) called the GC thread,
which is also managed by the scheduler. Unfortu-
nately, although applying this mechanism to real-
time systems doesn’t influence the execution of the
real-time threads at all, the system cannot guar-
antee enough progress for the collector so a high
priority real-time thread may be blocked by the
low priority collector because of the lack of free
memory. Since such unpredictable blocking is pro-

1As defined by Bacon [1], it is the fraction of the CPU

time devoted to the mutator.

hibited in real-time systems, the primitive concur-
rent GC model cannot be directly introduced to
real-time systems.

In order to resolve this problem, we propose
to modify the GC thread to a periodic real-time
thread by giving it parameters such as period,
deadline, priority, WCET and so on. As a periodic
real-time thread, the GC thread can now be sched-
uled in the similar way as other real-time threads
and more importantly, we can integrate garbage
collection into the current response time analysis
framework to see whether the whole system (in-
cluding GC) is schedulable prior to the execution.
If, according to the analysis, it is schedulable and
the parameters we give the GC thread are correct,
we’ll be able to guarantee not only that the mu-
tator is schedulable but also that the GC thread
can get enough system resources to execute. Be-
cause garbage collection is not a user function of
the system, we hope to schedule it as infrequently
as possible and also as late as possible. For this
purpose, we decide to use dual priority scheduling
method [8] to schedule the GC thread.

This paper is organized as follows: Section 2 in-
troduces the related work and describes our con-
tributions. Section 3 presents our hybrid garbage
collection algorithm. Section 4 describes how to
schedule the GC thread according to the dual pri-
ority scheduling method. Section 5 analyzes our
system for GC thread’s parameters such as prior-
ity, deadline, Fpre, WCET and worst case response
time. Section 6 proves that our algorithm doesn’t
compromise the schedulability of the threads with
lower priorities than the GC thread in spite of the
period variation of the GC thread. Finally, we
present our conclusion and future work.

2 Related Work

Traditionally, GC algorithms and scheduling
methods are discussed separately and most work
focuses on the GC algorithms rather than the
scheduling properties. This situation has changed
in recent years. Researchers [16, 10, 13] have tried
to work out GC scheduling methods that are suit-
able for real-time systems.

2

Henriksson [10] proposed a copying GC algo-
rithm which is based on Brook’s previous work
[4]. In his approach, the GC work introduced
by hard real-time processes is performed by a
so called High-Priority Garbage Collection Pro-
cess which has a priority lower than all the hard
real-time processes but higher than all the soft
real-time and non-real-time processes. On the
other hand, the GC work introduced by soft real-
time and non-real-time processes is scheduled in a
work-based incremental manner. Since the High-
Priority Garbage Collection Process is tightly cou-
pled to hard real-time processes and doesn’t have
an explicit period and deadline, it is not an or-
dinary concurrent real-time process so it cannot
be integrated directly into the current schedula-
bility analysis framework. For those processes
with lower priorities than the GC process, their
response time must be calculated in a specific way
rather than the standard one. By contrast with
Henriksson’s work, nearly all the GC work in our
system is performed by a totally concurrent real-
time thread with an explicit period and deadline.
Therefore, our approach is more flexible and eas-
ier to be integrated into the current schedulability
analysis framework.

Instead of using a segregated thread to collect
garbage, Kim [13, 14] introduced aperiodic server
techniques to garbage collection. In his earlier pa-
per, a sporadic server with the highest priority is
introduced to execute a copying garbage collector.
On the other hand, in the latest version, another
sporadic server with lower priority is used as well
in order to make it easier to perform copying op-
erations of large memory blocks. To provide tem-
poral and spacial guarantees offline, the sporadic
server’s safe capacity must be calculated and used
together with garbage collector’s worst case ex-
ecution time to calculate the garbage collector’s
worst case response time based on which worst
case length of a GC cycle can finally be obtained.
According to the estimations of mutator threads’
allocation rate and the maximum amount of live
memory, how much memory, in the worst case, we
need for any GC cycle can also be decided.

The aforementioned two approaches are all

based on copying collection technique which has
high algorithm complexity in both temporal and
spacial aspects due to the nature of copying. More-
over, the whole system will fail when the garbage
collection work misses its deadline since there
won’t be any free memory for garbage collector
and the mutator threads. Fundamentally, none
of them can proceed in that scenario because both
garbage collector and mutator threads are memory
consumer. By contrast, only the mutator threads
can consume free memory in our approach so even
if our garbage collector misses its deadline, the
whole system can still function correctly except
that some mutator threads may suffer from fur-
ther blocking (perhaps miss deadline) because of
the lack of free memory. Hence, the system grace-
fully degrades.

Robertz [16] introduced a way to modify a prim-
itive concurrent GC thread to a real-time thread
by giving it an explicit deadline and period. We
follow a similar way to make our GC thread real-
time. However, our approach is based on a hy-
brid garbage collection algorithm in which it is the
more efficient reference counting algorithm that
tends to be more likely to be executed rather than
the tracing algorithm.

Although others have explored such a combi-
nation [9] and even implemented it in some sys-
tems (e.g. Inferno Operating System), so far as
we know, none of them tried to introduce it into
the real-time domain.

3 Basic Algorithm

The reason why we choose a combination of refer-
ence counting and mark-and-sweep rather than a
pure tracing algorithm is given below:

First, in most tracing garbage collection al-
gorithms, the collectors can only reproduce free
memory either at the end or at the beginning of a
GC cycle. That is, the amount of memory that is
available to the mutator threads is monotonically
decreasing (i.e. no replenishment) within one GC
cycle. Therefore, the total amount of allocation
in that cycle must be bounded. Based on such a
bound, the deadline of a GC cycle can be calcu-

3

lated. However, as we will discuss soon, this dead-
line can be much shorter than that of a hybrid
algorithm. Consequently, the GC thread could be
invoked much more frequently if a pure tracing al-
gorithm is adopted.

Another problem of tracing collection is that all
the live objects have to be processed at least once
in each GC cycle. In our opinion, this is a waste of
system resources if not many garbage objects are
generated, particularly when the GC thread has a
very short deadline and period.

On the other hand, reference counting al-
gorithms are capable of reclaiming individual
garbage object soon after it emerges. Therefore,
the amount of memory available to the muta-
tor threads is no longer monotonically decreasing.
The algorithm has virtually no limitation on the
amount of allocation. Now, the issue turns to be
how to synchronize reclamations and allocations,
that is, how to guarantee that enough memory can
always be reclaimed before the mutator threads re-
quire allocation.

As discussed previously, reference counting algo-
rithms cannot reclaim cyclic garbage per se. The
basic principle of our method is to combine ref-
erence counting and tracing algorithms together
so that all the acyclic garbage objects can be re-
claimed in the GC cycles where they are gener-
ated and the cyclic garbage can be found by a
single tracing collection in each GC cycle. More
specifically, each GC cycle corresponds to a release
of the GC thread; Such a release both reclaims
acyclic garbage generated during its response time
and performs a single tracing collection. Although
there is more work to do in a GC cycle in our ap-
proach compared to the tracing algorithms, our
GC cycles often have much longer lengths (i.e.
the GC thread in our system have a longer pe-
riod). This is because the period and the dead-
line (they equal each other in our system) of our
GC thread are mainly determined by the speed of
cyclic garbage cumulation rather than the speed
of allocation. This will be further discussed in sec-
tion 5.

By combining the two approaches, we can also
eliminate the root scanning phase and therefore

the synchronization points [18] since reference
counting can provide enough information to the
mark-and-sweep collector. This is very important
for real-time systems because root scanning can
prevent the mutator threads from executing and
even for incremental root scanning, the context
switch time could be unacceptable due to the lim-
itation on the number of synchronization points.

Next, we introduce our algorithm in more de-
tails.

First, we assume that heap is divided into fixed
size blocks as introduced by Siebert and Ritzau
[17, 15] so that fragmentation problems can be
eliminated.

In our approach, the reference count for each
object is conceptually divided into two parts: one
is for recording the number of roots that refer-
ence the object directly (“root count” for short);
the other one is for recording the number of all
the other direct references to that object (“refer-
ence count” for short). Also, we maintain 3 dou-
bly linked lists: root-list, tracing-list and white-list.
Any live object in the system must be in and si-
multaneously only in one of the aforementioned
lists. The objects in root-list or tracing-list have
the colour of black or grey. In order to determine
the colour of objects, two additional pointers are
introduced for root-list and tracing-list. As the
name indicates, white-list contains only white ob-
jects. On the other hand, dead objects must be
put into a linked list called to-be-free-list which is
processed by the GC thread. Finally, the allocator
searches free memory to allocate from the begin-
ning of another linked list called free-list which is
composed of fixed size blocks. (see figure1)

Next, we use pseudo code in figure2 as an exam-
ple to illustrate object memory layout. Here, An
object is composed of one or more 32bytes blocks.

Currently, we take advantage of two kinds of
write barriers: write-barrier-for-roots and write-
barrier-for-objects. They are invoked respectively
when mutator threads assign a value to a root or to
a reference field in an object (or array). Which one
to invoke is determined off-line by the compiler so
there’s no need to make such choices in run-time.
The pseudo code of the write barriers is given in

4

Figure 1: data structures

/* a Java class is used as an example */

public class TestObject{

int a1, a2,......, a11;

}

/* In our system, an object of this class *

* contains two blocks. The memory layout *

* of the first block can be represented *

* as: */

struct first_block_of_TestObject{

int reference_count;

void * ref_prev;

void * ref_next;

//for the doubly-linked lists

int a1, a2, a3, a4;

second_block_of_TestObject * next_block;

};

/* and the second block */

struct second_block_of_TestObject{

int a5, a6,.....,a11;

third_block_of_TestObject * next_block;

// this pointer should be NULL

};

Figure 2: an object’s memory layout

void write_barrier_for_objects(void *from, void *to)

{

if(to !=NULL && from ==NULL)

//when we assign NULL to a reference field which

//still references something

{ update(minus one) the object count of the

object referenced by "to"

if(both object and root counts of the object

referenced by "to" are zero)

{

if(the object referenced by "to" is in

"white_list")

unlink it from the white list

else

{ unlink it from its current list

update the corresponding grey_pointer

}

add it to the "to_be_free_list"

}

}

else if(to ==NULL && from !=NULL)

//when we assign a valid reference to a reference

//field whose value is NULL

{ update(add one) the object count of the object

referenced by "from"

if("to" corresponds to a field in a black

object and "from" references a white object)

{

if(the object referenced by "from" is in

"white_list")

unlink it from the "white_list"

add the white object to the end of

"tracing_list"

update the "grey_pointer_for_tracing"

}

else if(which list the object referenced by

"from" should belong hasn’t been

decided)

add it to the end of the "white_list"

}

else if(to !=NULL && from !=NULL)

//when we assign a valid reference to a reference

//field which still references something

{

perform what the function does when to ==NULL

&& from !=NULL

perform what the function does when to !=NULL

&& from ==NULL

}

}

Figure 3: pseudocode for write barrier for objects

figure3 and figure4.

In our approach, the GC thread does mainly two
things: processing the to-be-free-list and perform-

5

void write_barrier_for_roots(void *from, void *to)

{

if(to !=NULL && from ==NULL)

//when we assign NULL to a root which still

//references something

{ update(minus one) the root count of the object

referenced by "to"

if(both root and object counts of the object

referenced by "to" are zero)

{

unlink it from "root_list"

update the "grey_pointer_for_root"

add it to the end of "to_be_free_list"

}

else if(root count of the object referenced by

"to" is zero)

{

unlink it from "root_list"

update the "grey_pointer_for_root"

if(the object referenced by "to" is not black)

{

add it to the end of the "tracing_list"

update "grey_pointer_for_tracing"

}

else

add it to the beginning of "tracing_list"

}

}

else if(to ==NULL && from !=NULL)

//when we assign a valid reference to a root

//whose value is NULL

{ update(add one) the root count of the object

referenced by "from"

if(the root count of the object referenced by

"from" is one)

{

unlink it from its current list

update the corresponding grey_pointer if

necessary

if(it’s black)

add it to the beginning of "root_list"

else

{

add it to the end of "root_list"

update the "grey_pointer_for_root"

}

}

}

else if(to !=NULL && from !=NULL)

//when we assign a valid reference to a root

//which still references something

{

perform what the function does when to ==NULL

&& from !=NULL

perform what the function does when to !=NULL

&& from ==NULL

}

}

Figure 4: pseudocode for write barrier for roots

Figure 5: how mark-and-sweep is preempted

ing mark-and-sweep. Whenever the to-be-free-list
is not empty, the GC thread will traverse it and
reclaim the garbage objects. On the other hand,
mark-and-sweep can only be performed when the
GC thread has nothing to do otherwise. Notice
that the execution of mark-and-sweep can also be
“preempted” by the processing of the to-be-free-
list. Such a scenario is illustrated in figure5.

When the GC thread is processing the to-be-
free-list, it always examines the first object. If that
object has any direct child, the object count of its
direct child must be decreased by 1. If both ob-
ject count and root count is 0, that direct child ob-
ject will be linked to the rear of the to-be-free-list.
Otherwise, nothing is changed except the object
count. Having processed all the direct children,
the GC thread finally moves the first object in the
to-be-free-list to the free-list.

When it comes to mark-and-sweep, the situation
becomes a little bit more complex. The pseudo
code is listed in figure6.

When the mark-and-sweep work is completed,
the current release of the GC thread ends.

4 Scheduling

Assuming that the correct priority, period, dead-
line, WCET of the GC thread have been given, we
can calculate the worst case response time of the
GC thread using standard analysis techniques [5]
and compare the worst case response time with the
deadline to see whether the GC thread is schedu-
lable or not. Since garbage collection is not a user

6

while(grey_pointer_for_root !=NULL

|| grey_pointer_for_tracing !=NULL)

//introduce this while-loop in case mutator threads

//add any grey object to root-list when the second

//inner while-loop is being executed

{

while(grey_pointer_for_root !=NULL)

//traverse root-list until all objects in that

//list are black

{

for(all the direct children of the current

object)

if(the current child is in "white_list")

{

move it to the end of tracing list

update "grey_pointer_for_tracing" if

necessary

}

update "grey_pointer_for_root" to point to the

object after the current one

}

while(grey_pointer_for_tracing !=NULL)

//traverse tracing-list until all objects in that

//list are black

{

for(all the direct children of the current

object)

if(the current child is in "white_list")

{

move it to the end of tracing list

update "grey_pointer_for_tracing" if

necessary

}

update "grey_pointer_for_tracing" to point to

the object after the current one

}

}

Figure 6: pseudocode for mark-and-sweep

function of the system, we hope to schedule it as
infrequently as possible and also as late as possi-
ble so we require that the GC thread should always
give way to the mutator threads as long as it can
still meet its deadline (i.e. it can reclaim enough
memory for the mutator threads).

In order to achieve this, we propose a mech-
anism which takes advantage of the dual prior-
ity technique [8]. In the dual priority algorithm,
a real-time thread can have two priorities and a
promotion time before which the thread is exe-
cuted at its lower priority. When the given pro-
motion time has elapsed, the thread is promoted

to its higher priority. Applying this mechanism to
the GC thread has the consequence that the GC
thread is potentially delayed for a certain time af-
ter its release. We define the promotion time as
the release time plus the difference between the pe-
riod and the worst case response time of the GC
thread. Before the promotion time, the GC thread
is executed at the lowest priority of the whole sys-
tem. Otherwise, it is executed at a priority given
by the system designer (We will introduce how to
calculate priority for the GC thread in section 5).
If however the GC thread is ever activated before
its promotion time has elapsed, then the promo-
tion time should be increased by the length of that
activation period. That is, the length of time when
the GC thread is waiting at the lowest priority is
fixed for any release. Currently, if a release of the
GC thread follows its worst case path, that release
must be completed at exactly the deadline and the
GC thread is released again immediately.

So far, there are still two problems to be re-
solved. First, since the GC thread can have a
real response time which is smaller than the worst
case one, it can be completed before the deadline
and also the period. Therefore, there could be a
time interval during which no garbage collection
work can be performed. We simply cannot pre-
serve enough memory for such time intervals be-
cause we cannot predict the lengths of such time
intervals. Our solution is to require that the GC
thread should be released again immediately on its
completion. That is, in our approach, the period
of the GC thread is changeable (see figure 7). At
first glance, this may ruin the schedulability of the
real-time threads with lower priorities than the GC
thread since the number of the releases of the GC
thread is increased. However, we will prove that
this is not the case in section 6.

The second problem is how to guarantee that
the real-time threads with higher priorities than
the GC thread (lowest/promoted) can never be
blocked by the GC thread because of the lack of
free memory. Compared to the primitive concur-
rent GC mechanism, our approach can now en-
sure that the GC thread can get enough system
resources. However, this doesn’t necessarily mean

7

Figure 7: The period of the GC thread is change-
able

that the mutator’s memory requirements can al-
ways be satisfied because the mutator threads can
sometimes consume all the free memory before the
GC thread can reclaim enough garbage objects al-
though it may reclaim enough or even more in the
near future. In our approach, we require that the
GC thread should always try to preserve enough
free memory for the real-time threads with higher
priorities than the GC thread (promoted) so that
those higher priority threads can execute without
any blocking from the GC thread [10]. To preserve
memory for those threads, we need to change our
algorithm a little bit: Before the promotion time,
as long as the amount of free memory is lower than
a certain value called Fpre (We will introduce how
to calculate this value in section 5), the priority of
the GC thread should be promoted. Otherwise, it
should be executed at the lowest priority until the
promotion time.

5 Static Analysis

In this section, we calculate the parameters for the
GC thread. First, some symbols must be defined:

Assume that a real-time system is composed of a
set of threads, P , whose live memory consumption
has an upper bound, Lmax. In addition, we pro-
vide this real-time system with a heap whose size
is H . We also defined hp(GC) which represents
the set of all the threads with higher priorities
than the GC thread (promoted). As previously
discussed, the GC thread is a periodic real-time
thread (albeit with varying period) so we can di-
vide the whole time line into several blocks each of

which corresponds to a GC cycle, that is, a release
of the GC thread. Some other symbols can then
be defined in table 1.

Now, we give some simple formulas without
proof since they are self-explanatory.

H = Li+1 + Fi+1 + CGi + FCGi (1)

which means the dead but not freed memory
at the beginning of cycle i + 1 includes only all
cyclic garbage found and all floating cyclic garbage
generated in cycle i.

Li+1 = Li + ai − RGi − CGGi (2)

which means the cumulation of live memory in
cycle i is all allocations happened in cycle i minus
the amount of garbage generated in cycle i.

Ai+1 = Ai + ai − RGi − CGi−1 (3)

which means the cumulation of allocated mem-
ory in cycle i is all allocations happened in cycle
i minus the amount of garbage we can reclaim in
cycle i. Furthermore, none of the cyclic garbage
found in cycle i can be reclaimed.

CGi ≥ FCGi−1 (4)

which means all the floating cyclic garbage gen-
erated in cycle i−1 must be recognized as garbage
by the end of cycle i.

Having got the above formulas, we can now try
to calculate the deadline of the GC thread, D. As-
suming, in the worst case, that Li equals Lmax,
since Li+1 must be smaller than or equal to Lmax,
we can get Li+1 −Li ≤ 0. Applying equation 2 to
here gives:

ai − RGi − CGGi ≤ 0 (5)

and therefore,

ai − RGi ≤ CGGi (6)

From equation 3 and 6, we can get:

Ai+1 − Ai ≤ CGGi − CGi−1 ≤ CUMmax (7)

8

Symbols Definitions

Li the amount of live memory just before the ith release of the GC thread

Fi the amount of free memory just before the ith release of the GC thread

Ai the amount of allocated (not freed) memory just before the ith release of the GC thread

CGGi/CGGmax the amount of cyclic garbage generated in cycle i and its maximum value

CGi/CGmin/CGmax the amount of cyclic garbage found by the ith release of the GC thread and its minimum

and maximum value

FCGi the amount of floating cyclic garbage generated in cycle i (it must be found by the (i + 1)th

release of the GC thread)

RGi the amount of acyclic garbage generated in cycle i(it must be reclaimed within cycle i)

ai new memory allocated in cycle i

CUMmax the maximum value of CGGi − CGi−1

Fpre the amount of free memory the system should preserve for the threads with higher priorities

than the GC thread

Rpre the worst case response time of the GC thread to reclaim as much memory as the mutator

threads allocate during that time

CGC the worst case execution time of the GC action during Rpre

D the deadline of the GC thread

WCETGC the worst case execution time of the GC thread

Rtotal the worst case response time of the GC thread

Tj the period of thread j

Cj the worst case execution time of the thread j

aj the worst case memory allocation executed in one release of the thread j

cggj the worst case amount of cyclic garbage generated in one release of thread j

rgj the worst case amount of acyclic garbage generated in a release of the thread j

RR the time needed to reclaim one unit of memory (by reference counting)

TR the time needed to trace one unit of memory (by mark-and-sweep collector)

Table 1: symbol definition

which means that if only the GC thread can
provide as much free memory as CUMmax at the
beginning of any GC cycle, the cumulation of the
allocated memory can always be satisfied. How-
ever, in order to synchronize reclamation and al-
location, we need to preserve Fpre free memory as
well. Therefore, in order to guarantee that the ap-
plication never runs out of memory, we should be
able to provide at least Fpre +CUMmax free mem-
ory at the beginning of any GC cycle. As defined
previously, Fpre +CUMmax can be represented as:

Fmin = Fpre + CUMmax (8)

By changing the form of equation 1, we can get:

Fi+1 = H − Li+1 − CGi − FCGi

In the worst case, this can be modified as:

Fmin = H − Lmax − (CGi + FCGi)max (9)

Applying equation 8 to this equation:

Fpre +CUMmax = H−Lmax− (CGi +FCGi)max

(10)
In the worst case, FCGi equals CGGmax and

CGi equals FCGi−1. That is, none of the cyclic
garbage generated in cycle i can be found within
the same cycle and all the garbage found in cycle
i is floating garbage from cycle (i − 1). Assuming
that GC cycle i − 1 is also in the worst case, we
can get CGi = FCGi−1 = CGGmax, so

(CGi + FCGi)max = 2 · CGGmax (11)

Applying this to equation 10 gives:

Fpre +CUMmax = H −Lmax − 2 ·CGGmax (12)

Now, let’s go back to equation 7. In the worst
case, CGi−1 = 0 so (CGGi − CGi−1)max =
CUMmax = (CGGi)max. Therefore,

9

CUMmax = CGGmax (13)

Applying this to equation 12, we can get:

3 · CUMmax = H − Lmax − Fpre

and therefore,

CUMmax =
H − Lmax − Fpre

3
(14)

As defined previously, CGGi − CGi−1 ≤
CUMmax so we can get:

CGGi − CGi−1 ≤ H − Lmax − Fpre

3
(15)

and therefore,

CGGi ≤ H − Lmax − Fpre

3
+ CGi−1 (16)

Assuming the worst case scenario that all the
mutator threads arrive at the same time, CGGi

can be represented as:

CGGi =
∑
j∈P

(⌈
D

Tj

⌉
· cggj

)
(17)

Applying this to inequality 16, we can get:

∑
j∈P

(⌈
D

Tj

⌉
· cggj

)
≤ H − Lmax − Fpre

3
+ CGi−1

(18)
For simplicity and without loss of safety, we can

modify this inequality into:

∑
j∈P

(⌈
D

Tj

⌉
· cggj

)
≤ H − Lmax − Fpre

3
+ CGmin

(19)
Unfortunately, we cannot resolve this inequality

since we haven’t got the Fpre. In order to obtain
this value, we need to first calculate Rpre:

Rpre =
∑

j∈hp(GC)

(⌈
Rpre

Tj

⌉
· Cj

)
+ CGC (20)

CGC = RR ·
∑

j∈hp(GC)

(⌈
Rpre

Tj

⌉
· aj

)
(21)

therefore,

Rpre =
∑

j∈hp(GC)

[⌈
Rpre

Tj

⌉
(Cj + RR · aj)

]
(22)

Based on the value of Rpre, we can finally decide
Fpre:

Fpre =
∑

j∈hp(GC)

(⌈
Rpre

Tj

⌉
· aj

)
(23)

Notice that to calculate Rpre and Fpre, we need
to know the GC thread’s priority in advance since
we need to know who belongs to hp(GC). How-
ever, if we adopt DMPO (deadline monotonic pri-
ority ordering) mechanism, we should have already
known the deadline of the GC thread so there’s
obviously a recursion. In order to resolve this re-
cursion, we need to treat equation 22, 23 and 19
as a group.

At the very beginning, assume that the GC
thread has the lowest priority among all the real-
time threads. Then, we can get the corresponding
Rpre, Fpre, D and consequently the priority corre-
sponding to the D. If the GC priority is the same
as we assumed, that is the result. Otherwise, we
should use the new GC priority to recalculate Rpre,
Fpre, D and the new priority until the old version
and the new version of the GC thread’s priority
equal each other. A simple example is illustrated
in figure8: the GC thread first has the lowest pri-
ority in the system. Then we calculate its deadline
deadline1 which corresponds to the second high-
est priority according to DMPO. Again, we cal-
culate deadline2 (according to the new priority)
which corresponds to the second lowest priority.
Finally, the deadline3 is calculated and the whole
procedure ends since deadline3 corresponds to the
second lowest priority as well.

Unfortunately, this process sometimes cannot
converge so we have to manually choose a priority
for the GC thread which may violate the DMPO.

So far, we have already been able to calculate
the WCET and the worst case response time of
the GC thread: WCETGC and Rtotal respectively.

WCETGC = RR·CGmax+RR·
∑
j∈P

(⌈
D

Tj

⌉
· rgj

)
+TR·Lmax

(24)

10

Figure 8: The procedure of determining GC
thread’s deadline and priority

Rtotal =
∑

j∈hp(GC)

(⌈
Rtotal

Tj

⌉
· Cj

)
+ WCETGC

(25)
As what happens in the standard response time

analysis, we can now compare the GC thread’s
worst case response time Rtotal with its deadline
D. If Rtotal ≤ D, the GC thread is schedu-
lable. Moreover, we can also use the parame-
ters of the GC thread (e.g. the period, D and
WCETGC)to calculate the response time of the
real-time threads with lower priorities than the GC
thread assuming GC thread is another periodic
real-time user thread. If their response time values
are smaller than their deadlines respectively, they
are also schedulable. Otherwise, the designer has
to redesign the system to reduce either the mem-
ory usage or the WCET of some mutator thread.

6 Dealing with Period Varia-

tion

As we discussed before, the period of each release
of the GC thread could be different. Which GC
period should we use to calculate the response time
of the lower priority threads? Here, we propose

to use the worst case period, TGC , which equals
D and therefore is the same for all the releases.
Next, we will prove the correctness of this analysis
approach.

For convenience, we divide a GC cycle into
two periods: one is called GC busy period dur-
ing which only the GC thread and higher priority
threads can execute; the other one is called GC
idle period during which the GC thread cannot
execute. In the worst case, the GC busy period
of a GC cycle has the length of Rtotal and the
GC ideal period has the length of TGC − Rtotal.
In addition, during the GC idle period, the lower
priority threads will suffer from interference from
those threads with higher priorities than the GC
thread so the actual time can be used by the lower
priority threads in each release of the GC thread
is (we assume that all the real-time threads with
higher priorities than the GC thread are released
simultaneously at the beginning of each GC idle
period):

TGC −Rtotal−
∑

j∈hp(GC)

⌈
TGC − Rtotal

Tj

⌉
·Cj (26)

In the normal cases, the real period T ′
GC ≤ TGC

and the real response time R′
total ≤ Rtotal. How-

ever, as we defined before,

TGC − Rtotal = PromotionT ime

and since we argue that the GC thread cannot
be completed before its promotion time, we can
also get

T ′
GC − R′

total = PromotionT ime = TGC − Rtotal

Notice that the symbol PromotionT ime repre-
sents the length of a time period rather than a
time point.

By using the same approach, the time can be
used by the lower priority threads in one release
of the GC thread in the normal cases can be de-
scribed as:

T ′
GC −R′

total−
∑

j∈hp(GC)

⌈
T ′

GC − R′
total

Tj

⌉
·Cj (27)

11

Therefore, irrespective of the value of T ′
GC , for-

mulas 26 and 27 have the same value.
Assume that there is a k ∈ {1, 2, 3 · · ·} and

k ·
(
TGC − Rtotal −

∑
j∈hp(GC)

⌈
TGC−Rtotal

Tj

⌉
· Cj

)
has the smallest value which is greater than the
sum of the WCET of a specific thread A with
lower priority than the GC thread and the inter-
ferences from other threads which have priorities
lower than the GC thread but higher than the
thread A. Therefore, one release of the thread A
must be able to be completed within k releases of
the GC thread. Since formulas 26 and 27 always
have the same value and the worst case interfer-
ence to the thread A is the same, one release of
the thread A in any normal case can also be fin-
ished within k releases of the GC thread. Since
T ′

GC ≤ TGC , k releases of the GC thread in the
normal cases must be completed before k releases
in the worst case. Therefore, if thread A is schedu-
lable in the worst case, it must also be schedulable
in any normal case. In addition, this also proves
that although the dual priority scheduling scheme
doesn’t improve the worst case response time of
the lower priority threads, it can help us achieve
shorter average response time.

7 Conclusion and Future

Work

In this paper, we described our collection algo-
rithm, scheduling property and some analyses for
the GC thread’s parameters. We believe that the
benefit of our approach includes:

• It is commonly accepted that reference count-
ing garbage collection has many advantages
[19, 15]. Our approach inherits all of them.

• We make reference counting and mark-and-
sweep cooperate with each other. On the
one hand, the occasionally invoked mark-and-
sweep can help reference counting find cyclic
garbage. On the other hand, reference count-
ing can eliminate the root scanning phase for
the mark-and-sweep collection and make it
much less frequent so that a great amount of

unnecessary system resource consumption is
avoided.

• Our approach is flexible enough so that the
GC thread can adapt to different applications
automatically: the more the cyclic garbage
is generated, the shorter the deadline could
be. For a system which is mainly composed
of acyclic data structures, the deadline of the
GC thread could be very long so that our ap-
proach can be very efficient. However, for a
system which is mainly composed of cyclic
data structures, our approach gracefully de-
grades. Fortunately, the above analysis pro-
vides the designers a way to quantitatively de-
termine whether our approach is suitable for
their application or not.

• We can provide real-time guarantees for all
the real-time threads as in non-garbage-
collected real-time systems.

However, there are still some problems to solve.
For example, object finalization is not concerned
in this paper; correct and tight estimations of cggj

and rgj are not available so far. In the future, we
will try to resolve these problems and modify our
approach where necessary.

Currently, we are trying to implement our algo-
rithm for further evaluation. The implementation
will be built upon the basis of GCJ compiler (the
GNU compiler for the Java language) and JRate
library [7], which is a RTSJ-compliant real-time
extension to the GCJ compiler. We choose this
platform because it is relatively easy to obtain and
modify its source code and it is much more conve-
nient to build up our implementation on a plat-
form already with comprehensive real-time fea-
tures. The new compiler and library collectively
generate binary executables for programs written
in Java and compliant with RTSJ (real-time spec-
ification for Java) except that the RTSJ memory
model is substituted by our garbage collection ap-
proach.

12

References

[1] David F. Bacon, Perry Cheng, and V.T. Ra-
jan. A real-time garbage collector with low
overhead and consistent utilization. In Pro-
ceedings of POPL 2003, pages 285–298. IBM
T.J. Watson Research Center, January 2003.

[2] David F. Bacon and V.T. Rajan. Concur-
rent cycle collection in reference counted sys-
tems. In Proceedings of the 2001 European
Conf. on Object-Oriented Programming. IBM
T.J. Watson Research Center, June 2001.

[3] G. Bollella, B. Brosgol, P. Dibble, S. Furr,
J. Gosling, D. Hardin, M. Turnbull, and
R. Belliardi. The Real-Time Specification for
Java (1.0). Addison Wesley, 2001.

[4] Rodney A. Brooks. Trading data space for
reduced time and code space in real-time
garbage collection on stock hardware. In
Proceedings of the 1984 ACM Symposium on
LISP and functional programming, pages 256
– 262. Computer Science Department, Stan-
ford University, 1984.

[5] Alan Burns and Andy Wellings. Real-Time
Systems and Programming Languages. Addi-
son Wesley, third edition, 2001.

[6] Dante J. Cannarozzi, Michael P.Plezbert, and
Ron K. Cytron. Contaminated garbage collec-
tion. In Proceedings of PLDI 2000, pages 264
– 273. Computer Science Department, Wash-
ington University, May 2000.

[7] Angelo Corsaro and Douglas C. Schmidt. The
design and performance of the jrate real-time
java implementation. In Proceedings of the
4th International Symposium on Distributed
Objects and Applications. University of Cali-
fornia, 2002.

[8] Robert Davis and Andy Wellings. Dual pri-
ority scheduling. In Proceedings of the 16th
IEEE Real-Time Systems Symposia, pages
100–109. Real-Time Research Group, Univer-
sity of York, 1995.

[9] L. P. Deutch and D. Bobrow. An effi-
cient incremental automatic garbage collec-
tor. Communications of the ACM. Associ-
ation for Computing Machinery, 19(9):522–
526, September 1976.

[10] Roger Henriksson. Scheduling Garbage Col-
lection in Embedded Systems. PhD thesis,
Lund University, July 1998.

[11] Mark Stuart Johnstone. Non-Compacting
Memory Allocation and Real-Time Garbage
Collection. PhD thesis, The University of
Texas at Austin, December 1997.

[12] Richard Jones and Rafael Lins. Garbage Col-
lection. John Wiley & Sons, 1996.

[13] Taehyoun Kim, Naehyuck Chang, and Heon-
shik Shin. Joint scheduling of garbage collec-
tor and hard real-time tasks for embedded ap-
plications. Journal of Systems and Software,
58(3):247–260, September 2001.

[14] Taehyoun Kim and Heonshik Shin.
Scheduling-aware real-time garbage col-
lection using dual aperiodic servers. In
Proceedings of the IEEE 9th RTCSA, pages
3–20. Seoul National University, February
2003.

[15] Tobias Ritzau. Hard real-time reference
counting without external fragmentation.
In Java Optimization Strategies for Em-
bedded Systems Workshop at ETAPS 2001.
Linköping University, April 2001.

[16] Sven Gesteg̊ard Robertz and Roger Hen-
riksson. Time-triggered garbage collection—
robust and adaptive real-time gc scheduling
for embedded systems. In Proceedings of
LCTES 2003, pages 93–102. Lund University,
2003.

[17] Fridtjof Siebert. Eliminating external frag-
mentation in a non-moving garbage collector
for java. In Compilers, Architectures and Syn-
thesis for Embedded systems(CASES2000),
November 2000.

13

[18] Fridtjof Siebert. Hard Realtime Garbage Col-
lection in Modern Ojbect Oriented Program-
ming Languages. PhD thesis, University of
Karlsruhe, May 2002.

[19] Paul R. Wilson. Uniprocessor garbage col-
lection techniques. In Proceedings of Inter-
national Workshop on Memory Management.
University of Texas, September 1992.

14

