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ABSTRACT
Current real-time garbage collection algorithms are usually
criticised for their high memory requirements. Even when
consuming nearly 50% of cpu time, some garbage collectors
ask for at least twice the memory as really needed. This
paper explores the fundamental reason for this problem and
proposes a new performance indicator for better design of
real-time garbage collection algorithms. Use of this indicator
motivates an algorithm that combines both reference count-
ing and mark-and-sweep techniques. The implementation
of this algorithm for jRate is described and its performance
reviewed. The use of dual priority scheduling of the garbage
collection tasks allows spare capacity in the system to be
reclaimed whilst guaranteeing deadlines.

General Terms
Languages, Algorithms, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.3.3 [Programming

Languages]: Language Constructs and Features—Dynamic

storage management ; D.4.2 [Operating Systems]: Storage
Management—Garbage Collection

Keywords
real-time hybrid garbage collection, garbage collection gran-
ularity, dual-priority scheduling, space overhead

1. INTRODUCTION
The management of resources is a key component of all real-
time systems. Java provides high-level abstract models that
the programmer can use. Unfortunately, for real-time and
embedded systems programming there is a conflict. On the
one hand, the use of high-level abstractions aid in the soft-
ware engineering of the application. On the other hand,
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embedded and real-time systems often have only limited re-
sources (time and space) and these must be carefully man-
aged. Nowhere is this conflict more apparent than in the
area of memory management. Embedded systems usually
have a limited amount of memory available; this is because
of cost, size, power, weight or other constraints imposed by
the overall system requirements.

The presence of an easy-to-use real-time memory model with
low overhead is crucial for Java’s use in embedded real-
time system. The scoped memory model proposed by RTSJ
(Real-Time Specification for Java) [4] has relatively low over-
head but is criticised for its difficulties of use (e.g. by [1]).
An alternative is garbage collectors, most of which now in
use are tracing ones. Since application can run indefinitely,
garbage collectors need to run repeatedly. Each execution
usually includes three phases:

Root Scanning – looks for all the references from outside
the heap to somewhere in the heap.

Marking – marks (or moves) all the reachable objects start-
ing from the references found in the first phase.

Reclaiming – reclaims all the other objects and updates
housekeeping information for survived objects where
necessary (compaction would also be performed in this
phase if fragmentation is to be resolved).

A complete execution of the above phases is named a GC
cycle which can consume extensive computation resources.
Therefore, in a non-real-time system, the user tasks could
be blocked for a long time waiting for the collector to finish
a GC cycle. The current efforts to make garbage collec-
tion real-time is to reduce the huge GC blocking time by
performing garbage collection work incrementally or con-
currently so that the perceived worst-case latency of user
tasks is bounded and relatively low [1, 13, 19, 12]. However,
the low perceived worst-case latency is obtained at the cost
of high space overhead, which is also unfavourable in real-
time embedded systems. The less computation resource is
given to the garbage collector, the more space is needed and
vice versa. Achieving the correct balance of this tradeoff
is difficult and is one of the main criticisms of the garbage
collection approach to real-time memory management[5].

In this paper, we discuss the reasons why tracing real-time
garbage collectors cannot perform sufficiently well in both



temporal and spatial aspects at the same time. We present
a new performance indicator for describing the overall real-
time capability of a garbage collector. The use of this indica-
tor motivates the design of a new real-time garbage collector.
Instead of performing pure tracing or reference counting, we
propose a hybrid approach along with concurrent dual pri-
ority scheduling, which can allow the reclamation of spare
capacity in the whole system [9].

The remainder of this paper is organized as follows. Sec-
tion 2 explores the reason why current tracing real-time
garbage collection techniques have the aforementioned draw-
backs and proposes our new performance indicator. Section
3 briefly introduces the basic idea of our approach. Section 4
reveals more details of our algorithm which is implemented
on GCJ and jRate. Section 5 illustrates the performance of
our collector. Finally, we present our conclusions and future
work.

2. THE NEED FOR A NEW PERFORMANCE
INDICATOR

Reclaiming unused objects (garbage) with any garbage col-
lection algorithm takes at least two steps: identifying and
reclaiming. Using tracing collectors as an example, they
need to go through both root scanning and marking phases
to identify garbage and then recover it in a reclaiming phase.
The granularity of such identifying and reclaiming cycles is
of great importance in a real-time environment. If this gran-
ularity is too large, the algorithm will be unsatisfactory in
either, or both, of the following ways:

1. User tasks will suffer from significant latencies due
to garbage collection activities. These latencies may
cause tasks to miss their deadlines or require the sys-
tem to have a more powerful processor than needed.

2. Significant redundant space will be needed to reduce
or even eliminate latencies. Unfortunately, this may
result in an embedded systems running out of memory
or require more memory than needed.

The end result will be a system that needs more resources
than one which adopts a more application memory-managed
approach.

To make the second argument clear, a simple example is
given as follow: two garbage collectors have the same through-
put but one can produce 32 bytes of free memory as a whole
in every 10 microseconds (smaller granularity) whilst the
other one can only produce 3200 bytes as a whole in the
last 10 microseconds of every millisecond (larger granular-
ity). They perform as bad, or as well, as each other in a
non real-time environment since the only concern there is
throughput. However, the first one outperforms the latter
one in a real-time environment due to its much lower la-
tency. Irrespective of how small a portion of memory a user
task requests, the latter one needs 1 millisecond to perform
its work before the user task can proceed. However, using
incremental techniques, the second collector’s work can be
divided into small pieces, say 10 microseconds, which are
then interleaved with user tasks. This reduces the perceived

worst-case latency of user tasks to the same as that of the
first collector. Unfortunately, nothing comes for free. Since
99 out of 100 increments cannot produce any free mem-
ory, allocation requests before the last increment must be
satisfied by an extra memory buffer. This simple example
explains the importance of garbage collection granularity in
a real-time environment.

As previously discussed, all the tracing garbage collectors
need to identify live objects before reclaiming garbage. In
the worst case situation where live memory reaches its upper
bound, the collector has to scan at least all the live memory.
Therefore, tracing garbage collection is inherently a family
of high granularity garbage collection algorithms. Since the
reclaiming phase of a GC cycle is usually short and bounded,
the example shown above applies to the behaviour of tracing
collectors very well.

Recent research on real-time garbage collection algorithms
such as [1, 13, 17, 12] can only achieve predictability and
low worst-case latency by preserving significant redundant
space although they all struggle to keep it low. We argue
that this is due to the fact that they are all high granularity
tracing algorithms. Irrespective of the scheduling algorithm,
any attempt to give significantly less computation resource
to a tracing collector will raise the memory requirement dra-
matically [2, 13, 17, 12].

To allow for better design of real-time garbage collection
algorithms, we define a new performance indicator which
characterises the granularity of a collector. First, the defi-
nition of a Free Memory Producer is given below:

Definition 1 The Free Memory Producer of a garbage col-
lector is a logical task which works at the highest prior-
ity and executes the algorithm of that garbage collec-
tor without trying to divide its work but stops when-
ever any new free memory, irrespective of its size, is
made available to the allocator.

Moreover, the free memory producer can only be released at
the points where

1. the amount of live memory reaches its upper bound
and there exists garbage with arbitrary size, or

2. the first time an object(s) becomes garbage after live
memory reached its upper bound when there was no
garbage.

We call such a point the Free Memory Producer Release

Point 1. Bear in mind that a free memory producer does
not necessarily need to be a fully functional garbage collec-
tor since it stops whenever any free memory is produced.
Thus, it is required that the whole system should stop when
the free memory producer stops. Because no garbage can
be reclaimed before the free memory producer release point,

1The Free Memory Producer Release Point does not neces-
sarily exist in a real application but can be created inten-
tionally in testing programs.



Garbage Collection Algorithm Latency is a func-
tion of

Conventional Reference Counting garbage set size
Deferred Reference Counting object size

Non-copying Tracing Lmax

Copying Tracing Lmax

Table 1: Free Memory Producer Latencies

we assume the heap is big enough to hold all the garbage
objects and the live ones.

Now, we can define the performance indicator:

Definition 2 The Free Memory Producer Latency of a garb-
-age collector is the worst case execution time of its free
memory producer.

Notice that the free memory producer latency is an indictor
to the overall real-time performance of a garbage collector.
It does not necessarily directly relate to the real latency
experienced by any user task.

Lower free memory producer latency always means that the
corresponding collector has lower granularity and is more
responsive in producing free memory. Therefore, the user
tasks suffer from shorter worst-case latency introduced by
garbage collection or the redundant memory needed is smaller.
Assuming throughputs are the same, the garbage collection
algorithm which has lower free memory producer latency is
more likely to be appropriate for real-time systems.

As can be seen in table 1, the free memory producer latencies
of tracing algorithms are functions of the maximum amount
of live memory while those of reference counting algorithms
are functions of either the total size of the garbage set or
the size of the garbage object being processed.

At first glance, the free memory producer latency of ref-
erence counting, particularly deferred reference counting, is
very promising. However, the arguments “garbage set size”
and “object size” can also be extremely large, even compa-
rable with “Lmax” in extreme situations. Consequently, the
free memory producer latencies of reference counting algo-
rithms could be very long in some systems as well.

In order to keep the redundant memory needed small, we
suggest that the designer of a real-time garbage collector
should try to minimise its free memory producer latency
but not at a cost of very high inherent space overheads or
very poor throughput. In the following section, we present
our approach to achieve this goal.

3. THE HYBRID APPROACH OVERVIEW
One way to improve reference counting algorithms is to
change their garbage collection granularity. Siebert and
Ritzau [18, 14] both noticed that external fragmentation can
be eliminated by dividing objects and arrays into fixed size
blocks. This not only resolves the external fragmentation
problem but also changes the granularity of garbage collec-
tion so that it can reclaim such blocks individually. For a

deferred reference counting algorithm that maintains objects
and arrays as fixed size blocks (hereafter, we call such an al-
gorithm “fine grained reference counting”), its free memory
producer has a complexity of O(1) since the block size in a
given system is fixed. On the other hand, because the block
size is always small, a very low free memory producer latency
can be achieved as well. Consequently, such a fine grained
reference counting algorithm is more likely to be suitable
for real-time systems compared to other reference counting
algorithms. Ritzau’s work [14] is such an algorithm. By
reclaiming the same amount of memory immediately before
each allocation, there is no need to preserve any free memory
buffer. However, reference counting algorithms cannot re-
claim cyclic garbage per se so Ritzau’s pure reference count-
ing algorithm is unable to reclaim all the garbage without
the help from programmers. Furthermore, his algorithm is
a work-based algorithm which is not well integrated with
hard real-time scheduling due to its problematic behaviour
during burst allocations and the fact that it cannot reuse
any form of spare capacity.

Combining reference counting with a mark-and-sweep col-
lector (either global or local) is a common way to address
the problem of cyclic garbage. This has been studied by
[3, 7]. However, real-time issues are not considered in their
work. By combining a fine grained reference counting col-
lector with a global mark-and-sweep collector, predictabil-
ity can be achieved. However, such a hybrid algorithm has
a very special free memory producer. When there exists
reference-counting-recognizable garbage at the free mem-
ory producer’s release point, the free memory producer will
have the same complexity and latency as that of the fine
grained reference counting algorithm, i.e. O(1) complexity
and very low latency. On the other hand, when there is no
such garbage, the free memory producer will have a similar
behaviour as that of a pure tracing algorithm.

The most straightforward way to tackle the second situation
is to introduce extra memory. But, this time, the memory
buffer only holds garbage objects that are in cyclic data
structures rather than all of the allocations due to the con-
tribution of the reference counting collector. In many ap-
plications, acyclic data accounts for a considerable portion
or even majority of total memory usage (44.21% to 100.00%
with the average of 81.52%) [11].

By combining the two approaches, we can also eliminate the
root scanning phase since our reference counting algorithm
can provide enough information to the mark-and-sweep col-
lector.

4. THE HYBRID GARBAGE COLLECTION
ALGORITHM

In this section, we present our hybrid garbage collection al-
gorithm which is implemented by modifying the GCJ com-
piler (the GNU compiler for the Java language, version 3.3.3)
and the jRate library (version 0.3.6)[8] — a RTSJ-compliant
real-time extension to the GCJ compiler.

4.1 Data Structures
Every object in our system is maintained as a linked list of
fixed size blocks which are set to 32 bytes in the current



to_be_free_list (objects in this list can be of any color)

free_list
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Figure 1: Data Structures

implementation. Which size to choose and how bad the
memory access penalty is have been studied by Siebert [18].

All the blocks of an object use their last word to store the
link to the next block. The first block of an object is dif-
ferent from the others since it needs to store housekeeping
information of that object. Its first word keeps the reference
counts. The most significant 27 bits of the second word and
the whole third word are pointers used to maintain (doubly)
linked lists of objects; Finally, the least significant 5 bits of
the second word records status information for the garbage
collector (e.g. the colour of the object and whether the ob-
ject is referenced by any root). Therefore, we have a 3 words
per object and 1 word per block space overhead. However,
by allowing programmer to configure the block size, this
overhead can be reduced [18].

In our approach, the reference count for each object is di-
vided into two parts: one is for recording the number of
roots that reference the object directly (“root count” for
short); the other one is for recording the number of all the
other direct references to that object (“reference count” for
short). Currently, they share a single word in an object.

As illustrated in figure 1, we maintain 3 doubly linked lists:
tracing-list, white-list and white-list-buffer. Any object reach-
able from the root set must be in and simultaneously only
in one of the first two lists. The objects in the “tracing-
list” have the colour of black or grey. In order to determine
the colour of objects, one additional pointer is introduced
for the “tracing-list”. As the name indicates, the “white-
list” contains only white objects and when a tracing GC
cycle is completed all the objects still in the “white-list”
are garbage, which will then be moved to the “white-list-
buffer” waiting to be reclaimed. On the other hand, dead
objects recognized by the reference counting algorithm must
be put into a linked list called the to-be-free-list. Both the
“white-list-buffer” and the “to-be-free-list” are processed by
the reclaiming task (see section 4.3). Finally, the allocator
searches free memory to allocate from the beginning of an-
other linked list called the free-list, which is composed of

fixed size blocks.

4.2 Write Barriers
The most important two write barriers in our algorithm are
the write-barrier-for-roots and the write-barrier-for-objects

from which all the other write barriers are developed. They
are invoked automatically when user tasks assign a value to a
root or to a reference field in an object (or array); which one
to invoke is determined off-line by the compiler. The main
difference between the two write barriers is that root barriers
can recognize and manipulate the situations where an object
is referenced by a root for the first time or disconnected from
all the roots. Assuming a user task is assigning a reference
with value “from” to a root variable with its current value
“to”, the pseudo code of the corresponding write barrier is
given in figure2.

Additionally, two more kinds of write barrier, write-barrier-

prologue and write-barrier-epilogue, are applied to moni-
tor reference parameter passing and function return respec-
tively. They are, in fact, either the first or second outmost
“if” branch of the “write-barrier-for-roots” so the expected
cost should be lower.

By using these write barriers, we maintain not only the ref-
erence counting algorithm and root information but also the
strong tri-colour invariant [10] which argues that no black
object should reference any white object and if so, the white
object must be marked grey before the reference can be es-
tablished. Our algorithm is slightly different in that the
user tasks cannot even build references pointing from a grey
or white object to another white object. Doing this can re-
duce the overhead of write barriers by performing less colour
checks but introduce more floating garbage2. However, we
argue that more floating garbage should not be a problem
in our algorithm because:

1. The worst case amount of floating garbage in our cur-
rent algorithm cannot be improved by restoring the
original tri-colour invariant and a smaller average amount
is of less importance in real-time systems.

2. The reference counting algorithm can help to identify
most acyclic floating garbage.

4.3 Tracing and Reclamation
In our system, tracing and reclamation are performed by
different GC tasks: the tracing task and the reclaiming task,
which are executed concurrently.

The periodically released tracing task starts by moving all
the objects in the “tracing-list” to the empty “white-list”.
This is a very efficient operation only involving several refer-
ence assignments. Afterwards, the “white-list” will be tra-
versed so that all the objects directly referenced by roots
can be moved back to the “tracing-list” and all the other
objects can be marked white. Marking begins from the head
of the “tracing-list”, continuously moving objects from the
“white-list” to the “tracing-list”, and completes when there

2Floating garbage is garbage that emerges but cannot be
identified in the current GC cycle (it is guaranteed to be
identified in the next GC cycle).



void write_barrier_for_roots(void *from, void *to)
{

if(from != NULL) {
//when we assign a valid reference to a root
{ update(add one) the root count of the object

referenced by "from";

if(the root count of the object referenced
by "from" is one)

{ mark the corresponding bit in object
header to announce that this object is
directly referenced by root;

if(the object referenced by "from" is in
"white_list")

{ unlink it from the "white_list" and
add the white object to the end of
"tracing_list";

}
else if(which list the object referenced

by "from" should belong hasn’t
been decided)

{ add it to the beginning of the
"tracing_list";

}
}

}

if( to != NULL )
//when we assign a value to a root which still
//references something
{ update(minus one) the root count of the

object referenced by "to";

if(both root and object counts of the object
referenced by "to" are zero)

{
if(the object referenced by "to" is in

"white_list" or "white_list_buffer")
{ unlink it from its current list;
}
else
{ unlink it from the tracing list;
}
add it to the "to_be_free_list";

}
else if(root count of the object referenced

by "to" is zero)
{

clear the corresponding bit in object
header to announce that this object
is no longer directly referenced by
any root;

}
}

}

Figure 2: Pseudocode of Write Barrier for Roots

are no grey objects in the “tracing-list”. The tracing task
then moves all the objects in the “white-list” to the end of
the “white-list-buffer” and wait for the next period. The
deadline of the tracing task is the same as its period.

On the other hand, whenever the “to-be-free-list” is not
empty, the reclaiming task will examine every block (ob-
jects are composed of blocks) in it. If any block has any
direct child object, the object count of its direct child must
be decreased by 1. If both the object count and the root
count are 0, that direct child object will be linked to the

rear of the “to-be-free-list”. Having processed all its direct
children, the current block can be reclaimed and the next
block will be processed in the same way. After this proce-
dure stops, the “white-list-buffer” will be checked and all the
objects currently residing in it will be reclaimed, one by one
without any attempt to process their children. Then, the
“to-be-free-list” will be processed again. When both lists
are empty, the reclaiming task will have nothing to do and
therefore suspend itself.

The reclaiming task is always ready to run except when it
has no garbage to reclaim. In order to make sure that the
processor is not occupied by the reclaiming task all the time,
we set a limitation on the amount of work the reclaiming
task can perform in one period of the tracing task so that
its WCET can be assured (please see [6]). The amount of
work can either be stated as computation time or number of
blocks reclaimed. Although the two metrics are equivalent
in the worst case, choosing different metrics can still give the
system different behaviours, particularly when the compu-
tation time of the reclaiming task is underestimated. Cur-
rently, we measure the work amount in terms of the number
of blocks reclaimed. Before the number of blocks reclaimed
by the reclaiming task in the current period reaches its limit,
the reclaiming task is always given a higher priority than
the tracing task. Otherwise, the reclaiming task has done
enough work and gives way to any other task in the system.
At the next release of the tracing task, this work amount
limit will be reset. Thus, we can consider the reclaiming
task as a special periodic task with the same period and
deadline as that of the tracing task.

One thing needs to be noticed is that the reference count of
an object could be overestimated if it is a part of a cyclic
data structure but not found to be dead at the same time as
other objects in that structure - since no cyclic garbage will
be examined to update the information of its children. This
is not a problem because the objects with overestimated
reference counts can be identified as garbage by the tracing
task after they die. Moreover, these objects are already
considered as part of the cyclic structure when we perform
offline analysis (please see [6]).

In some cases, the tracing task can also end with acyclic
garbage in the “white-list”. Therefore, the “white-list-buffer”
could contain acyclic garbage as well. If such garbage is not
scanned before reclamation, its children’s reference counts
will be overestimated. Consequently, the behaviour of the
whole system will be unpredictable. In order to avoid this,
the processing of the “to-be-free-list” is always given prece-
dence over the processing of the “white-list-buffer” so that
any object in the “white-list-buffer” needs to be scanned is
scanned and reclaimed before others are reclaimed.

4.4 Scheduling
Many real-time applications consist of a mixture of peri-
odic hard real-time tasks and aperiodic soft or non real-time
tasks running on the same processor. In order to satisfy
those tasks’ dramatically different requirements, many flexi-
ble scheduling approaches have been proposed among which,
dual priority scheduling is an efficient means of identifying
and reclaiming spare capacity in favour of soft or non real-
time tasks whilst guaranteeing hard deadlines [9]. In this



section, we demonstrate how the dual priority scheduling
technique can bring the same flexibility to a garbage col-
lected hard real-time system such as ours.

Because we only need the GC tasks to be schedulable rather
than responsive, they ought to be executed as infrequently
as possible and also as late as possible. On the other hand, if
the GC tasks miss their deadlines, hard real-time user tasks
could be blocked for arbitrary time due to the lack of free
memory. Therefore, we consider the GC tasks as periodic
hard real-time tasks.

In order to discuss the scheduling approach, the properties
of user tasks must be defined first:

1. Priorities are split into 3 bands: Upper, Middle and
Lower [9].

2. Hard real-time tasks (including both user and GC tasks)
are released periodically and execute in either the lower
or upper band.

3. Soft real-time tasks are released aperiodically and their
priorities are always within the middle band.

4. Soft real-time tasks neither produce any cyclic garbage
nor allocate memory from the heap. Eliminating this
limitation is part of our future work (see section 6).

In the dual priority algorithm, a hard real-time task can
have two priorities one in the upper and one in the lower
band. Upon its release, it executes at its lower band prior-
ity so giving preference to the soft or non real-time tasks in
the middle band. Moreover, each hard real-time task has a
promotion time which is its release time plus the difference
between its deadline and its worst case response time. When
the given promotion time has elapsed, the hard real-time
task is promoted to its higher band priority therefore guar-
anteeing its deadline. If, however, the hard real-time task
is ever activated before the promotion time has elapsed, the
promotion time should be extended by the length of that
interval, so that spare capacity can be reclaimed [9].

Applying this technique to our GC tasks only needs a few
trivial modifications to the original algorithm. First, we
consider the two GC tasks as a whole and define the promo-
tion time as the release time plus the difference between the
period and the worst case response time of the tracing task
(GC tasks have adjacent priorities in either bands and the
reclaiming task executes at the higher priority before the
work limit is reached). Secondly, instead of giving arbitrary
priorities to hard real-time tasks in the lower band, we need
to maintain the same priority order of hard real-time tasks
in both upper and lower band. Moreover, as the reclaim-
ing task finishes its compulsory work, it goes to the lowest
priority in the lower band and returns to its original lower
band priority upon the next release of the tracing task.

How to determine the periods (deadlines), priorities, worst
case computation time and response time of the GC tasks is
beyond the scope of this paper (please see [6] for details). If
a system is feasible according to our static analysis, the hard
real-time tasks are always guaranteed not to be blocked by

Notation Definitions
D the deadline and also period of both reclaiming

and tracing tasks
amax the worst case memory allocation executed

during a GC period
Rgc the worst case response time of the tracing

task
Tj the period of the user task j
Cj the worst case execution time of the user task

j
Dj the deadline of the user task j
aj the worst case memory allocation executed in

one release of the user task j
cggj the worst case amount of cyclic garbage

emerged in one release of the user task j
Lj the worst case amount of live memory of the

user task j
RR the time needed to reclaim one unit of memory

in the worst case
TR the time needed to trace one unit of memory

in the worst case
MWR the time needed to mark one object white in

the worst case

Table 2: Notation definition

GC tasks due to the lack of free memory. Furthermore, the
period of our GC tasks is mainly determined by the heap
size and the rate of cyclic cumulation rather than the rate
of allocation. As a result, the period could be much longer
than its pure tracing counterpart. Therefore, tracing would
be invoked less frequently.

Compared to many other concurrent GC mechanism, our
approach can now ensure that the GC tasks get enough sys-
tem resources in each period. However, this does not neces-
sarily mean that the user tasks’ memory requirements can
always be satisfied because the user tasks could be scheduled
in preference to garbage collector although the collector is
guaranteed to complete all its necessary work of this period
before its deadline. To guarantee that the real-time tasks
with higher priorities than the reclaiming task (in the same
band) can never be blocked because of the lack of free mem-
ory, we require that the GC tasks should always try to pre-
serve enough free memory for them [12]. That is, before the
promotion time, if the amount of free memory is lower than
a certain value called Fpre (how to calculate this parameter
is demonstrated in [6]), the priorities of the GC tasks should
be promoted. Otherwise, they should be executed at their
original priorities until the promotion time.

5. INITIAL PERFORMANCE ANALYSIS
All the results presented in this section were obtained on a
1.5 GHz Intel CPU with 1MB L2 cache and 512MB RAM,
running SUSE Linux 9.3 together with “linux lib” architec-
ture MaRTE OS version 1.57[15]. Although our implemen-
tation is based on jRate, its scoped memory was not used
in any tests presented in this paper. That is, we only use
heap.

In order to present our experimental results, the notation
used in this section is summarized first in table 2.



For the purpose of this paper, impacts of our algorithm on
the user task performance are studied first. This includes
testings on worst case computation time of all kinds of write
barriers (see figure 3) and allocations of different object sizes
(see figure 4). In order to perform the analysis described in
[6], RR, TR and MWR must be obtained from experiments
as well (see figure 5). All the testings are performed 1000
times in a row through the worst case path and the results
are presented in terms of worst value, best value, average
value and 99% worst value3. Notice that the computation
time of operations that are used to protect critical sections
are not included in the aforementioned tests because first,
this is a platform dependent overhead which could be as low
as several instructions or as high as several function calls for
each pair of them; Secondly, how frequently such operations
are executed depends on the requirements of applications.
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Figure 4: Computation Time of Allocations of Dif-

ferent Object Sizes
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Figure 5: RR, TR and MWR Results

399% worst value means the highest value below the top 1%
values.

Tasks Cj Tj(Dj) aj cggj Lj

1 1 5 320 0 320
2 2 10 960 192 1600
3 5 50 1920 320 3200
4 12 120 5760 640 9600

Table 3: Hard Realtime Task Set 1

Tasks Cj Tj(Dj) aj cggj Lj

1 1 5 640 192 640
2 2 10 1920 576 3200
3 5 50 3840 1152 6400
4 12 120 11520 3456 19200

Table 4: Hard Realtime Task Set 2

As can be observed in figure 3, 4 and 5, there is a large gap
between the worst case and average case values. Sometimes,
even the 99% worst value can be much lower than the worst
value as well. This is due to cache misses and wrong branch
predictions which are very common in modern processors.
Another thing worth mentioning is the drop of allocation
time for object sizes between 256 and 320 bytes. This is
because our implementation is optimized to allocate every 8
blocks, which is 256 bytes in total, in a more efficient way.

As defined in table 2, RR is the worst case computation time
needed to reclaim a memory block. If any acyclic garbage
exists at the free memory producer release point, this is
exactly the free memory producer latency. Otherwise, the
free memory producer latency of our approach is comparable
with that of a pure tracing collector.

With the above information, we can perform analysis (see
[6]) on two synthetic hard real-time task sets given in table
3 and 4. All the values in tables hereafter are measured in
milliseconds for time or bytes for space. Priorities are as-
signed according to DMPO4. Furthermore, a non-real-time
task which simply performs an infinite loop executes at a
priority lower than all the tasks in table 3 or 4. For sim-
plicity and without loss of generality, only the GC tasks are
scheduled according to dual-priority algorithm. We will ap-
ply dual-priority scheduling to other hard real-time tasks in
the near future.

The execution time of a pair of operations that protect criti-
cal sections on our platform is 2.4 microseconds according to
our test. As a result, we adjust the RR to 3.19 microseconds,
TR to 3.20 microseconds and finally MWR to 2.47 microsec-
onds. To perform static analysis, the maximum amount of
live memory Lmax

5 is calculated first according to [13]. The
maximum amount of live memory of all the hard real-time
tasks in task set 1 and 2 are estimated as 14080 and 27520
bytes respectively and we set the maximum amount of static
live memory to be 9344 bytes for both task sets. Therefore,
Lmax cannot exceed 23424 bytes for task set 1 or 36864 bytes
for task set 2. By performing the static analysis discussed
in [6] with the given heap sizes H, we assign GC tasks with
promoted priorities between task 3 and 4 for both task sets

4DMPO means deadline monotonic priority ordering
5Lmax includes all the per-object and per-block overheads.



Parameters task1 task2
H 34752(1.48Lmax) 80768(2.19Lmax)

Fpre 3520 7040
D 120 120

amax 30720 61440
WCETtracing 5.14 11.22

WCETreclaiming 3.07 6.13
Rgc 24.21 38.35

GC utilization 6.84% 14.46%

Table 5: GC Parameters
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Figure 6: Task Set 1 with Promotion Time 10ms

and all the other parameters needed by the GC tasks are
presented in table 5.

Given these parameters, we execute both task sets with our
garbage collector to justify the correctness of our algorithm
and static analysis. Two different GC promotion time are
selected for each task set to compare their impacts on the
memory usage of our system. Both configurations for both
task sets can generate safe execution which means no dead-
line is missed and no task is blocked by the garbage collector
due to the lack of free memory. This is theoretically proved
based on the information about user tasks’ behaviour, heap
size, RR, TR and MWR rather than empirical observation
[6]. The memory usages of both task sets are presented in
figure 6, 7, 8 and 96.

These figures illustrates the fundamental difference between
our approach and a pure tracing one, which is that the
amount of free memory in our system no longer decreases
monotonically in each GC period. This is because our ap-
proach possesses a relatively lower free memory producer
latency. Not only tracing but also reclamation can be per-
formed incrementally. Secondly, the later the promotion
time is, the smaller the space margin we will have. This
supports our argument in section 4.4, which suggests that
users tasks should be given preference over GC tasks by
squeezing the heap harder.

In order to explore the performance of a non-real-time task
under dual priority scheduling scheme, we modify the non-
real-time task in task set 1 so that it starts at the same time
as all the other tasks and performs certain number of it-

6Allocation id x means the xth allocation.
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Figure 7: Task Set 1 with Promotion Time 90ms
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Figure 8: Task Set 2 with Promotion Time 10ms
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Figure 9: Task Set 2 with Promotion Time 80ms

erations of floating computation. Executions with different
numbers of iterations and GC promotion time are performed
and corresponding non-real-time task response time are il-
lustrated in figure 10. As one can see, in many cases, dual
priority scheduling provides 7-10 milliseconds improvement
on non-real-time task response time compared with fixed
priority scheduling. Theoretically, the response time of a
non-real-time task in a system configured with shorter GC
promotion time should never be shorter than that of the
same task in a system configured with longer GC promo-
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Figure 10: Response Time of Non-real-time Tasks

with Different GC Promotion Time

tion time. However, figure 10 shows some exceptions. The
reason is that the execution time of and interference to the
non-real-time task are different from test to test.

We choose [16] as an example of pure tracing collectors with
which we compare our algorithm. According to their analy-
sis, our task set 1 along with a pure tracing GC task is infea-

sible since (∀D)(
∑

j∈task1

(⌈

D

Tj

⌉

· aj

)

> (H−Lmax)/2) but

for task set 2, we can expect the longest deadline to be 20
milliseconds which implies a 56.1% GC utilization7. Notice
that the user task utilization of a pure tracing system can
be lower than ours due to the fact that our write barriers are
more expensive than their pure tracing counterparts. How-
ever, this cannot change the garbage collection work amount
because user tasks are periodically scheduled. On the other
hand, if we assume the priority and utilization of the pure
tracing GC task are the same as those of our GC tasks,
the pure tracing period will be 75.13 milliseconds for task
set 1 or 77.6 milliseconds for task set 2. According to the
static analysis in [16], this corresponds to a heap of 68224
bytes (2.91Lmax) for task set 1 or 126464 bytes (3.43Lmax)
for task set 2. By contrast, our heap sizes are theoretically
proved as 1.48Lmax or 2.19Lmax. Since the heap sizes and
Lmax for both approaches are presented with the same per-
object and per-block space overheads, the ratios between the
heap sizes and the Lmax can be compared between the two
approaches.

6. CONCLUSIONS AND FUTURE WORK
This paper has illustrated the inherent limitation of cur-
rently used real-time tracing garbage collectors and proposes
a new performance indicator that can better describe the
overall real-time capability of a garbage collector. This in-
dicator motivates the development of a hybrid approach to
garbage collection. Such an approach has been described
along with its scheduling parameters and some empirical re-
sults. The benefit of our approach includes:

• Due to the contribution of reference counting algo-
rithm and the fine grained model, our approach can
achieve relatively low memory consumption.

7We assume that the pure tracing GC task has the same
WCET as that of our tracing task.

• We make reference counting and mark-and-sweep co-
operate with each other. On the one hand, the oc-
casionally invoked mark-and-sweep can help reference
counting find cyclic garbage. On the other hand, ref-
erence counting can eliminate the root scanning phase
for the mark-and-sweep collection and make it much
less frequent so that a greater amount of unnecessary
system resource consumption is avoided.

• Our approach is flexible enough so that the GC tasks
can adapt to different applications and heap sizes au-
tomatically: the smaller the heap size is or the more
cyclic garbage, the shorter the deadline could be. For
a system which is mainly composed of acyclic data
structures, the deadline of the GC tasks could be very
long. However, for a system which is mainly composed
of cyclic data structures, our approach gracefully de-
grades. Fortunately, our static analysis (see [6]) pro-
vides the designers with a way to quantitatively deter-
mine whether our approach is suitable for their appli-
cation or not.

• We can provide real-time guarantees for all the hard
real-time tasks as in non-garbage-collected real-time
systems (see [6]).

• All the hard real-time tasks follow the dual priority
scheduling approach so spare capacity can be reclaimed
and the responsiveness of soft real-time tasks is im-
proved.

The limitation of our approach can be summarized as fol-
lows:

• As with many other reference counting algorithms, our
approach has relatively high write barrier overheads.
We have not yet tried to optimize out unnecessary bar-
riers.

• Further investigation is needed for tight estimation of
the parameter cggj .

• The current approach we use to protect critical sec-
tions is not efficient enough. A pair of such operations
can be almost 2 times slower than reclaiming a block.
We are now looking for better approach to the protec-
tion of critical sections.

Our current work is now focused on the soft real-time tasks
and how their impacts on the overall memory consumption
can be identified and kept under control.
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