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Abstract

Current real-time garbage collection algorithms are usu-
ally criticised for their high memory requirements. Even
when consuming nearly 50% of CPU time, some garbage
collectors ask for at least twice the memory as really
needed. This paper explores the fundamental reason for
this problem and proposes a new performance indicator for
the evaluation of real-time garbage collection algorithms.
Use of this performance indicator motivates an algorithm
that combines both reference counting and mark-and-sweep
techniques. In the presence of our collector, a garbage col-
lected hard real-time system can achieve the correct bal-
ance of time-space tradeoff with less effort. In order to
provide both temporal and spatial guarantees needed by
a hard real-time application, an offline analysis is devel-
oped and integrated into the current response time analysis
framework. Moreover, the use of dual priority scheduling
of the garbage collection tasks allows spare capacity in the
system to be reclaimed whilst guaranteeing deadlines.

1 Introduction

The management of resources is a key component of all
real-time systems. Unfortunately, for real-time and embed-
ded systems programming there is a conflict. On the one
hand, the use of high-level abstractions aid in the software
engineering of the application. On the other hand, em-
bedded and real-time systems often have only limited re-
sources (time and space) and these must be carefully man-
aged. Nowhere is this conflict more apparent than in the
area of memory management. Embedded systems usually
have a limited amount of memory available; this is because
of cost, size, power, weight or other constraints imposed by
the overall system requirements.

The run-time implementations of most programming
languages provide two essential data structures to help man-
age the dynamic memory of the program: the stack and the
heap. Whilst data on the stack is automatically reclaimed,
data placed on the heap can be reclaimed in several ways
among which, garbage collectors monitor the memory and

automatically release chunks that are no longer being used.
They free the programmer from the burden of memory man-
agement but are complex to implement and difficult to ana-
lyze.

Most garbage collectors now in use are tracing collec-
tors. Since applications can run indefinitely, garbage collec-
tors need to run repeatedly. Each execution usually includes
three phases:

Root Scanning – looks for all the references from outside the
heap to somewhere in the heap.

Marking – marks (or moves) all the reachable objects starting
from the references found in the first phase.

Reclaiming – reclaims all the other objects and updates house-
keeping information for survived objects where necessary
(compaction would also be performed in this phase if frag-
mentation is to be resolved).

A complete execution of the above phases is named a GC
cycle which can consume extensive computation resources.
Therefore, in a non-real-time system, the user tasks could
be blocked for a long time waiting for the collector to finish
a GC cycle. The current efforts to make garbage collec-
tion real-time is to reduce the huge GC blocking time by
performing garbage collection work incrementally or con-
currently so that the perceived worst-case latency of user
tasks is bounded and relatively low [1, 10, 16, 9]. However,
the low perceived worst-case latency is obtained at the cost
of high space overhead, which is also unfavourable in real-
time embedded systems. The less computation resource is
given to the garbage collector, the more space is needed and
vice versa. Achieving the correct balance of this tradeoff
is difficult and is one of the main criticisms of the garbage
collection approach to real-time memory management[3].

In this paper, we discuss the reasons why tracing real-
time garbage collectors cannot perform sufficiently well in
both temporal and spatial aspects at the same time. We
present a new performance indicator for describing the
overall real-time capability of a garbage collector. The
use of this performance indicator motivates the design of a
new real-time garbage collector. Instead of performing pure
tracing or reference counting, we propose a hybrid approach
which combines both the advantages of reference counting



and mark-and-sweep. The garbage collection tasks are exe-
cuted concurrently with the user tasks and scheduled using
the dual priority scheduling algorithm, which can allow the
reclamation of spare capacity in the whole system [6].

The remainder of this paper is organized as follows.
Section 2 explores the reason why current tracing real-
time garbage collection techniques have the aforementioned
drawbacks and proposes our new performance indicator.
Section 3 briefly introduces the basic idea of our approach.
Section 4 reveals more details of our algorithm and the
scheduling method. Section 5 presents a static analysis of
our garbage collected hard real-time system. Section 6 illus-
trates the performance of our collector. Finally, we present
our conclusions and future work.

2 The Need for A New Performance Indica-
tor

Reclaiming unused objects (garbage) with any garbage
collection algorithm takes at least two steps:identifyingand
reclaiming. Using tracing collectors as an example, they
need to go through both root scanning and marking phases
to identify garbage and then recover it in a reclaiming phase.
As we will discuss later, the granularity of suchidentifying
andreclaimingcycles is of great importance in a real-time
environment. If this granularity is too large, the algorithm
will be unsatisfactory in either, or both, of the following
ways:

1. User tasks will suffer from significant latencies due to
garbage collection activities. These latencies may cause
tasks to miss their deadlines or require the system to have
a more powerful processor than needed.

2. Significant redundant space will be needed to reduce laten-
cies. Unfortunately, this may result in an embedded sys-
tem running out of memory or requiring more memory than
needed.

The end result will be a system which needs more re-
sources than one which adopts a more application memory-
managed approach.

To make this clear, a simple example is given below:
two garbage collectors have the same throughput but one
can produce 32 bytes of free memory as a whole in every
10 microseconds (smaller granularity) whilst the other one
can only produce 3200 bytes as a whole in the last 10 mi-
croseconds of every millisecond (larger granularity). They
perform as bad, or as well, as each other in a non-real-
time environment since the only concern there is through-
put. However, the first one outperforms the latter one in
a real-time environment due to its much lower latency. Ir-
respective of how small a portion of memory a user task
requests, the latter one needs 1 millisecond to perform its
work before the user task can proceed. However, using in-
cremental techniques, the second collector’s work can be

divided into small pieces, say 10 microseconds, which are
then interleaved with user tasks. This reduces the perceived
worst-case latency of user tasks to the same as that of the
first collector. Unfortunately, nothing comes for free. Since
99 out of 100 increments cannot produce any free mem-
ory, allocation requests before the last increment must be
satisfied by an extra memory buffer. This simple example
explains the importance of garbage collection granularityin
a real-time environment.

Recent research on real-time garbage collection algo-
rithms such as [1, 10, 14, 9] can only achieve predictability
and low worst-case latency by preserving significant redun-
dant space although they all struggle to keep it low. We
argue that this is due to the fact that they are all high granu-
larity tracing algorithms, which need to identify live objects
before reclaiming any garbage. In the worst case situation
where live memory reaches its upper bound, the collector
has to scan at least all the live memory before reclama-
tion. Irrespective of the scheduling algorithm, any attempt
to give significantly less computation resource to a tracing
collector will raise the memory requirement dramatically
[2, 10, 14, 9].

To allow for better design of real-time garbage collection
algorithms, we define a new performance indicator which
characterises the granularity of a collector. First, the defini-
tion of aFree Memory Produceris given below:

Definition 1 TheFree Memory Producerof a garbage col-
lector is a logical task which works at the highest prior-
ity and executes the algorithm of that garbage collector
without trying to divide its work but stops whenever
any new free memory, irrespective of its size, is made
available to the allocator.

Moreover, the free memory producer is only eligible to
execute at the point where

1. the amount of live memory reaches its upper bound and there
exists garbage with arbitrary size, or

2. the first time an object(s) becomes garbage after live memory
reached its upper bound when there was no garbage.

We call this point in time theFree Memory Producer Re-
lease Point1. Notice that a free memory producer does not
necessarily need to be a fully functional garbage collector
since it stops whenever any free memory is produced. Thus,
it is required that the whole system should stop when the
free memory producer stops. Because no garbage can be
reclaimed before the free memory producer release point,
the heap must be large enough to hold all the garbage ob-
jects and the live ones.

Now, we can define the performance indicator:

1The Free Memory Producer Release Point does not necessarily exist
in a real application but can be created intentionally in testing programs.



Garbage Collection Algorithm Latency is a function of

Conventional Reference Counting garbage set size

Deferred Reference Counting object size

Non-copying Tracing Lmax

Copying Tracing Lmax

Table 1. Free Memory Producer Complexities

Definition 2 The Free Memory Producer Latencyof a
garbage collector is the worst case execution time of
its free memory producer.

Bear in mind that the free memory producer latency is an
indictor to the overall real-time performance of a garbage
collector. It does not necessarily directly relate to the real
latency experienced by any user task.

Lower free memory producer latency always means that
the corresponding collector has lower granularity and is
more responsive in producing free memory. Therefore, the
user tasks suffer from shorter worst-case latency introduced
by garbage collection or the redundant memory needed is
smaller. Assuming throughputs are the same, the garbage
collection algorithm which has lower free memory producer
latency is more likely to be appropriate for real-time sys-
tems.

As can be seen in table 1, the free memory producer la-
tencies of tracing algorithms are functions of the maximum
amount of live memory (Lmax) while those of reference
counting algorithms are functions of either the total size
of the garbage set or the size of the garbage object being
processed. At first glance, the free memory producer la-
tency of reference counting, particularly deferred reference
counting, is very promising. However, “garbage set size”
and “object size” can also be huge, even comparable with
“Lmax” in extreme situations. Therefore, the free memory
producer latencies of reference counting algorithms could
be very long in some systems as well.

3 The Hybrid Approach Overview

One way to improve reference counting algorithms is
to change their garbage collection granularity. Siebert and
Ritzau [15, 11] both noticed that external fragmentation can
be eliminated by dividing objects and arrays into fixed size
blocks. This not only resolves the external fragmentation
problem but also changes the granularity of garbage collec-
tion so that it can reclaim such blocks individually. For a de-
ferred reference counting algorithm that maintains objects
and arrays as fixed size blocks (hereafter, we call such an
algorithm “fine grained reference counting”), its free mem-
ory producer has a complexity of O(1) since the block size
in a given system is fixed. On the other hand, because the

block size is always small, a very low free memory pro-
ducer latency can be achieved as well. Consequently, such
a fine grained reference counting algorithm is more likely
to be suitable for real-time systems compared with other
reference counting algorithms. Ritzau’s work [11] is such
an algorithm. However, reference counting algorithms can-
not reclaim cyclic garbage per se so Ritzau’s pure reference
counting algorithm is unable to reclaim all the garbage with-
out the help from programmers. Furthermore, his algorithm
is a work-based algorithm which is not well integrated with
hard real-time scheduling due to its problematic behaviour
during bursty allocations and the fact that it cannot reuse
any form of spare capacity.

By combining a fine grained reference counting collec-
tor with a mark-and-sweep collector, the problem of cyclic
garbage can be resolved. However, such a hybrid algorithm
has a very special free memory producer. When there exists
reference-counting-recognizable garbage at the free mem-
ory producer’s release point, the free memory producer will
have the same complexity and latency as that of the fine
grained reference counting algorithm, i.e. O(1) complexity
and very low latency. On the other hand, when there is no
such garbage, the free memory producer will have a similar
behaviour as that of a pure tracing algorithm.

The most straightforward way to tackle the second situ-
ation’s long latency is to introduce extra memory. But, this
time, the memory buffer only holds garbage objects that are
in cyclic data structures rather than all of the allocationsdue
to the contribution of the reference counting collector. In
many applications, acyclic data accounts for a considerable
portion or even majority of the total memory usage (44.21%
to 100.00% with the average of 81.52%) [8].

By combining the two approaches, we can also elimi-
nate the root scanning phase since our reference counting
algorithm can provide enough information to the mark-and-
sweep collector.

4 The Hybrid Garbage Collection Algorithm

4.1 Data Structures

Every object in our system is maintained as a linked list
of fixed size blocks which are set to 32 bytes in the cur-
rent implementation. Which size to choose and how bad
the memory access penalty is have been studied by Siebert
[15].

All the blocks of an object use their last word to store the
link to the next block. The first block of an object is differ-
ent from the others since it needs to store housekeeping in-
formation of that object. The first word keeps the reference
counts. The most significant 27 bits of the second word and
the whole third word are pointers used to maintain (doubly)
linked lists of objects; Finally, the least significant 5 bits of



to_be_free_list (objects in this list can be of any color)

free_list

tracing_list white_list white_list_buffer

: object
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grey_pointer_
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Figure 1. Data Structures

the second word records status information for the garbage
collector (e.g. the colour of the object and whether the ob-
ject is referenced by any root).

In our approach, the reference count for each object is
divided into two parts: one is for recording the number
of roots that reference the object directly (“root count” for
short); the other one is for recording the number of all the
other direct references to that object (“reference count” for
short). Currently, they share a single word in an object.

In order to achieve the correct synchronization between
the user tasks and a tracing garbage collector, the strong tri-
colour invariant [7] must be maintained. It argues that no
black object should reference any white object and if so,
the white object must be marked grey before the reference
can be established. As illustrated in figure 1, we maintain
3 doubly linked lists:tracing-list, white-list andwhite-list-
buffer. Any object reachable from the root set must be in
and simultaneously only in one of the first two lists. The
objects in the “tracing-list” are either black or grey (already
found to be alive by the tracing collector). In order to de-
termine whether an object in the “tracing-list” has already
been scanned (black) or not (grey), one additional pointer is
introduced for the “tracing-list”. As the name indicates, the
“white-list” contains only white objects (which means they
are potentially dead) and when a tracing GC cycle is com-
pleted all the objects still in the “white-list” are garbage,
which will then be moved to the “white-list-buffer” waiting
to be reclaimed. On the other hand, dead objects recog-
nized by the reference counting algorithm must be put into
a linked list called theto-be-free-list. Finally, the allocator
searches free memory to allocate from the beginning of an-
other linked list called thefree-list, which is composed of
fixed size blocks.

4.2 Write Barriers

Write barriers are code added by a compiler or a runtime
system to execute before certain reference assignments. Al-
though it can also be implemented in the hardware level,
our algorithm currently adopts a software approach. The
most important two write barriers in our algorithm are
thewrite-barrier-for-rootsand thewrite-barrier-for-objects
from which all the other write barriers are developed. They
are invoked automatically when user tasks assign a value to
a root or to a reference field in an object (or array); which
one to invoke is determined off-line by the compiler. The
main difference between the two write barriers is that root
barriers can recognize and manipulate the situations where
an object is referenced by a root for the first time or discon-
nected from all the roots. Assuming a user task is assigning
a reference with value “from” to a root variable with its cur-
rent value “to”, the pseudo code of the corresponding write
barrier is given in figure2.

By using these write barriers, we maintain not only the
reference counting algorithm and root information but also
the strong tri-colour invariant. However, our algorithm is
slightly different in that the user tasks cannot even build
references pointing from a grey or white object to another
white object. Doing this can reduce the overhead of write
barriers by performing less colour checks but introduce
more floating garbage2. However, we argue that more float-
ing garbage should not be a problem in our algorithm be-
cause:

1. The worst case amount of floating garbage in our current
algorithm cannot be improved by restoring the original tri-
colour invariant and a smaller average amount is of less im-
portance in real-time systems.

2. The reference counting algorithm can help to identify most
acyclic floating garbage.

4.3 Tracing and Reclamation

In our system, tracing and reclamation are performed by
different GC tasks: thereclaiming taskand thetracing task,
which are executed concurrently at adjacent priorities (the
reclaiming task has the higher priority).

Whenever the “to-be-free-list” is not empty, the reclaim-
ing task will examine every block (objects are composed of
blocks) in it. If any block has any direct child object, the
object count of its direct child must be decreased by 1. If
both object count and root count are 0, that direct child ob-
ject will be linked to the rear of the “to-be-free-list”. Having
processed all its direct children, the current block can be re-
claimed and the next block will be processed in the same
way. After this procedure stops, the “white-list-buffer” will

2Floating garbage is garbage that emerges but cannot be identified in
the current GC cycle (it is guaranteed to be identified in the next GC cycle).



void write_barrier_for_roots(void *from, void *to)
{

if(from != NULL) {
//when we assign a valid reference to a root
{ update(add one) the root count of the object

referenced by "from";

if(the root count of the object referenced
by "from" is one)

{ mark the corresponding bit in object
header to announce that this object is
directly referenced by root;

if(the object referenced by "from" is in
"white_list")

{ unlink it from the "white_list" and
add the white object to the end of
"tracing_list";

}
else if(which list the object referenced

by "from" should belong hasn’t
been decided)

{ add it to the beginning of the
"tracing_list";

}
}

}

if( to != NULL )
//when we assign a value to a root which still
//references something
{ update(minus one) the root count of the

object referenced by "to";

if(both root and object counts of the object
referenced by "to" are zero)

{
if(the object referenced by "to" is in

"white_list" or "white_list_buffer")
{ unlink it from its current list;
}
else
{ unlink it from the tracing list;
}
add it to the "to_be_free_list";

}
else if(root count of the object referenced

by "to" is zero)
{

clear the corresponding bit in object
header to announce that this object
is no longer directly referenced by
any root;

}
}

}

Figure 2. Pseudocode of Write Barrier for
Roots

be checked and all the objects currently residing in it will
be reclaimed, one by one without any attempt to process
their children. Then, the “to-be-free-list” will be processed
again. When both lists are empty, the reclaiming task will
have nothing to do and therefore suspend itself.

One thing needs to be noticed is that the reference count
of an object could be overestimated if it is a part of a cyclic
data structure but not found to be dead at the same time as
other objects in that structure – since no cyclic garbage will
be examined to update the information of its children. This

is not a problem because:

1. The objects with overestimated reference counts can be iden-
tified as garbage by the tracing task after they die.

2. These objects are already considered as a part of the cyclic
structure when we perform offline analysis (see section 5).

The periodically released tracing task starts by moving
all the objects in the “tracing-list” to the empty “white-list”.
This is a very efficient operation only involving several ref-
erence assignments. Afterwards, the “white-list” will be
traversed so that all the objects directly referenced by roots
can be moved back to the “tracing-list” and all the other ob-
jects can be marked white. Marking begins from the head
of the “tracing-list”, continuously moving objects from the
“white-list” to the “tracing-list”, and completes when there
are no grey objects in the “tracing-list”. We then move all
the objects in the “white-list” to the end of the “white-list-
buffer” and wait for the next period. The deadline of the
tracing task is the same as its period.

4.4 Scheduling

Many real-time applications consist of a mixture of pe-
riodic hard real-time tasks and aperiodic soft or non-real-
time tasks running on the same processor. In order to sat-
isfy those tasks’ dramatically different requirements, many
flexible scheduling approaches have been proposed among
which, dual priority scheduling is an efficient means of
identifying and reclaiming spare capacity in favour of soft
or non-real-time tasks whilst guaranteeing hard deadlines
[6]. In this section, we demonstrate how the dual prior-
ity scheduling technique can bring the same flexibility to a
garbage collected hard real-time system such as ours.

As introduced previously, the tracing task in our system
is a periodic task with a deadline. On the other hand, the
reclaiming task is always ready to run except when it has
no garbage to reclaim. In order to make sure that the pro-
cessor is not occupied by the reclaiming task all the time,
we set a limitation on the amount of work the reclaiming
task can perform in one period of the tracing task so that
its WCET can be assured (see section 5). The amount of
work can either be stated as computation time or number of
blocks reclaimed. Although the two metrics are equivalent
in the worst case, choosing different metrics can still give
the system different behaviours, particularly when the com-
putation time of the reclaiming task is underestimated. Cur-
rently, we measure the work amount in terms of the number
of blocks reclaimed. Before the number of blocks reclaimed
by the reclaiming task in the current period reaches its limit,
the reclaiming task is always given a higher priority than
the tracing task. Otherwise, the reclaiming task has done
enough work and gives way to any other task in the system.
At the next release of the tracing task, this work amount



limit will be reset. Thus, we can consider the reclaiming
task as a special periodic task as well.

Because we do not need the GC tasks to be very respon-
sive, they ought to be executed as infrequently as possible
and also as late as possible so that some user tasks for which
high responsiveness is of great importance can get the re-
source needed (particularly, CPU time) earlier. On the other
hand, delaying the GC tasks can make more space to be
occupied by the dead objects. If the GC tasks miss their
deadlines, hard real-time user tasks could be blocked for
arbitrary time due to the lack of free memory. Therefore,
we design the GC tasks as dual-priority scheduled periodic
hard real-time tasks.

In order to discuss the scheduling approach, the proper-
ties of user tasks must be defined first:

1. Priorities are split into 3 bands: Upper, Middle and Lower
[6].

2. Hard real-time tasks (including both user and GC tasks) are
released periodically and execute in either the lower or upper
band.

3. Soft real-time tasks are released aperiodically and their pri-
orities are always within the middle band.

4. Soft real-time tasks neither produce any cyclic garbage nor
allocate memory from the heap. Eliminating this limitation
is a part of our future work (see section 7).

In the dual priority algorithm, a hard real-time task can
have two priorities one in the upper and one in the lower
band. Upon its release, it executes at its lower band prior-
ity so giving preference to the soft or non-real-time tasks
in the middle band. Moreover, each hard real-time task has
a promotion time which is its release time plus the differ-
ence between its deadline and its worst case response time.
When the given promotion time has elapsed, the hard real-
time task is promoted to its higher band priority therefore
guaranteeing its deadline. If, however, the hard real-time
task is ever activated before the promotion time has elapsed,
the promotion time should be extended by the length of that
interval, so that spare capacity can be reclaimed [6].

Applying this technique to our GC tasks only needs a
few trivial modifications to the original algorithm. First,we
consider the two GC tasks as a whole and define the pro-
motion time as the release time plus the difference between
the period and the worst case response time of the tracing
task. Secondly, instead of giving arbitrary priorities to hard
real-time tasks in the lower band, we need to maintain the
same priority order of hard real-time tasks in both upper and
lower band. The above requirements are introduced to make
sure that the reclaiming task always has higher priority than
the tracing task (in either band) before it finishes its com-
pulsory work. This is essential for the WCET estimation of
our tracing task. As the reclaiming task finishes its compul-
sory work, it goes to the lowest priority in the lower band

and returns to its original lower band priority upon the next
release of the tracing task.

Now, our approach can only ensure that the GC tasks get
enough system resources in each period. To guarantee that
the real-time tasks with higher priorities than the reclaiming
task (in the same band) can never be blocked because of the
lack of free memory, we require that the GC tasks should al-
ways try to preserve enough free memory for them [9]. That
is, before the promotion time, if the amount of free memory
is lower than a certain value calledFpre (see section 5), the
priorities of the GC tasks should be promoted. Otherwise,
they should be executed at their original priorities until the
promotion time.

5 Static Analysis

In this section, we calculate the scheduling parameters
for the GC tasks3. Table 2 summarises the notation used in
this paper.

Minimum free memory needed

Due to the existence of reference counting, the cumu-
lation of allocated memory throughout any GC cycle can-
not exceedCGGmax given thatLmax has been reached,
which means that if the GC tasks can provide as much free
memory asCGGmax at the beginning of any cycle, the
cumulation of the allocated memory can always be satis-
fied. However, in order to synchronize reclamation and al-
location, we need to preserveFpre free memory as well.
Therefore, in order to guarantee that the application never
runs out of memory, we must be able to provide at least
Fpre + CGGmax free memory at the beginning of any cy-
cle.

Minimum free memory provided

First, a theorem is given without proof. More informa-
tion can be found in [4].

Theorem 1. If the deadlines of GC tasks are guaranteed,
the amount of allocated (non-free) memory at the very be-
ginning of any release of the tracing task is bounded by
Lmax + CGGmax.

Consequently, our GC tasks can maintain at leastH −
Lmax −CGGmax free memory at the beginning of any GC
cycle. To ensure that the user tasks execute without any
blocking due to garbage collection, the minimum amount
of free memory needed must be satisfied. Therefore,

Fpre + CGGmax = H − Lmax − CGGmax (1)

3Due to the limitation on space, we discuss our analysis process without
proof in this paper. However, you can find all those proofs in [4].



Symbols Definitions

P the set of user tasks in the whole system
Lmax the upper bound of live memory consumption of

the whole system
CGGi/CGGmax the amount of cyclic garbage generated in cycle i

and its maximum value
ai/amax new memory allocated in cycle i and its maxi-

mum value
H the size of heap

hp(GC) the set of all the user tasks with higher priorities
than the GC tasks (promoted)

Fpre the amount of free memory the system should
preserve for the user tasks with higher priorities
than the reclaiming task (promoted)

Rpre the worst case response time of the reclaiming
task (promoted) to reclaim as much memory as
the user tasks allocate during that time

Tj the period of the user taskj
Cj the worst case execution time of the user taskj

aj the worst case memory allocation executed in one
release of the user taskj

cggj the worst case amount of cyclic garbage emerged
in one release of the user taskj

Lj the worst case amount of live memory of the user
taskj

RR the time needed to reclaim one unit of memory in
the worst case

TR the time needed to trace one unit of memory in
the worst case

MWR the time needed to mark one object white in the
worst case

NTM the worst case number of objects inH − Fpre.
This is also the worst case number of objects need
to be marked white in a cycle

D the deadline and also period of both reclaiming
and tracing tasks

Table 2. Notation Definition

Deadline and Priority

By transforming equality 1, we can get:

CGGmax =
H − Lmax − Fpre

2
(2)

As defined previously,CGGi ≤ CGGmax so we can
get:

CGGi ≤
H − Lmax − Fpre

2
(3)

Assuming in the worst case that all the hard real-time
user tasks arrive at the same time (soft real-time user tasks
do not contribute toCGGi), CGGi can be represented as:

CGGi =
∑

j∈P

(⌈

D

Tj

⌉

· cggj

)

(4)

Applying this to inequality 3, the deadline of the GC
tasks can finally be calculated.

∑

j∈P

(⌈

D

Tj

⌉

· cggj

)

≤
H − Lmax − Fpre

2
(5)

SinceD is mainly determined by the heap size and the
rate of cyclic garbage cumulation rather than the rate of al-
location, the value ofD could be much higher than its pure
tracing counterpart. Therefore, tracing would be invoked
less frequently.

Next, we present how to determineFpre:

Rpre =
∑

j∈hp(GC)

[⌈

Rpre

Tj

⌉

(Cj + RR · aj)

]

(6)

Fpre =
∑

j∈hp(GC)

(⌈

Rpre

Tj

⌉

· aj

)

(7)

Notice that to calculateRpre and Fpre, we need to
know the GC tasks’ priorities in advance since we need
to know who belongs tohp(GC). However, if we adopt
DMPO (deadline monotonic priority ordering) mechanism,
we should have already known the deadline of the GC tasks
so there is obviously a recursion. In order to resolve this
recursion, we need to treat equation 6, 7 and 5 as a group.

At the very beginning, assume that the priorities of GC
tasks are the lowest two priorities among all the hard real-
time tasks (within the same band). Then, we can get the cor-
respondingRpre, Fpre, D and consequently the priorities
corresponding to theD. If the GC priorities are the same
as we assumed, that is the result. Otherwise, we should use
the new GC priorities to recalculateRpre, Fpre, D and the
new priorities until the old version and the new version of
the GC tasks’ priorities equal each other4.

WCET and Response Time

Given the above, we are able to estimate the WCETs
and the worst case response time of the GC tasks:
WCETtracing, WCETreclaiming andRgc respectively.

WCETtracing = TR·(Lmax + CGGmax)+MWR·NTM
(8)

WCETreclaiming = RR · amax (9)

Rgc =
∑

j∈hp(GC)

(⌈

Rgc

Tj

⌉

· Cj

)

+WCETtracing + WCETreclaiming (10)

4Unfortunately, this process sometimes does not converge, so we may
have to use other priority assignment techniques for the GC tasks, for ex-
ample, perhaps using some global optimization approaches suchas genetic
algorithms .



6 Performance Evaluation

We have implemented our algorithm by modifying the
GCJ compiler (the GNU compiler for the Java language,
version 3.3.3) and the jRate library (version 0.3.6)[5], which
is a RTSJ-compliant real-time extension to the GCJ com-
piler. All the results presented in this section were obtained
on a 1.5 GHz Intel CPU with 1MB L2 cache and 512MB
RAM, running SUSE Linux 9.3 together with “linuxlib”
architecture MaRTE OS version 1.57[12].Although our im-
plementation is based on jRate, its scoped memory was not
used in any tests presented in this paper.

For the purpose of this paper, impacts of our algorithm
on the user task performance are studied first. This includes
testings on worst case computation time of both object and
root write barriers (see figure 3). In order to perform the
analysis described in the previous section,RR, TR and
MWR must be obtained from experiments as well (see fig-
ure 4). All the testings are performed 1000 times in a row
through the worst case path and the results are presented
in terms of worst value, best value, average value and 99%
worst value5. Notice that the computation time of opera-
tions that are used to protect critical sections are not in-
cluded in the aforementioned tests because first, this is a
platform dependent overhead which could be as low as sev-
eral instructions or as high as several function calls for each
pair of them; Secondly, how frequently such operations are
executed depends on the requirements of applications.
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Figure 3. Write Barrier Computation Time

As defined previously,RR is the worst case computa-
tion time needed to reclaim a memory block. If any acyclic
garbage exists at the free memory producer release point,
this is exactly the free memory producer latency.

With the above information, we can perform analysis on
two synthetic hard real-time task sets given in table 3 and 4.
All the values in tables hereafter are measured in millisec-
onds for time or bytes for space. Priorities are assigned ac-
cording to DMPO. Furthermore, a non-real-time task which

599% worst value means the highest value below the top 1% values.
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Figure 4. RR, TR and MWR Results

Tasks Cj Tj (Dj ) aj cggj Lj

1 1 5 320 0 320
2 2 10 960 192 1600
3 5 50 1920 320 3200
4 12 120 5760 640 9600

Table 3. Hard Realtime Task Set 1

Tasks Cj Tj (Dj ) aj cggj Lj

1 1 5 640 192 640
2 2 10 1920 576 3200
3 5 50 3840 1152 6400
4 12 120 11520 3456 19200

Table 4. Hard Realtime Task Set 2

simply performs an infinite loop executes at a priority lower
than all the tasks in table 3 or 4. For simplicity and with-
out loss of generality, only the GC tasks are scheduled ac-
cording to the dual-priority algorithm. We will apply dual-
priority scheduling to other hard real-time tasks in the near
future.

The execution time of a pair of operations that protect
critical sections on our platform is2.4 microseconds ac-
cording to our test. As a result, we adjust theRR to 3.19
microseconds,TR to 3.20 microseconds and finallyMWR
to 2.47 microseconds. To perform static analysis,Lmax is
calculated first according to [10]. The maximum amount of
live memory of all the hard real-time tasks in task set 1 and 2
are estimated as 14080 and 27520 bytes respectively and we
set the maximum amount of static live memory to be 9344
bytes for both task sets. Therefore, the total amount of live
memory cannot exceed 23424 bytes for task set 1 or 36864
bytes for task set 2. By performing static analysis with the
given heap sizes, we assign GC tasks with promoted priori-
ties between task 3 and 4 for both task sets and all the other
parameters needed by the GC tasks are presented in table 5.

Given these parameters, we execute both task sets with
our garbage collector to justify the correctness of our algo-
rithm and static analysis. Two different GC promotion time



Parameters task1 task2
H 34752(1.48Lmax) 80768(2.19Lmax)

Fpre 3520 7040
D 120 120

amax 30720 61440
WCETtracing 5.14 11.22

WCETreclaiming 3.07 6.13
Rgc 24.21 38.35

GC utilization 6.84% 14.46%

Table 5. GC Parameters
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Figure 5. Task Set 1 with Promotion Time
10ms

are selected for each task set to compare their impacts on
the memory usage of our system. Both configurations for
both task sets can generate safe execution which means no
deadline is missed and no task is blocked by the garbage
collector. This is theoretically proved rather than an empir-
ical observation. The memory usages of both task sets are
presented in figure 5, 6, 7 and 86.

These figures illustrates the fundamental difference be-
tween our approach and a pure tracing one, which is that
the amount of free memory in our system no longer de-
creases monotonically in each GC period. This is because
our approach possesses a relatively lower free memory pro-
ducer latency. Not only tracing but also reclamation can be
performed incrementally. Secondly, the later the promotion
time is, the smaller the space margin we will have. This
supports our argument in section 4.4, which suggests that
user tasks should be given preference over the GC tasks by
squeezing the heap harder.

We choose [13] as an example of pure tracing collectors
with which we compare our algorithm. In their approach, a
mark-and-sweep garbage collector is performed by a segre-
gated periodic real-time task scheduled in the same way as
any other real-time task. They also presented a static analy-

6Allocation idx means thexth allocation.
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sis which can provide the estimations of the period, deadline
and priority of the GC task given a specific application and
heap size.

According to their analysis, our task set 1 along
with a pure tracing GC task is infeasible since

(∀D)(
∑

j∈task1

(⌈

D
Tj

⌉

· aj

)

> (H − Lmax)/2) but

for task set 2, we can expect the longest deadline to be 20
milliseconds which implies a 56.1% GC utilization7. On
the other hand, if we assume the priority and utilization of
the pure tracing GC task are the same as those of our GC
tasks, the pure tracing period will be 75.13 milliseconds for
task set 1 or 77.6 milliseconds for task set 2. According
to the static analysis in [13], this corresponds to a heap
of 68224 bytes (2.91Lmax) for task set 1 or 126464 bytes
(3.43Lmax) for task set 2. By contrast, our heap sizes are
theoretically proved as 1.48Lmax or 2.19Lmax. Since the
heap sizes andLmax for both approaches are presented
with the same per-object and per-block space overheads,
the ratios between the heap sizes and theLmax can be
compared between the two approaches.

7 Conclusions and Future Work

This paper has illustrated the inherent limitation of cur-
rently used real-time tracing garbage collectors and pro-
poses a new performance indicator that can better describe
the overall real-time capability of a garbage collector. This
indicator motivates the development of a hybrid approach
to garbage collection, which needs smaller redundant mem-
ory and less frequent whole heap tracing and eliminates root
scanning. Such an approach has been described along with
its scheduling parameters, static analysis and some empiri-
cal results. We can provide real-time guarantees for all the
hard real-time tasks as in non-garbage-collected real-time
systems. Furthermore, All the hard real-time tasks follow
the dual priority scheduling approach so spare capacity can
be reclaimed and the responsiveness of soft real-time tasks
is improved.

However, our approach has some limitations as well.
First, further investigation is needed for the tight estima-
tion of the parametercggj , which is crucial for the static
analysis. Secondly, as with many other reference counting
algorithms, our approach has relatively high write barrier
overheads. We have not yet tried to optimize out unneces-
sary barriers. Another limitation we are trying to eliminate
is the rigid requirement that soft or non-real-time tasks nei-
ther produce any cyclic garbage nor allocate any memory.
To date, a multi-heap method is already being developed in
our group.

7We assume that the pure tracing GC task has the same WCET as that
of our tracing task.
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