Hard Real-time Hybrid Garbage Collection with Low Memory Requirement

Yang Chang
University of York, UK, yang@cs.york.ac.uk

Abstract heap. Whilst data on the stack is automatically reclaimed,
data placed on the heap can be reclaimed in several ways:

Current real-time garbage collection algorithms are usu- ¢ Require the programmer to return the memory explic-

ally criticised for their high memory requirements. Even
when consuming nearly 50% of cpu time, some garbage col-
lectors ask for at least twice the memory as really needed.
Thisreport explores the fundamental reason of this problem
and proposes new metrics for real-time garbage collection
algorithm designs. Use of these metrics motivate an algo-
rithm that combines both reference counting and mark-and-
sweep techniques. The use of dual priority scheduling of the
garbage collection task allows spare capacity in the system
to be reclaimed whilst guaranteeing deadlines.

itly - this increases the burden on the programmer and
is error prone, but it is easy to implement (e.g. the

use of malloc and free in Posix) and operates at a fine
granularity.

Use a language with explicit scope rules — the run-time
support system can then monitor the memory and de-
termine when it cafogically no longer be accessed.
Ada adopts this approach; when a reference type goes
out of scope, all the memory associated with that ref-

erence type can be freed; This places a burden on the
programmer, operates at a coarse granularity but is rel-

i atively simple to implement.
1 Introduction y simp p

e Require the run-time support system to monitor the
memory and release chunks that are no longer being
used (garbage collection). This frees the programmer
from the burden of memory management, operates at
a fine granularity but is complex to implement. Java
adopts this approach.

The management of resources is a key component of all
real-time systems. One of the main advantages of using a
high-level language is that it relieves the programmer ef th
burden of dealing with many low-level resource allocation
issues. Activities such as assigning variables to register
memory locations, allocating and freeing memory for dy- From a real-time perspective, the above approaches have
namic data structures, etc., all distract the programnoenfr an increasing impact on the ability to analyze the timing and
the task at hand, which is to produce application code to memory properties of the program. In particular, garbage
perform some functionality. collection may be performed either when the heap is full

Languages like Java remove many of these distractions(there is no free space left) or incrementally (either by an
and provide high-level abstract models that the programmerasynchronous activity or on each allocation request). 4n ei
can use. Unfortunately, for real-time and embedded systemsher case, running the garbage collector may have a signif-
programming there is a conflict. On the one hand, the useicant impact on the response time of a time-critical thread.
of high-level abstractions aid in the software engineedhg Furthermore, different collectors have different ovedwea
the application. On the other hand, embedded and real-timeon the extra memory they need (above the application’s re-
systems often have only limited resources (time and spacequirements).
and these must be carefully managed. Nowhere is this con- Most garbage collectors now in use are tracing collec-
flict more apparent than in the area of memory managementtors. Since application can run indefinitely, garbage celle
Embedded systems usually have a limited amount of mem-tors need to run repeatedly. Each execution usually inslude
ory available; this is because of cost, size, power, weightthree phases:
or other constraints imposed by the overall system require-
ments.

The run-time implementations of most programming
languages provide two essential data structures to help manMarking — marks (or moves) all the reachable objects
age the dynamic memory of the program: the stack and the starting from the references found in the first phase.

Root Scanning — looks for all the references from outside
the heap to somewhere in the heap.

Reclaiming —reclaims all other objects and updates house- andreclaiming cycles is of great importance in a real-time
keeping information for survived objects where nec- environment. If this granularity is too big, the algorithm
essary (compaction would also be performed in this will be unsatisfactory in either, or both, of the following
phase if fragmentation is to be resolved). ways:

A complete execution of the above phases isnamed a GC 1. User tasks will suffer from significant latencies due
cycle which can consume extensive computation resources. to garbage collection activities. These latencies may
Therefore, in a non-real-time system, the user tasks could cause tasks to miss their deadlines or require the sys-
be blocked for a long time waiting for the collector to finish tem to have a more powerful processor than needed.

a GC cycle. The current efforts to make garbage collec-
tion real-time is to reduce the huge GC blocking time by ! ! ‘
performing garbage collection work incrementally or con- latencies. Unfortunately, this may result in an embed-
currently so that the perceived worst-case latency of user ~ ded systems running out of memory or require more
tasks is bounded and relatively low [1, 10, 14, 8]. However, memory than needed.

the low perceived worst-case latency is obtained at the cost
of high space overhead, which is also unfavourable in real-
time embedded systems. The less computation resource i
given to the garbage collector, the more space is needed ang]anaged approach. . .

vice versa. Achieving the correct balance of this tradeoff Recent research on reall-tlme.garbage coIIectlon_ al_go-
is difficult and is one of the main criticisms of the garbage Nthms such as [1, 10, 14, 8] is mainly focused on achieving

collection approach to real-time memory management[3]. Predictability and low worst-case latency. However, we ar-
In this report, we discuss the reasons why tracing real- 9ue that focusing simply on latency hides the real problem.

time garbage collectors cannot perform sufficiently well in 10 Make this clear, a simple example is given as follow:
both temporal and spatial aspects at the same time. wdwo garbage collectors have the same throughput_ but one
present new performance metrics for describing the overal €8N produce 32 bytes of free memory as a whole in every

real-time capability of a garbage collector and use them to 10 microseconds (smaller granularity) whilst the other one

compare some classical garbage collection algorithms. Thet@n Only produce 3200 bytes as a whole in the last 10 mi-

use of these metric motivates the design of a new real-timecroseconds of every millisecond (larger granularity). yrhe

garbage collector. Instead of performing pure tracing brre P€form as bad, or as well, as each other in a non real-
erence counting, we propose a hybrid approach which com-lime environment since the only concern there is through—
bines both the advantages of reference counting and markPUt alwever, the first one out'perforn;]sl the Ialltter one in
and-sweep. The garbage collection task is executed concurd "€a-time efn\rqlronmenltl due to its meC ower latency. 'r‘k
rently with user tasks and scheduled using dual priorities "¢SPective of how small a portion of memory a user tas

way, which can allow the reclamation of spare capacity in requests, the latter one needs 1 millisecond to perform its
the whole system [5] work before the user task can proceed. However, using in-

The remainder of this report is organized as follows cremental techniques, the second collector's work can be
Section 2 explores the reason why current tracing real_divided into small pieces, say 10 microseconds, which are

time garbage collection techniques have the aforemerttione then interleaved with user tasks. This reduces the perteive

drawbacks and proposes our new metrics. Section 3 brieﬂyworst-case latency of user tasks to the same as that of the

introduces the basic idea of our approach. Section 4 re—grgSt collefctfc;.o U_nfortunately, nothing czmes for fr;ae.&n
veals more details of our algorithm and scheduling method. out o increments cannot produce any free mem-

Section 5 presents a static analysis of our garbage callecte ory, ?Ilzcstlon requests beforeb t?re Iaﬁ_th!ncrgm?nt must Ibe
hard real-time system. Section 6 shows some empirical re-Sats led Dy an extra memory buffer. IS sSimple example
sults. Finally, we present our conclusion and future work. explains the importance of garbage collection granulznity

a real-time environment.

. As previously discussed, all the tracing garbage collec-
2 The Need for New Performance Metrics tors need to identify live objects before reclaiming gashag
In the worst case situation where live memory reaches its
Reclaiming unused objects (garbage) with any garbageupper bound, the collector has to scan at least all the live
collection algorithm takes at least two stejmentifying and memory. Since the reclaiming phase of a GC cycle is usu-
reclaiming. Using tracing collectors as an example, they ally short and bounded, the example shown above can sim-
need to go through both root scanning and marking phasesilate the behaviour of tracing collectors very well.
to identify garbage and then recover itin areclaiming phase This suggests that tracing techniques are inherently un-
As we will discuss later, the granularity of suidentifying suitable for real-time systems due to their high granuylarit

2. Significant redundant space will be needed to reduce

The end result will be a system which needs more re-
sources than one which adopts a more application memory-

Irrespective of the scheduling algorithm, any attempt e gi |_Garbage Collection Algorithm [FMP Complexity |

significantly less computation resource to a tracing ctsiec golf“’e”gogaf' Referegce Counting 8 (ggf'bagejsef—size)
will raise the memory requirement dramatically [14]. Ngne_ggpyinZeTr;Z?fg ounting OE‘;J@“)‘W@)
To allow for better performance evaluation of garbage Copying Tracing o Lm:j)

collection algorithms, we define two new metrics which
characterise the granularity of a garbage collector. [First Table 1. Free Memory Producer Complexity
the definition of aree Memory Producer is given below:

Definition 1 The Free Memory Producer of a garbage col-)) o
lector is a logical task which works at the highest prior- €valuating the real-time capabilities of those garbage col
ity and executes the algorithm of that garbage collector |€Ctors which also consume free memory. The reason is that
without trying to divide its work but stops whenever their free memory producer complexities and latencies are
any chunk of new free memory, irrespective of its size, obtained when there is already a memory buffer inherently
is made available to the allocator. preserved for the algorithms to proceed. Copying garbage
collection [2] and train algorithms [9] are such examples.
Moreover, the free memory producer can only be re- Consider now the free memory producer complexities of
leased at the point where some popular garbage collection algorithms in table 1.
As you can see, all of them are 6f(n) complexity,
1. the amount of live memory reaches its upper bound which means they are all linear algorithms. However, the
and there exists garbage with arbitrary size, or values ofn are different.

2. the first time an object(s) becomes garbage after live
memory reached its upper bound when there was no
garbage.

garbage_set_size is the total size of the garbage set (e.g. a
long linked list) being processed

_ object_size is the size of the garbage object (e.g. object or
We call such a point thEree Memory Producer Release array in an OO language) being processed

Point *. Notice that a free memory producer doesn't neces-
sarily need to be a fully functional garbage collector since L,,,, isthe maximum amount of live memory in the whole
it stops whenever any free memory is produced. Thus, itis system
required that the whole system should stop when the free
memory producer stops. Because no garbage can be re- Atfirst glance, the: value of reference counting, partic-
claimed before the free memory producer release point, theularly deferred reference counting, is very promising. How
heap must be big enough to hold all the garbage objects anaver, ‘garbage_set_size” and “object_size” can be also
the live ones. very big, even comparable withl;,.,"” in extreme situ-
Now, we can define two metrics: ations. Therefore, the free memory producer latencies of
reference counting algorithms could be very long in some
Definition 2 The Free Memory Producer Complexity of a systems as well.
garbage collector is the aIgorithmic Complexity of its In order to keep memory requirement low, we suggest
free memory producer. that a real-time garbage collector should try to minimise
the free memory producer complexity and latency but not
at a cost of very high inherent space overheads or very poor
throughput. In the following section, we present our ap-
proach to achieve this goal.

Definition 3 The Free Memory Producer Latency of a
garbage collector is the worst case execution time of
its free memory producer.

Lower free memory producer complexity and latency al-
ways mean that the corresponding collector has lower gran-3 The Hybrid Approach Overview
ularity and is more responsive in producing free memory.
Therefore, the user tasks suffer from shorter worst-case la gpe way to improve the reference counting algorithms is
tency introduced by garbage collection or the overall mem- 1, change their garbage collection granularity. Siebedt an
ory needed is smaller. Assuming throughput is the same, thegjizay [14, 11] both noticed that external fragmentatiom ca
garbage collection algorithm which has lower free memory pe gliminated by dividing objects and arrays into fixed size
producer complexity and latency is more likely to be ap- piocks. This not only resolves the external fragmentation
propriate for real-time systems. Care must be taken Whe”problem but also changes the granularity of garbage collec-
1The Free Memory Producer Release Point doesn't necessisityire tion so that it can reclaim such blocks individually. For a de
a real application but can be created intentionally in mestirograms. ferred reference counting algorithm that maintains olject

- . * H *
and arrays as fixed size blocks (hereafter, we call such al- /" 2 Java class is used as an exanple */

gorithm “fine grained reference counting”), its free memory public class Testbject {

producer has a constant complexity (O(1)) since the block int al, a2,......, all;

size in a given system is fixed. On the other hand, because !

the block size is always s_mall, a very low free memory pro- /*In our system an object of this cl ass*
ducer latency can be achieved as well. Consequently, such a *contains two bl ocks. The menory |ayout*

fine grained reference counting algorithm is more likely to *of the first block can be represented *
be suitable for real-time compared to other reference eount *as: */
ing .algonthms. R!tzgu s work [11] is an example of suph al- struct bl ockl of TestQbject {

gorithm. By reclaiming the same amount of memory imme- i nt reference_counts;

diately before each allocation, there’s no need to preserve void * ref_prev;

any free memory buffer. However, reference counting al- ;’ﬁ'td i ;if —22“ ;aS ad

gorithms cannot reclaim cyclic garbage per se so Ritzau's bl ock2_of Test Obj ect * next bl ock;
pure reference counting algorithm is unable to reclaim all };

the garbage without the help from programmers. Further-

more, his algorithm is a work-based algorithm which is not /*and the second block — */

well integrated with real-time systems. struct bl ock2_of TestChject {
By combining a fine grained reference counting collec- int a5, a6,....., all;
tor with a mark-and-sweep collector, the problem of cyclic bl ock3_of _Test Cbj ect * next_bl ock;
. . /1 this pointer should be NULL
garbage can be resolved. However, such a hybrid algorithm -
has a very special free memory producer. When there exists
reference-counting-recognizable garbage at the free mem- Figure 1. An object’s memory layout

ory producer’s release point, the free memory producer will
have the same complexity and latency as that of the fine
grained reference counting algorithm, i.e. O(1) complexit
and very low latency. On the other hand, when there’s no
such garbage, the free memory producer will have a similar
behaviour as that of a pure tracing algorithm.

The most straightforward way to tackle the second situ-
ation’s long latency is to introduce extra memory. But, this
time, the memory buffer only holds garbage objects that are
in cyclic data structures rather than all of the allocatidus
to the contribution of the reference counting collector. In
many applications, acyclic data accounts for a considerabl
portion or even majority of total memory usage. erenced by any root),

tBytr?ombnt"nng th? twohapproaches, we]f:an also el|mt|_- In our approach, the reference count for each object is
nate the root scanning phase since our reterence countingyiqey into two parts: one is for recording the number

algorithm can provide enough mformauon to the mgrk—and— of roots that reference the object directly (“root count’ fo
sweep collector. Incremental root scanning techniques Canshort); the other one is for recording the number of all

be foundin [2, 7, 14]. the other direct references to that object (“reference toun
for short). Currently, they share a single word in an ob-
4 The Hybrid Garbage Collection Algorithm ject. Moreover, we maintain 2 doubly linked lists: the
tracing-list and thewhite-list. Any object reachable from
the root set must be in and simultaneously only in one of
the aforementioned lists. The objects in the “tracing-list
have the colour of black or grey. In order to determine
the colour of objects, one additional pointer is introduced
4.1 Data Structures for the “tracing-list”. As the name indicates, the “white-
list” contains only white objects and when a tracing GC cy-
As discussed in the previous section, every object in our cle is completed all the objects still in the “white-list"ear
system is maintained as a linked list of fixed size blocks garbage, which will then be moved to another list called
which are set to 32 bytes in the current implementation. the white-list-buffer waiting to be reclaimed. On the other
Which size to choose and how bad the memory accesshand, dead objects recognized by the reference counting al-

penalty is have been studied by Siebert [13]. The pseudo
code in figurel illustrates an object’s layout in memory.

The first block of an object is different from the others
since it needs to store housekeeping information of that ob-
ject. The first word keeps the reference counts. The most
significant 27 bits of the second word and the whole third
word are pointers used to maintain (doubly) linked lists of
objects; Finally, the least significant 5 bits of the second
word records status information for the garbage collector
(e.g. the colour of the object and whether the object is ref-

This section presents details of our hybrid algorithm and
its scheduling properties.

tracing_list

white_list
g sreyv_pointer é
for tracing

to_be free list (objects in to_be_free_list can be of any color)

@ 0@

T g e B o B

Figure 2. Data structures

O = object
l:‘ : block

gorithm must be put into a linked list called tteebe-free-

list. Both thewhite-list-buffer and theto-be-free-list are
processed by the reclaiming task (see section 4.3). Fjnally
the allocator searches free memory to allocate from the be-
ginning of another linked list called theee-list, which is
composed of fixed size blocks.

4.2 \Write Barriers

The most important two write barriers in our algorithm
are thewrite-barrier-for-roots and thewrite-barrier-for-
objects from which all the other write barriers are devel-
oped. They are invoked automatically when user tasks as-
sign a value to a root or to a reference field in an object
(or array); which one to invoke is determined off-line by
the compiler. Assuming a user task is assigning a reference
with value “from” to a root variable or an object field with
its current value “to”, the pseudo code of the corresponding
write barriers is given in figure3 and figure4.

By using these write barriers, we maintain not only the
reference counting algorithm and root information but also
the strong tri-colour invariant [6] which argues that nodida
object should reference any white object and if so, the white
object must be marked grey before the reference can be es-
tablished. Our algorithm is slightly different in that theeu

tasks cannot even build references pointing from a grey or

white object to another white object. Doing this can reduce
the overhead of write barriers by performing less colour
checks but introduce more floating garbageowever, we
argue that more floating garbage should not be a problem in
our algorithm because:

1. The worst case amount of floating garbage in our
current algorithm cannot be improved by restoring

2Floating garbage is garbage that emerges but cannot befideriti
the current GC cycle (it is guaranteed to be identified in #aa BC cycle).

void wite_barrier_for_roots(void *from void *to)

if(from!= NULL) {

//when we assign a valid reference to a root

{ update(add one) the root count of the object
referenced by "front

if(the root count of the object
"fron is one)

{ mark the corresponding bit in object header
to announce that this object is directly
ref erenced by root;

ref erenced by

if(the object referenced by "from is in
"white_list")

{ unlink it fromthe "white_list" and
add the white object to the end of
"tracing_list";

}
el se if(which list the object referenced by
"fronl' should belong hasn’t been
deci ded)
{ add it to the beginning of the
"tracing_list";

}

if(to!'= NULL)

//when we assign a value to a root which stil

//references sonething

{ update(m nus one) the root count of the object
referenced by "to";

if(both root and object counts of the object
referenced by "to" are zero)

if(the object referenced by "to" is in
"white_list" or "white_list_buffer")

{ wunlink it fromits current |ist;
}
el se

{ wunlink it fromthe tracing list;
add it to the "to_be free_list"

el se if(root count of the object referenced

by "to" is zero)
{
clear the corresponding bit in object
header to announce that this object
is no longer directly referenced by
any root;
}

Figure 3. Pseudocode of write barrier for
roots

the original tri-colour invariant and a smaller average
amount is of less importance in real-time systems.

2. The reference counting algorithm can help to identify

void write barrier_for_objects(void *from void *t0) can pe reclaimed and the next block will be processed in

if(from!= NULL) the same way. After this procedure stops, the “white-list-
//when we assign a valid reference to a buffer” will be checked and all the objects currently resid-
Ilreference field of an object ing in it will be reclaimed, one by one without any attempt

{ updat e(add one) the object count of the

obj ect referenced by "front: to process their children. Then, the “to-be-free-list”Ivoié

processed again. When both lists are empty, the reclaiming
if(the object referenced by "fronf is in task will have nothing to do and therefore suspend itself.
"white list") _ , One thing needs to be noticed is that the reference count
{ unlink it fromthe "white_list" and f biect ldb timated if it i t of l
add the white object to the end of of an object could be overestimated if it is a part of a cyclic
"tracing_list"; data structure but not found to be dead at the same time as
other objects in that structure - since no cyclic garbage wil

el se if(which list the object referenced be examined to update the information of its children. This

by "front' should bel ong hasn’t

been deci ded) is not a problem because:
{ add it to the beginning of the)))
"tracing_list"; 1. The objects with overestimated reference counts can

} be identified as garbage by the tracing task after they
} die.
if(to !'= NULL . .
//\(/\hen we assi) gn a value to a reference field 2. These objects are already considered as part of the
//that still references sonething cyclic structure when we perform offline analysis (see
{ updat e(mi nus one) the object count of the section 5).

obj ect referenced by "to";

if(both object and root counts of the The periodically released tracing task starts by moving

obj ect referenced by "to" are zero) all the objects in the “tracing-list” to the empty “whitestf.
_ _ o This is a very efficient operation only involving severalref
if(the object referenced by "to" is in erence assignments. Afterwards, the “white-list” will be

"white_|list" or "white_list_buffer")

{ unlink it fromthe its current Iist: traversed so that all the objects directly referenced bysroo
} can be moved back to the “tracing-list” and all the other ob-
el se jects can be marked white. Marking begins from the head

{ wunlink it fromthe tracing |ist; of the “tracing-list”, continuously moving objects frometh

add it to the "to be free |ist": “white-list” to the “tracing-list”, and completes when tlee

} are no grey objects in the “tracing-list”. We then move all
} the objects in the “white-list” to the end of the “white-Hst
} buffer” and wait for the next period. The deadline of the
Figure 4. Pseudo code of write barrier for ob- tracing task is the same as its period. . _
jects In some cases, the tracing task can also end with acyclic

garbage in the “white-list”. Therefore, the “white-list-
buffer” could contain acyclic garbage as well. If such
garbage is not scanned before reclamation, its children’s
reference counts will be overestimated. Consequently, the
behaviour of the whole system will be unpredictable. In or-
der to avoid this, the processing of the “to-be-free-ligt” i
4.3 Tracing and Reclamation always given precedence over the processing of the “white-
list-buffer” so that any object in the “white-list-buffer”

In our system, tracing and reclamation are performed by Needs to be scanned is scanned and reclaimed before oth-
different GC tasks: theracing task and thereclaiming task, ers are reclaimed.
which are executed concurrently.

Whenever the “to-be-free-list” is not empty, the reclaim- 4.4 Scheduling
ing task will examine every block (objects are composed of
blocks) in it. If any block has any direct child object, the Many real-time applications consist of a mixture or pe-
object count of its direct child must be decreased by 1. If riodic hard real-time tasks and aperiodic soft or non real-
both object count and root count are 0, that direct child ob- time tasks running on the same processor. In order to sat-
ject will be linked to the rear of the “to-be-free-list”. Hav isfy those tasks’ dramatically different requirementsngna
ing been processed, all its direct children, the currentlblo flexible scheduling approaches have been proposed among

some floating garbage.

which, dual priority scheduling is an efficient means of band. Upon its release, it executes at its lower band prior-
identifying and reclaiming spare capacity in favour of soft ity so giving preference to the soft or non real-time tasks
or non real-time tasks whilst guaranteeing hard deadlinesin the middle band. Moreover, each hard real-time task has
[5]. In this section, we demonstrate how the dual prior- a promotion time which is the release time plus the differ-
ity scheduling technique can bring the same flexibility to a ence between its deadline and the worst case response time.
garbage collected hard real-time system such as ours. When the given promotion time has elapsed, the hard real-

As introduced previously, the tracing task in our system time task is promoted to its higher band priority therefore
is a periodic task with a deadline. On the other hand, the guaranteeing its deadline. If, however, the hard real-time
reclaiming task is always ready to run except when it has notask is ever activated before the promotion time has elapsed
garbage to reclaim. In order to make sure that the processothe promotion time should be extended by the length of that
is not occupied by the reclaiming task all the time, we set interval, so that spare capacity can be reclaimed [5].

a limitation on the amount of work the reclaiming task can ~ Applying this technique to our GC tasks only needs a
perform in one period of the tracing task (see section 5). Thefew trivial modifications to the original algorithm. Firste
amount of work can either be stated as computation timeconsider the two GC tasks as a whole and define the pro-
or number of blocks reclaimed. Although the two metrics motion time as the release time plus the difference between
are equivalent in the worst case, choosing different netric the period and the worst case response time of the tracing
can still give the system different behaviours in other sase task. Secondly, instead of giving arbitrary priorities rdh
particularly when the computation time of the reclaiming real-time tasks in the lower band, we need to maintain the
task is underestimated. Currently, we measure the worksame priority order of hard real-time tasks in both upper
amount in terms of the number of blocks reclaimed. Be- and lower band. Moreover, as the reclaiming task finishes
fore the number of blocks reclaimed by the reclaiming task its compulsory work, it goes to the lowest priority in the
in the current period reaches its limit, the reclaiming task lower band and returns to its original lower band priority
always given a higher priority than the tracing task. Other- upon the next release of the tracing task. We will introduce
wise, the reclaiming task has done enough work and giveshow to calculate priorities for the GC tasks in section 5.
way to any other task in the system. At the next release of Another approach we use to reclaim spare capacity is to
the tracing task, this work amount limit will be reset. Thus, set a lower limit on the reclaiming task’s work amount fif,
we can consider the reclaiming task as a special periodicin the previous tracing period, the reclaiming task did any
task as well. extra work.

Because we only need the GC tasks to be schedulable Compared to many other concurrent GC mechanism, our
rather than responsive, they ought to be executed as infreapproach can now ensure that the GC tasks get enough sys-
guently as possible and also as late as possible. On the othgem resources in each period. However, this doesn’t neces-
hand, if the GC tasks miss their deadlines, hard user real-sarily mean that the user tasks’ memory requirements can
time tasks could be blocked for arbitrary time due to the always be satisfied because the user tasks can sometimes
lack of free memory. Therefore, we consider GC tasks asconsume all the free memory before the GC tasks can re-

periodic hard real-time tasks. claim enough garbage objects, although they may reclaim
In order to discuss the scheduling approach, the proper-enough or even more in the near future. To guarantee that
ties of user tasks must be defined first: the real-time tasks with higher priorities than the reciagn

task (in the same band) can never be blocked because of the
1. Priorities are split into 3 bands: Upper, Middle and lack of free memory, we require that the GC tasks should
Lower [5]. always try to preserve enough free memory for them [8].
That is, before the promotion time, as long as the amount of
2. Hard real-time tasks (including both user and GC free memory is lower than a certain value calleg. (see
tasks) are released periodically and execute in eithersection 5), the priority of the GC tasks should be promoted.
the lower or upper band. Otherwise, it should be executed at their original priority

) o _until the promation time.
3. Soft real-time tasks are released aperiodically and thei

riorities are always within the middle band. . .
P Y 5 Static Analysis

4. Soft real-time tasks neither produce any cyclic garbage
nor allocate memory from the heap. Eliminating this In this section, we calculate the scheduling parameters
limitation is part of our future work (see section 7). for the GC tasks. Table 2 summarises the notation used in
this section.
In the dual priority algorithm, a hard real-time task can In order to derive the parameters, we need to calculate
have two priorities one in the upper and one in the lower how much work the GC tasks need to perform. This is dis-

| Symbols | Definitions

P the set of user tasks in the whole system
L; the amount of live memory just before the ith release of therigatask
Fil Fnin the amount of free memory just before the ith release of thengaeisk and its minimum value
A; the amount of allocated (non-free) memory just before the lgaee of the tracing task
CGG;ICGGmaz | the amount of cyclic garbage generated in cycle i and its maxivaloe
FCG; the amount of floating cyclic garbage emerged in cycle i
RG; the amount of acyclic garbage generated in cycle i
ailamaz new memory allocated in cycle i and its maximum value
R; the total amount of garbage reclaimed in cycle i
G the total amount of garbage that can be recognized by the enyatiafi
Lmax the upper bound of live memory consumption of the whole system
H the size of heap
hp(GC) the set of all the users tasks with higher priorities thanGRetasks (promoted)
Fpre the amount of free memory the system should preserve for thetasles with higher priorities than the
reclaiming task (promoted)
Rpre the worst case response time of the reclaiming task (promaiedgkaim as much memory as the user tagks
allocate during that time
T; the period of the user tagk
C; the worst case execution time of the user task
aj the worst case memory allocation executed in one release ab#teask
cgg; the worst case amount of cyclic garbage emerged in one relé#se user task
L; the worst case amount of live memory of the user task
RR the time needed to reclaim one unit of memory in the worst case
TR the time needed to trace one unit of memory in the worst case
MWR the time needed to mark one object white in the worst case
NTM the worst case number of objectsih — Fj... This is also the worst case number of objects need tg be
marked white in a cycle
D the deadline and also period of both reclaiming and tracisigsta

Table 2. Notation definition

cussed first. garbage abandoned by the reclaiming task in cyclel
(zero ifi = 0).
Minimum free memory needed
Liyy = L; +a; — RG; — CGG;)
First, we give some simple formulae without proof since

they are self-explanatory. which means the cumulation of live memory in cycls

all the allocations that happened in cythainus the amount
H =L+ Fiy + FCG;s + Gi — Ri 1) of garbage that emerged in cydle
Aiy1 = Lig1 + FCOG; + Gy — Ry (2 Aiy1=A4;+a; — R; (6)
which means the dead but notyet reclaimed objects atthe paying got the above formulae, we can now try to cal-
beginning of cycle + 1 include the floating cyclic garbage cyjate the minimum amount of free memory needed at the
of cyclei and the garbage not reclaimed due to work limi- beginning of each cycle. Assuming, in the worst case, that

tation on the reclaiming task. L; equalSL,,qe, sinceL; ., must be smaller than or equal
t0 Linas, We getl; 11 — L; < 0. Applying equation 5 to
this gives:
G, =RG; + FCG;_1 +CGG; — FCG; + Gj_1 — R;j_1
for i >(3; a; — RG; — CGG; < 0 @)
and therefore,
Go = RGy + CGGy — FCGy 4)
i — RG; < CGG, 8
which means the garbage objects that can be recognized “ ®
by the end of cyclé include all the acyclic garbage of cycle From equation 6, we get:

1, all the floating cyclic garbage of cycle- 1(zero ifi = 0),
a portion of cyclic garbage emerged in cyé¢land all the Aiq1—A4i=a, — R; 9)

If the value ofR; is not smaller than that af;, there will
be no cumulation of allocated memory at the end of cycle
As discussed previously, we set an upper bound onthe value ~ Fpre + CGGmae = H — Lipaz — CGGraz (14)
of R;. The initial value of such an upper bound for each cy-

cle isanq. Since by reclaiming,,,... garbageA; 1 — A; is and thus,
already guaranteed not to be greater than zero. Cumulation H—L. _F
max pre
of allocated memory can only happen when< a;. In the CGGraz = 5 (15)

worst scenario, the GC tasks in cyélenly reclaims acyclic , .
: ;< ,

garbage of that cycle and the amount of such garbage is less ef‘s defined previously’G'Gi; < CGGinaz SO We can

than the allocations in that cycle. That 8; = RG; and get

RG; < a;. Thus, in the worst case, H — Lygz — Fpre

CGG; < 5
Aip1 — A = a; = RG; (10) Assuming in the worst case that all the hard real-time

Applying inequality 8 to the above equation, we can get: User tasks arrive at the same time (soft real-time user tasks
don't contribute taCGG;), CGG; can be represented as:

(16)

Aisr — A; < CGGi < CGGman (11)

D
which means that if the GC tasks can provide as much CGG; = Z GFJ-‘ 'ngJ) (17)
free memory as’’ GG, at the beginning of any cycle, jeb
the cumulation of the allocated memory can always be sat- Applying this to inequality 16, the deadline of the GC
isfied. However, in order to synchronize reclamation and tasks can finally be calculated.
allocation, we need to preser¥g,.. free memory as well.
Therefore, in order to guarantee that the application never

D H - Lm, x T F re
runs out of memory, we must be able to provide at least Z GTW 'ngj> < ; _— (18)
Fpre + CGG g, free memory at the beginning of any cy- jEP J
cle.

Since D is mainly determined by the heap size and the
rate of cyclic garbage cumulation rather than the rate of al-
location, the value oD could be much higher than its pure
tracing counterpart. Therefore, tracing would be invoked
less frequently.

Next, we present how to determig, ..

Minimum free memaory provided
By changing the form of equation 1, we can obtain:

Fit1=H—-(Liy1+FCG;+G;—R;) (12)

In order to calculate,,,;,,, the upper bound of.;; 1 + R
Gi — R; + FCG; (or A;1, in another word) should be de- Rpre= Y H ;Te-‘ (Cj+ RR- aj):| (19)
termined first: jERP(GO) 7
Theorem 1. If the deadlines of GC tasks are guaranteed, P Rpyre ‘ 20
the amount of allocated (non-free) memory at the very be- pre = Z T] "y (20)
ginning of any release of the tracing task is bounded by J€hp(GC)
Loz + CGGpaz. (the proof of this theorem is included Notice that to calculateR,,. and F,.., we need to
in appendix) know the GC tasks’ priorities in advance since we need

to know who belongs tap(GC). However, if we adopt
ConsequentlyL; 1 + Gi — R; + FCG; < Lmae + DMPO (deadline monotonic priority ordering) mechanism,

CGGmae and equation 12 can be modified as: we should have already known the deadline of the GC tasks
so there’s obviously a recursion. In order to resolve this re

Fin = H — Linge — CGGrag (13) cursion, we need to treat equation 19, 20 and 18 as a group.
At the very beginning, assume that the priorities of GC
Deadline and Priority tasks are the lowest two priorities among all the hard real-

time tasks (within the same band). Then, we can get the cor-
To ensure that the user tasks execute without any block-respondingR,,., Fpre, D and consequently the priorities
ing due to garbage collection, the minimum amount of free corresponding to thé®. If the GC priorities are the same
memory at the beginning of each cycle must be satisfied.as we assumed, that is the result. Otherwise, we should use
Therefore, the new GC priorities to recalculate,,., Fy.., D and the

new priorities until the old version and the new version of in terms of worst value, best value, average value and 99%

the GC tasks’ priorities equal each other worst valué. Notice that the computation time of opera-
tions that are used to protect critical sections are not in-
WCET and Response Time cluded in the aforementioned tests because first, this is a

platform dependent overhead which could be as low as sev-
So far, we have been able to estimate the WCETs and theeral instructions or as high as several function calls fehea

worst case response time of the GC task&C ET},acing, pair of them; Secondly, how frequently such operations are
W CET, eciaiming aNd R, respectively. executed depends on the requirements of applications.
WCET racing = TR-(Lmaz + CGGiaw)+MW R-NTM wiiaie: =2 |
(21) N N
WCETreclaiming = RR - amaz (22) 0 "
R é 0.2
R c — gc . C E
e > U T;] J) g
i€hp(GC)
+WCETtracing + WCETreclaiming (23) orp
We can now compare the GC tasks’ worst case response ey @ @
time R . with their deadlineD. If R, < D, the GC tasks 0 e S
are schedulable. Moreover, we can also use the parameters
of the GC tasks (e.g. the period), WCETi4cing and Figure 5. Write Barrier Computation Time

W CET ¢cciaiming) t0 €stimate the response time of the hard
real-time tasks with lower priorities than those of the GC
tasks (within the same band). If their response time values

are smaller than their deadlines, they are also schedulable o ‘ ‘ e o
Otherwise, the designer has to redesign the system to reduce 08} - - g
either the memory usage or the WCET of some of the user ork

tasks.

6 Empirical Results

04 F

03 F

execution time(microseconds)

We have implemented our algorithm by modifying GCJ

compiler (the GNU compiler for the Java language, ver- 0z}

sion 3.3.3) and jRate library (version 0.3.6)[4], which is a oak i
RTSJ-compliant real-time extension to the GCJ compiler. [N

All the results presented in this section were obtained on a ’ RR ™ MR

1.5 GHz Intel CPU with 1MB L2 cache and 512MB RAM,
running SUSE Linux 9.3 together with “linubib” architec-
ture MaRTE OS version 1.57.

For the purpose of this report, impacts of our algorithm 5¢ gefined previouslyRR is the worst case computa-
on the user task performance are studied first. This includes;g time needed to reclaim a memory block. If any acyclic
testings on worst case computation time of both object a”dgarbage exists at the free memory producer release point,

root write barriers (see figure 5). In order to perform the s is exactly the free memory producer latency. Other-

analysis described in the previous sectidtit, TR and ise the free memory producer latency of our approach is
MW R must be obtained from experiments as well (see fig- comparable with that of a pure tracing collector.

ure 6). All the testings are performed 1000 times in & roW \wji these information, we can perform analysis on hard
through the worst case path and the results are presentepea|_time task sets given in table 3 and 4. All the values

3Unfortunately, this process sometimes does not convergegsoay in tables hereafter are measured in milliseconds for time or

have to use other priority assignment techniques for the Gktdor ex- bytes for space. Priorities are assigned according to DMPO.
ample, perhaps using some global optimization approachessigdnetic
algorithms . 499% worst value means the highest value below the top 1% values

Figure 6. RR, TR and MW R Results

[Tasks[C; [T;(D;)) | a; [cgg; [Lj |

T
free memory —+—

1 1 5 320 0 320 1000
2 2 10 960 | 192 | 1600 000 ‘s
3 5 50 1920 | 320 | 3200 " \
4 12 120 5760 | 640 | 9600 \
— 700 F %
Table 3. Hard Realtime Task Set 1 £ o \\\\\ \ M \
§ 500 ‘ L 3 k
AL VAN AN
[Tasks| C; [Ti(D) | a5 [cgg; [L] » \ \ \
1 1 5 640 | 192 | 640
2 2 10 1920 | 576 | 3200 200
3 5 50 3840 | 1152 | 6400 100 =
4 12 120 11520 | 3456 | 19200 .

0 400 800 1200 1600 2000 2400
allocation id

Table 4. Hard Realtime Task Set 2
Figure 7. Task set 1 with Promotion time 10ms

Parameters taskl task2
H 34752(1.4& maz) | 80768(2.1%max)
Fpre 3520 7040 ‘
D 120 120 wuoa free memory —-—
Amas 30720 61440
WCOET rqcing 5.14 11.22 o0 \
WCET cciaiming 3.07 6.13 800
Rge 24.21 38.35 - \
utilization 6.84% 14.46% é . \\ \\ h’
Table 5. GC parameters g s A \
SRR TN
300 \ \ \
8 S AL (A (A W
Furthermore, a non-real-time task which simply performs o0 \ Fpre
an infinite loop executes at a priority lower than all the task , \
in table 3 or 4. For simplicity and without loss of gener- ° 0 80 O g
ality, only the GC tasks are scheduled according to dual-
priority algorithm. We'll apply dual-priority schedulintp Figure 8. Task set 1 with Promotion time 90ms
other hard real-time tasks in the near future.
The execution time of a pair of operations that protect
critical sections on our platform 2.4 microseconds ac-
cording to our test. As a result, we adjust tRi& t0 3.19 memory usage of our system. Both configurations for both
microseconds'R to 3.20 microseconds and finally/ WR task sets can generate safe execution which means no dead-
to 2.47 microseconds. To perform static analysis,.. iS line is missed and no task is blocked by the garbage collec-

calculated first according to [10]. The maximum amount tor, The memory usages of both task sets are presented in
of live memory of all the hard real-time tasks in task set 1 figyre 7, 8,9 and 10

and 2 are estimated as 14080 and 27520 bytes respectively These figures illustrates the fundamental difference be-
and we set the maximum amount of static global live mem- yyeen our approach and a pure tracing one, which is that
ory to be 9344 bytes for both task sets. Therefore, the totalihe amount of free memory in our system no longer de-
amount of live memory cannot exceed 23424 bytes for task creases monotonically in each GC period. This is because

set 1 or 36864 bytes for task set 2. By performing static o approach possesses a relatively lower free memory pro-
analysis with the given heap sizes, we assign GC tasks withycer |atency. Not only tracing but also reclamation can be
promoted priorities between task 3 and 4 for both task SetSperformed incrementally. Secondly, the later the pronmtio

and all the other parameters needed by the GC tasks are preime is, the smaller the space margin we'll have. This sup-

sented in table 5. ports our argument in section 4.4, which suggests that users

Given these parameters, we execute both task sets withasks should be given preference over GC tasks by squeez-
our garbage collector to justify the correctness of our-algo ing the heap harder.

rithm and static analysis. Two different GC promotion time
are selected for each task set to compare their impacts on the >Allocation id = means thecth allocation.

T
free memory —+—

2400 \
2200

2000 £ \
1800

1600

1400

1200

~

1000

-

free memory(blocks)

-

7 Conclusion and Future Work

This report has illustrated the inherent limitation of cur-
rently used real-time tracing garbage collectors and pro-
poses two new metrics that can better describe the overall
real-time capability of a garbage collector. These metrics
motivate the development of a hybrid approach to garbage
collection. Such an approach has been described along with
its scheduling parameters, static analysis and some empiri

Fpre 1

0 800 1600 2400 3200 4000 4800
allocation id

Figure 9. Task set 2 with Promotion time 10ms

y
free memory ——

“\

2000 \\

o\ \ NN
\ \ 0\ \
\

1400

1200 \
1000 \

\ \ |\
A\

\ \

200

free memory(blocks)

\-

\
\
\

\
\
\
\
\

Fpre 3

0

0 800 1600 2400 3200 4000 4800
allocation id

Figure 10. Task set 2 with Promotion time 80ms

To compare our algorithm with a pure tracing one, we
choose [12] as a rival. According to their analysis, one can-
not calculate a deadline for a pure tracing GC task with task
set 1 but for task set 2, we can expect the longest deadline
to be 20 milliseconds which implies a 56.1% utilizaffon
On the other hand, if we assume the priority and utilization
of the pure tracing GC task are the same as our GC tasks,
the pure tracing period will be 75.13 milliseconds for task
set 1 or 77.6 milliseconds for task set 2. According to [12],
this corresponds to a heap of 68224 bytes (2,94.) for
task set 1 or 126464 bytes (343,.) for task set 2. By
contrast, the heap sizes of our system vary from LL,48.
t0 2.19,,04-

6We assume that the pure tracing GC task has the same WCET as that
of our tracing task.

cal results. The benefit of our approach includes:

e Due to the contribution of reference counting algo-

rithm and the fine grained model, our approach can
achieve relatively low memory consumption.

We make reference counting and mark-and-sweep co-
operate with each other. On the one hand, the occa-
sionally invoked mark-and-sweep can help reference
counting find cyclic garbage. On the other hand, ref-
erence counting can eliminate the root scanning phase
for the mark-and-sweep collection and make it much
less frequent so that a greater amount of unnecessary
system resource consumption is avoided.

Our approach is flexible enough so that the GC tasks
can adapt to different applications and heap sizes au-
tomatically: the smaller the heap size is or the more
cyclic garbage, the shorter the deadline could be. For
a system which is mainly composed of acyclic data
structures, the deadline of the GC tasks could be very
long. However, for a system which is mainly com-
posed of cyclic data structures, our approach grace-
fully degrades. Fortunately, the above analysis pro-
vides the designers with a way to quantitatively deter-
mine whether our approach is suitable for their appli-
cation or not.

We can provide real-time guarantees for all the hard
real-time tasks as in non-garbage-collected real-time
systems.

All the hard real-time tasks follow dual priority
scheduling approach so spare capacity can be re-
claimed and the responsiveness of soft real-time tasks
is improved.

Our current work is now focused on the soft real-time
tasks and how their impact on the overall memory consump-
tion can be identified and kept under control.

References

[1] D. F. Bacon, P. Cheng, and V. Rajan. The metronome: A

simpler approach to garbage collection in real-time systems.
In Proceedings of OTM 2003 Workshops, pages 466—478.

[2] H. G. Baker. List processing in real time on a serial com-
puter. Communications of the ACM, 21(4):280-294.

[3] A. Borg, A. Wellings, C. Gill, and R. K. Cytron. Real-time Liv1+G; — R+ FCG; < Ligz + CGG e (25)
memory management: Life and times. Pnoceedings of
Euromicro 2006. On the other hand, whe@; — R; > 0, R; reaches its

[4] A. Corsaro and D. C. Schmidt. The design and performance ypper bound,,,... Consequently, we only need to prove

of the jrate real-time java implementation. Mnoceedings that:
of the 4th International Symposium on Distributed Objects
and Applications.

[5] R. ngis and A. Wellings. Dual priority scheduling.. Rro- Lis1 + Gi — amas + FCGi < Linag + CGGas (26)
ceedings of the 16th | EEE Real-Time Systems Symposium.

[6] E.W. Dijkstra. On-the-fly garbage collection: An exercise in sincel: . — L - RG. —CGG, andG: = RG.
cooperationCommunications of the ACM, 21(11):966-975. >~ fé’GG-ng“ZCG- +lG' -~ }% V\;e can Z;
[7] B. Goldberg. Incremental garbage collection without tags. i1 ‘ ¢ i1 =l 9

In Proceedings of the 4th European Symposiumon Program-
ming.

[8] R. Henriksson.Scheduling Garbage Collection in Embed- Liti+ Gi = amee + FOG;i = Li + Gior — Ria
ded Systems. PhD thesis, Lund University. +FCG;—1 + a; — maz (27)
[9] R. L. Hudson and J. E. B. Moss. Incremental collection of
mature objects. IfProceedings of the International \\ork- Becauses; is defined to be smaller that}, gz, Liv1 +
shop on Memory Management. G; — amaz + FCG; is bounded by:

[10] T.Kim, N. Chang, and H. Shin. Joint scheduling of garbage
collector and hard real-time tasks for embedded applica-
tions. Journal of Systems and Software, 58(3):247-260. Lis1+Gi—amaz+FCG; < Li+Gi_1—Ri_1+FCG;_,
[11] T. Ritzau. Hard real-time reference counting without ex- (28)
ternal fragmentation. Idava Optimization Srategies for As we have provedL; + G;_1 — R, + FCG,_, is
Embedded Systems Workshop at ETAPS 2001. bounded byL,,., + CGGyras WhenG; y — Ri_1 = 0.

[12] S. G. Robertz and R. Henriksson. Time-triggered garbage . ! . . : .
collection—robust and adaptive real-time gc scheduling for Thus, inequality 26 is proved in the situation wheéfe.; —

embedded systems. Rroceedings of LCTES 2003, pages Ri_1=0.

93-102. If however,G;_1 — R;_1 > 0, L; + G;_1 — R;_1 +
[13] F. Siebert. Eliminating external fragmentation in a non- FCG;_1isboundedby; | + G;_ 2 — R, > + FCG;_.

moving garbage collector for java. ompilers, Architec- Therefore, we only need to prove that + Gy — Ry +

tures and Synthesis for Embedded systems(CASES2000). FCGy € Lpaz + CGGras. Since this has already been
[14] F. Siebert. Hard Realtime Garbage Collection in Modern proved ifGo — Ry = 0, we only consider the situation when

Ojbect Oriented Programming Languages. PhD thesis, Uni- Go— Ry > 0.
versity of Karlsruhe, May 2002.

_ be developed:
Appendix

Theorem 1. If the deadlines of GC tasks are guaranteed, L1+ Go = Ro + FCGo = Lo + a0 — amaezr < Lo (29)
the amount of allocated (non-free) memory at the very
beginning of any release of tracing task is bounded by
Lma:c + CGGmam-

and therefore,

Proof. Since at the first release, this is automatically guar- L1+Go—Ro+FCGo < Limaz < Lmaz+CGGimas (30)

anteed, proving the above theorem is equivalent to proving:

L+ G; — R+ FCG; < Lypazr + CGG par With i > 0.
WhenGi —R; =0,

which completes the proof. O

Liy1+G,— R, +FCG; =L;11+ FCG; (24)

In the worst case scenario, all the cyclic garbage objects
emerged in cyclé become floating so the upper bound of
FCG@G,; is the same as that 6fGG;, i.e. CGG,,0.- There-
fore,

Based on equations 4 and 5, the following equation can

