
Hard Real-time Hybrid Garbage Collection with Low Memory Requirement

Yang Chang
University of York, UK, yang@cs.york.ac.uk

Abstract

Current real-time garbage collection algorithms are usu-
ally criticised for their high memory requirements. Even
when consuming nearly 50% of cpu time, some garbage col-
lectors ask for at least twice the memory as really needed.
This report explores the fundamental reason of this problem
and proposes new metrics for real-time garbage collection
algorithm designs. Use of these metrics motivate an algo-
rithm that combines both reference counting and mark-and-
sweep techniques. The use of dual priority scheduling of the
garbage collection task allows spare capacity in the system
to be reclaimed whilst guaranteeing deadlines.

1 Introduction

The management of resources is a key component of all
real-time systems. One of the main advantages of using a
high-level language is that it relieves the programmer of the
burden of dealing with many low-level resource allocation
issues. Activities such as assigning variables to registers or
memory locations, allocating and freeing memory for dy-
namic data structures, etc., all distract the programmer from
the task at hand, which is to produce application code to
perform some functionality.

Languages like Java remove many of these distractions
and provide high-level abstract models that the programmer
can use. Unfortunately, for real-time and embedded systems
programming there is a conflict. On the one hand, the use
of high-level abstractions aid in the software engineeringof
the application. On the other hand, embedded and real-time
systems often have only limited resources (time and space)
and these must be carefully managed. Nowhere is this con-
flict more apparent than in the area of memory management.
Embedded systems usually have a limited amount of mem-
ory available; this is because of cost, size, power, weight
or other constraints imposed by the overall system require-
ments.

The run-time implementations of most programming
languages provide two essential data structures to help man-
age the dynamic memory of the program: the stack and the

heap. Whilst data on the stack is automatically reclaimed,
data placed on the heap can be reclaimed in several ways:

• Require the programmer to return the memory explic-
itly - this increases the burden on the programmer and
is error prone, but it is easy to implement (e.g. the
use of malloc and free in Posix) and operates at a fine
granularity.

• Use a language with explicit scope rules – the run-time
support system can then monitor the memory and de-
termine when it canlogically no longer be accessed.
Ada adopts this approach; when a reference type goes
out of scope, all the memory associated with that ref-
erence type can be freed; This places a burden on the
programmer, operates at a coarse granularity but is rel-
atively simple to implement.

• Require the run-time support system to monitor the
memory and release chunks that are no longer being
used (garbage collection). This frees the programmer
from the burden of memory management, operates at
a fine granularity but is complex to implement. Java
adopts this approach.

From a real-time perspective, the above approaches have
an increasing impact on the ability to analyze the timing and
memory properties of the program. In particular, garbage
collection may be performed either when the heap is full
(there is no free space left) or incrementally (either by an
asynchronous activity or on each allocation request). In ei-
ther case, running the garbage collector may have a signif-
icant impact on the response time of a time-critical thread.
Furthermore, different collectors have different overheads
on the extra memory they need (above the application’s re-
quirements).

Most garbage collectors now in use are tracing collec-
tors. Since application can run indefinitely, garbage collec-
tors need to run repeatedly. Each execution usually includes
three phases:

Root Scanning – looks for all the references from outside
the heap to somewhere in the heap.

Marking – marks (or moves) all the reachable objects
starting from the references found in the first phase.

Reclaiming – reclaims all other objects and updates house-
keeping information for survived objects where nec-
essary (compaction would also be performed in this
phase if fragmentation is to be resolved).

A complete execution of the above phases is named a GC
cycle which can consume extensive computation resources.
Therefore, in a non-real-time system, the user tasks could
be blocked for a long time waiting for the collector to finish
a GC cycle. The current efforts to make garbage collec-
tion real-time is to reduce the huge GC blocking time by
performing garbage collection work incrementally or con-
currently so that the perceived worst-case latency of user
tasks is bounded and relatively low [1, 10, 14, 8]. However,
the low perceived worst-case latency is obtained at the cost
of high space overhead, which is also unfavourable in real-
time embedded systems. The less computation resource is
given to the garbage collector, the more space is needed and
vice versa. Achieving the correct balance of this tradeoff
is difficult and is one of the main criticisms of the garbage
collection approach to real-time memory management[3].

In this report, we discuss the reasons why tracing real-
time garbage collectors cannot perform sufficiently well in
both temporal and spatial aspects at the same time. We
present new performance metrics for describing the overall
real-time capability of a garbage collector and use them to
compare some classical garbage collection algorithms. The
use of these metric motivates the design of a new real-time
garbage collector. Instead of performing pure tracing or ref-
erence counting, we propose a hybrid approach which com-
bines both the advantages of reference counting and mark-
and-sweep. The garbage collection task is executed concur-
rently with user tasks and scheduled using dual priorities
way, which can allow the reclamation of spare capacity in
the whole system [5].

The remainder of this report is organized as follows.
Section 2 explores the reason why current tracing real-
time garbage collection techniques have the aforementioned
drawbacks and proposes our new metrics. Section 3 briefly
introduces the basic idea of our approach. Section 4 re-
veals more details of our algorithm and scheduling method.
Section 5 presents a static analysis of our garbage collected
hard real-time system. Section 6 shows some empirical re-
sults. Finally, we present our conclusion and future work.

2 The Need for New Performance Metrics

Reclaiming unused objects (garbage) with any garbage
collection algorithm takes at least two steps:identifying and
reclaiming. Using tracing collectors as an example, they
need to go through both root scanning and marking phases
to identify garbage and then recover it in a reclaiming phase.
As we will discuss later, the granularity of suchidentifying

andreclaiming cycles is of great importance in a real-time
environment. If this granularity is too big, the algorithm
will be unsatisfactory in either, or both, of the following
ways:

1. User tasks will suffer from significant latencies due
to garbage collection activities. These latencies may
cause tasks to miss their deadlines or require the sys-
tem to have a more powerful processor than needed.

2. Significant redundant space will be needed to reduce
latencies. Unfortunately, this may result in an embed-
ded systems running out of memory or require more
memory than needed.

The end result will be a system which needs more re-
sources than one which adopts a more application memory-
managed approach.

Recent research on real-time garbage collection algo-
rithms such as [1, 10, 14, 8] is mainly focused on achieving
predictability and low worst-case latency. However, we ar-
gue that focusing simply on latency hides the real problem.
To make this clear, a simple example is given as follow:
two garbage collectors have the same throughput but one
can produce 32 bytes of free memory as a whole in every
10 microseconds (smaller granularity) whilst the other one
can only produce 3200 bytes as a whole in the last 10 mi-
croseconds of every millisecond (larger granularity). They
perform as bad, or as well, as each other in a non real-
time environment since the only concern there is through-
put. However, the first one outperforms the latter one in
a real-time environment due to its much lower latency. Ir-
respective of how small a portion of memory a user task
requests, the latter one needs 1 millisecond to perform its
work before the user task can proceed. However, using in-
cremental techniques, the second collector’s work can be
divided into small pieces, say 10 microseconds, which are
then interleaved with user tasks. This reduces the perceived
worst-case latency of user tasks to the same as that of the
first collector. Unfortunately, nothing comes for free. Since
99 out of 100 increments cannot produce any free mem-
ory, allocation requests before the last increment must be
satisfied by an extra memory buffer. This simple example
explains the importance of garbage collection granularityin
a real-time environment.

As previously discussed, all the tracing garbage collec-
tors need to identify live objects before reclaiming garbage.
In the worst case situation where live memory reaches its
upper bound, the collector has to scan at least all the live
memory. Since the reclaiming phase of a GC cycle is usu-
ally short and bounded, the example shown above can sim-
ulate the behaviour of tracing collectors very well.

This suggests that tracing techniques are inherently un-
suitable for real-time systems due to their high granularity.

Irrespective of the scheduling algorithm, any attempt to give
significantly less computation resource to a tracing collector
will raise the memory requirement dramatically [14].

To allow for better performance evaluation of garbage
collection algorithms, we define two new metrics which
characterise the granularity of a garbage collector. First,
the definition of aFree Memory Producer is given below:

Definition 1 TheFree Memory Producer of a garbage col-
lector is a logical task which works at the highest prior-
ity and executes the algorithm of that garbage collector
without trying to divide its work but stops whenever
any chunk of new free memory, irrespective of its size,
is made available to the allocator.

Moreover, the free memory producer can only be re-
leased at the point where

1. the amount of live memory reaches its upper bound
and there exists garbage with arbitrary size, or

2. the first time an object(s) becomes garbage after live
memory reached its upper bound when there was no
garbage.

We call such a point theFree Memory Producer Release
Point 1. Notice that a free memory producer doesn’t neces-
sarily need to be a fully functional garbage collector since
it stops whenever any free memory is produced. Thus, it is
required that the whole system should stop when the free
memory producer stops. Because no garbage can be re-
claimed before the free memory producer release point, the
heap must be big enough to hold all the garbage objects and
the live ones.

Now, we can define two metrics:

Definition 2 The Free Memory Producer Complexity of a
garbage collector is the algorithmic complexity of its
free memory producer.

Definition 3 The Free Memory Producer Latency of a
garbage collector is the worst case execution time of
its free memory producer.

Lower free memory producer complexity and latency al-
ways mean that the corresponding collector has lower gran-
ularity and is more responsive in producing free memory.
Therefore, the user tasks suffer from shorter worst-case la-
tency introduced by garbage collection or the overall mem-
ory needed is smaller. Assuming throughput is the same, the
garbage collection algorithm which has lower free memory
producer complexity and latency is more likely to be ap-
propriate for real-time systems. Care must be taken when

1The Free Memory Producer Release Point doesn’t necessarily exist in
a real application but can be created intentionally in testing programs.

Garbage Collection Algorithm FMP Complexity

Conventional Reference Counting O(garbage set size)
Deferred Reference Counting O(object size)
Non-copying Tracing O(Lmax)
Copying Tracing O(Lmax)

Table 1. Free Memory Producer Complexity

evaluating the real-time capabilities of those garbage col-
lectors which also consume free memory. The reason is that
their free memory producer complexities and latencies are
obtained when there is already a memory buffer inherently
preserved for the algorithms to proceed. Copying garbage
collection [2] and train algorithms [9] are such examples.

Consider now the free memory producer complexities of
some popular garbage collection algorithms in table 1.

As you can see, all of them are ofO(n) complexity,
which means they are all linear algorithms. However, the
values ofn are different.

garbage set size is the total size of the garbage set (e.g. a
long linked list) being processed

object size is the size of the garbage object (e.g. object or
array in an OO language) being processed

Lmax is the maximum amount of live memory in the whole
system

At first glance, then value of reference counting, partic-
ularly deferred reference counting, is very promising. How-
ever, “garbage set size” and “object size” can be also
very big, even comparable with “Lmax” in extreme situ-
ations. Therefore, the free memory producer latencies of
reference counting algorithms could be very long in some
systems as well.

In order to keep memory requirement low, we suggest
that a real-time garbage collector should try to minimise
the free memory producer complexity and latency but not
at a cost of very high inherent space overheads or very poor
throughput. In the following section, we present our ap-
proach to achieve this goal.

3 The Hybrid Approach Overview

One way to improve the reference counting algorithms is
to change their garbage collection granularity. Siebert and
Ritzau [14, 11] both noticed that external fragmentation can
be eliminated by dividing objects and arrays into fixed size
blocks. This not only resolves the external fragmentation
problem but also changes the granularity of garbage collec-
tion so that it can reclaim such blocks individually. For a de-
ferred reference counting algorithm that maintains objects

and arrays as fixed size blocks (hereafter, we call such al-
gorithm “fine grained reference counting”), its free memory
producer has a constant complexity (O(1)) since the block
size in a given system is fixed. On the other hand, because
the block size is always small, a very low free memory pro-
ducer latency can be achieved as well. Consequently, such a
fine grained reference counting algorithm is more likely to
be suitable for real-time compared to other reference count-
ing algorithms. Ritzau’s work [11] is an example of such al-
gorithm. By reclaiming the same amount of memory imme-
diately before each allocation, there’s no need to preserve
any free memory buffer. However, reference counting al-
gorithms cannot reclaim cyclic garbage per se so Ritzau’s
pure reference counting algorithm is unable to reclaim all
the garbage without the help from programmers. Further-
more, his algorithm is a work-based algorithm which is not
well integrated with real-time systems.

By combining a fine grained reference counting collec-
tor with a mark-and-sweep collector, the problem of cyclic
garbage can be resolved. However, such a hybrid algorithm
has a very special free memory producer. When there exists
reference-counting-recognizable garbage at the free mem-
ory producer’s release point, the free memory producer will
have the same complexity and latency as that of the fine
grained reference counting algorithm, i.e. O(1) complexity
and very low latency. On the other hand, when there’s no
such garbage, the free memory producer will have a similar
behaviour as that of a pure tracing algorithm.

The most straightforward way to tackle the second situ-
ation’s long latency is to introduce extra memory. But, this
time, the memory buffer only holds garbage objects that are
in cyclic data structures rather than all of the allocationsdue
to the contribution of the reference counting collector. In
many applications, acyclic data accounts for a considerable
portion or even majority of total memory usage.

By combining the two approaches, we can also elimi-
nate the root scanning phase since our reference counting
algorithm can provide enough information to the mark-and-
sweep collector. Incremental root scanning techniques can
be found in [2, 7, 14].

4 The Hybrid Garbage Collection Algorithm

This section presents details of our hybrid algorithm and
its scheduling properties.

4.1 Data Structures

As discussed in the previous section, every object in our
system is maintained as a linked list of fixed size blocks
which are set to 32 bytes in the current implementation.
Which size to choose and how bad the memory access

/* a Java class is used as an example */

public class TestObject {
int a1, a2,......, a11;

}

/*In our system, an object of this class*
contains two blocks. The memory layout
*of the first block can be represented *
*as: */

struct block1_of_TestObject {
int reference_counts;
void * ref_prev;
void * ref_next;
int a1, a2, a3, a4;
block2_of_TestObject * next_block;

};

/* and the second block */

struct block2_of_TestObject {
int a5, a6,.....,a11;
block3_of_TestObject * next_block;
// this pointer should be NULL

};

Figure 1. An object’s memory layout

penalty is have been studied by Siebert [13]. The pseudo
code in figure1 illustrates an object’s layout in memory.

The first block of an object is different from the others
since it needs to store housekeeping information of that ob-
ject. The first word keeps the reference counts. The most
significant 27 bits of the second word and the whole third
word are pointers used to maintain (doubly) linked lists of
objects; Finally, the least significant 5 bits of the second
word records status information for the garbage collector
(e.g. the colour of the object and whether the object is ref-
erenced by any root).

In our approach, the reference count for each object is
divided into two parts: one is for recording the number
of roots that reference the object directly (“root count” for
short); the other one is for recording the number of all
the other direct references to that object (“reference count”
for short). Currently, they share a single word in an ob-
ject. Moreover, we maintain 2 doubly linked lists: the
tracing-list and thewhite-list. Any object reachable from
the root set must be in and simultaneously only in one of
the aforementioned lists. The objects in the “tracing-list”
have the colour of black or grey. In order to determine
the colour of objects, one additional pointer is introduced
for the “tracing-list”. As the name indicates, the “white-
list” contains only white objects and when a tracing GC cy-
cle is completed all the objects still in the “white-list” are
garbage, which will then be moved to another list called
the white-list-buffer waiting to be reclaimed. On the other
hand, dead objects recognized by the reference counting al-

Figure 2. Data structures

gorithm must be put into a linked list called theto-be-free-
list. Both thewhite-list-buffer and theto-be-free-list are
processed by the reclaiming task (see section 4.3). Finally,
the allocator searches free memory to allocate from the be-
ginning of another linked list called thefree-list, which is
composed of fixed size blocks.

4.2 Write Barriers

The most important two write barriers in our algorithm
are thewrite-barrier-for-roots and thewrite-barrier-for-
objects from which all the other write barriers are devel-
oped. They are invoked automatically when user tasks as-
sign a value to a root or to a reference field in an object
(or array); which one to invoke is determined off-line by
the compiler. Assuming a user task is assigning a reference
with value “from” to a root variable or an object field with
its current value “to”, the pseudo code of the corresponding
write barriers is given in figure3 and figure4.

By using these write barriers, we maintain not only the
reference counting algorithm and root information but also
the strong tri-colour invariant [6] which argues that no black
object should reference any white object and if so, the white
object must be marked grey before the reference can be es-
tablished. Our algorithm is slightly different in that the user
tasks cannot even build references pointing from a grey or
white object to another white object. Doing this can reduce
the overhead of write barriers by performing less colour
checks but introduce more floating garbage2. However, we
argue that more floating garbage should not be a problem in
our algorithm because:

1. The worst case amount of floating garbage in our
current algorithm cannot be improved by restoring

2Floating garbage is garbage that emerges but cannot be identified in
the current GC cycle (it is guaranteed to be identified in the next GC cycle).

void write_barrier_for_roots(void *from, void *to)
{

if(from != NULL) {
//when we assign a valid reference to a root
{ update(add one) the root count of the object

referenced by "from";

if(the root count of the object referenced by
"from" is one)

{ mark the corresponding bit in object header
to announce that this object is directly
referenced by root;

if(the object referenced by "from" is in
"white_list")

{ unlink it from the "white_list" and
add the white object to the end of
"tracing_list";

}
else if(which list the object referenced by

"from" should belong hasn’t been
decided)

{ add it to the beginning of the
"tracing_list";

}
}

}

if(to != NULL)
//when we assign a value to a root which still
//references something
{ update(minus one) the root count of the object

referenced by "to";

if(both root and object counts of the object
referenced by "to" are zero)

{
if(the object referenced by "to" is in

"white_list" or "white_list_buffer")
{ unlink it from its current list;
}
else
{ unlink it from the tracing list;
}
add it to the "to_be_free_list";

}
else if(root count of the object referenced

by "to" is zero)
{

clear the corresponding bit in object
header to announce that this object
is no longer directly referenced by
any root;

}
}

}

Figure 3. Pseudocode of write barrier for
roots

the original tri-colour invariant and a smaller average
amount is of less importance in real-time systems.

2. The reference counting algorithm can help to identify

void write_barrier_for_objects(void *from, void *to)
{

if(from != NULL)
//when we assign a valid reference to a
//reference field of an object
{ update(add one) the object count of the

object referenced by "from";

if(the object referenced by "from" is in
"white_list")

{ unlink it from the "white_list" and
add the white object to the end of
"tracing_list";

}
else if(which list the object referenced

by "from" should belong hasn’t
been decided)

{ add it to the beginning of the
"tracing_list";

}
}

if(to != NULL)
//when we assign a value to a reference field
//that still references something
{ update(minus one) the object count of the

object referenced by "to";

if(both object and root counts of the
object referenced by "to" are zero)

{
if(the object referenced by "to" is in

"white_list" or "white_list_buffer")
{ unlink it from the its current list;
}
else
{ unlink it from the tracing list;
}
add it to the "to_be_free_list";

}
}

}

Figure 4. Pseudo code of write barrier for ob-
jects

some floating garbage.

4.3 Tracing and Reclamation

In our system, tracing and reclamation are performed by
different GC tasks: thetracing task and thereclaiming task,
which are executed concurrently.

Whenever the “to-be-free-list” is not empty, the reclaim-
ing task will examine every block (objects are composed of
blocks) in it. If any block has any direct child object, the
object count of its direct child must be decreased by 1. If
both object count and root count are 0, that direct child ob-
ject will be linked to the rear of the “to-be-free-list”. Hav-
ing been processed, all its direct children, the current block

can be reclaimed and the next block will be processed in
the same way. After this procedure stops, the “white-list-
buffer” will be checked and all the objects currently resid-
ing in it will be reclaimed, one by one without any attempt
to process their children. Then, the “to-be-free-list” will be
processed again. When both lists are empty, the reclaiming
task will have nothing to do and therefore suspend itself.

One thing needs to be noticed is that the reference count
of an object could be overestimated if it is a part of a cyclic
data structure but not found to be dead at the same time as
other objects in that structure - since no cyclic garbage will
be examined to update the information of its children. This
is not a problem because:

1. The objects with overestimated reference counts can
be identified as garbage by the tracing task after they
die.

2. These objects are already considered as part of the
cyclic structure when we perform offline analysis (see
section 5).

The periodically released tracing task starts by moving
all the objects in the “tracing-list” to the empty “white-list”.
This is a very efficient operation only involving several ref-
erence assignments. Afterwards, the “white-list” will be
traversed so that all the objects directly referenced by roots
can be moved back to the “tracing-list” and all the other ob-
jects can be marked white. Marking begins from the head
of the “tracing-list”, continuously moving objects from the
“white-list” to the “tracing-list”, and completes when there
are no grey objects in the “tracing-list”. We then move all
the objects in the “white-list” to the end of the “white-list-
buffer” and wait for the next period. The deadline of the
tracing task is the same as its period.

In some cases, the tracing task can also end with acyclic
garbage in the “white-list”. Therefore, the “white-list-
buffer” could contain acyclic garbage as well. If such
garbage is not scanned before reclamation, its children’s
reference counts will be overestimated. Consequently, the
behaviour of the whole system will be unpredictable. In or-
der to avoid this, the processing of the “to-be-free-list” is
always given precedence over the processing of the “white-
list-buffer” so that any object in the “white-list-buffer”
needs to be scanned is scanned and reclaimed before oth-
ers are reclaimed.

4.4 Scheduling

Many real-time applications consist of a mixture or pe-
riodic hard real-time tasks and aperiodic soft or non real-
time tasks running on the same processor. In order to sat-
isfy those tasks’ dramatically different requirements, many
flexible scheduling approaches have been proposed among

which, dual priority scheduling is an efficient means of
identifying and reclaiming spare capacity in favour of soft
or non real-time tasks whilst guaranteeing hard deadlines
[5]. In this section, we demonstrate how the dual prior-
ity scheduling technique can bring the same flexibility to a
garbage collected hard real-time system such as ours.

As introduced previously, the tracing task in our system
is a periodic task with a deadline. On the other hand, the
reclaiming task is always ready to run except when it has no
garbage to reclaim. In order to make sure that the processor
is not occupied by the reclaiming task all the time, we set
a limitation on the amount of work the reclaiming task can
perform in one period of the tracing task (see section 5). The
amount of work can either be stated as computation time
or number of blocks reclaimed. Although the two metrics
are equivalent in the worst case, choosing different metrics
can still give the system different behaviours in other cases,
particularly when the computation time of the reclaiming
task is underestimated. Currently, we measure the work
amount in terms of the number of blocks reclaimed. Be-
fore the number of blocks reclaimed by the reclaiming task
in the current period reaches its limit, the reclaiming taskis
always given a higher priority than the tracing task. Other-
wise, the reclaiming task has done enough work and gives
way to any other task in the system. At the next release of
the tracing task, this work amount limit will be reset. Thus,
we can consider the reclaiming task as a special periodic
task as well.

Because we only need the GC tasks to be schedulable
rather than responsive, they ought to be executed as infre-
quently as possible and also as late as possible. On the other
hand, if the GC tasks miss their deadlines, hard user real-
time tasks could be blocked for arbitrary time due to the
lack of free memory. Therefore, we consider GC tasks as
periodic hard real-time tasks.

In order to discuss the scheduling approach, the proper-
ties of user tasks must be defined first:

1. Priorities are split into 3 bands: Upper, Middle and
Lower [5].

2. Hard real-time tasks (including both user and GC
tasks) are released periodically and execute in either
the lower or upper band.

3. Soft real-time tasks are released aperiodically and their
priorities are always within the middle band.

4. Soft real-time tasks neither produce any cyclic garbage
nor allocate memory from the heap. Eliminating this
limitation is part of our future work (see section 7).

In the dual priority algorithm, a hard real-time task can
have two priorities one in the upper and one in the lower

band. Upon its release, it executes at its lower band prior-
ity so giving preference to the soft or non real-time tasks
in the middle band. Moreover, each hard real-time task has
a promotion time which is the release time plus the differ-
ence between its deadline and the worst case response time.
When the given promotion time has elapsed, the hard real-
time task is promoted to its higher band priority therefore
guaranteeing its deadline. If, however, the hard real-time
task is ever activated before the promotion time has elapsed,
the promotion time should be extended by the length of that
interval, so that spare capacity can be reclaimed [5].

Applying this technique to our GC tasks only needs a
few trivial modifications to the original algorithm. First,we
consider the two GC tasks as a whole and define the pro-
motion time as the release time plus the difference between
the period and the worst case response time of the tracing
task. Secondly, instead of giving arbitrary priorities to hard
real-time tasks in the lower band, we need to maintain the
same priority order of hard real-time tasks in both upper
and lower band. Moreover, as the reclaiming task finishes
its compulsory work, it goes to the lowest priority in the
lower band and returns to its original lower band priority
upon the next release of the tracing task. We will introduce
how to calculate priorities for the GC tasks in section 5.

Another approach we use to reclaim spare capacity is to
set a lower limit on the reclaiming task’s work amount if,
in the previous tracing period, the reclaiming task did any
extra work.

Compared to many other concurrent GC mechanism, our
approach can now ensure that the GC tasks get enough sys-
tem resources in each period. However, this doesn’t neces-
sarily mean that the user tasks’ memory requirements can
always be satisfied because the user tasks can sometimes
consume all the free memory before the GC tasks can re-
claim enough garbage objects, although they may reclaim
enough or even more in the near future. To guarantee that
the real-time tasks with higher priorities than the reclaiming
task (in the same band) can never be blocked because of the
lack of free memory, we require that the GC tasks should
always try to preserve enough free memory for them [8].
That is, before the promotion time, as long as the amount of
free memory is lower than a certain value calledFpre (see
section 5), the priority of the GC tasks should be promoted.
Otherwise, it should be executed at their original priority
until the promotion time.

5 Static Analysis

In this section, we calculate the scheduling parameters
for the GC tasks. Table 2 summarises the notation used in
this section.

In order to derive the parameters, we need to calculate
how much work the GC tasks need to perform. This is dis-

Symbols Definitions

P the set of user tasks in the whole system
Li the amount of live memory just before the ith release of the tracing task

Fi/Fmin the amount of free memory just before the ith release of the tracing task and its minimum value
Ai the amount of allocated (non-free) memory just before the ith release of the tracing task

CGGi/CGGmax the amount of cyclic garbage generated in cycle i and its maximumvalue
FCGi the amount of floating cyclic garbage emerged in cycle i
RGi the amount of acyclic garbage generated in cycle i

ai/amax new memory allocated in cycle i and its maximum value
Ri the total amount of garbage reclaimed in cycle i
Gi the total amount of garbage that can be recognized by the end ofcycle i

Lmax the upper bound of live memory consumption of the whole system
H the size of heap

hp(GC) the set of all the users tasks with higher priorities than theGC tasks (promoted)
Fpre the amount of free memory the system should preserve for the usertasks with higher priorities than the

reclaiming task (promoted)
Rpre the worst case response time of the reclaiming task (promoted) to reclaim as much memory as the user tasks

allocate during that time
Tj the period of the user taskj
Cj the worst case execution time of the user taskj

aj the worst case memory allocation executed in one release of theuser taskj
cggj the worst case amount of cyclic garbage emerged in one release of the user taskj
Lj the worst case amount of live memory of the user taskj

RR the time needed to reclaim one unit of memory in the worst case
TR the time needed to trace one unit of memory in the worst case

MWR the time needed to mark one object white in the worst case
NTM the worst case number of objects inH − Fpre. This is also the worst case number of objects need to be

marked white in a cycle
D the deadline and also period of both reclaiming and tracing tasks

Table 2. Notation definition

cussed first.

Minimum free memory needed

First, we give some simple formulae without proof since
they are self-explanatory.

H = Li+1 + Fi+1 + FCGi + Gi − Ri (1)

Ai+1 = Li+1 + FCGi + Gi − Ri (2)

which means the dead but not yet reclaimed objects at the
beginning of cyclei + 1 include the floating cyclic garbage
of cycle i and the garbage not reclaimed due to work limi-
tation on the reclaiming task.

Gi = RGi + FCGi−1 + CGGi − FCGi + Gi−1 − Ri−1

for i > 1
(3)

G0 = RG0 + CGG0 − FCG0 (4)

which means the garbage objects that can be recognized
by the end of cyclei include all the acyclic garbage of cycle
i, all the floating cyclic garbage of cyclei−1(zero ifi = 0),
a portion of cyclic garbage emerged in cyclei and all the

garbage abandoned by the reclaiming task in cyclei − 1
(zero if i = 0).

Li+1 = Li + ai − RGi − CGGi (5)

which means the cumulation of live memory in cyclei is
all the allocations that happened in cyclei minus the amount
of garbage that emerged in cyclei.

Ai+1 = Ai + ai − Ri (6)

Having got the above formulae, we can now try to cal-
culate the minimum amount of free memory needed at the
beginning of each cycle. Assuming, in the worst case, that
Li equalsLmax, sinceLi+1 must be smaller than or equal
to Lmax, we getLi+1 − Li ≤ 0. Applying equation 5 to
this gives:

ai − RGi − CGGi ≤ 0 (7)

and therefore,

ai − RGi ≤ CGGi (8)

From equation 6, we get:

Ai+1 − Ai = ai − Ri (9)

If the value ofRi is not smaller than that ofai, there will
be no cumulation of allocated memory at the end of cyclei.
As discussed previously, we set an upper bound on the value
of Ri. The initial value of such an upper bound for each cy-
cle isamax since by reclaimingamax garbage,Ai+1−Ai is
already guaranteed not to be greater than zero. Cumulation
of allocated memory can only happen whenRi < ai. In the
worst scenario, the GC tasks in cyclei only reclaims acyclic
garbage of that cycle and the amount of such garbage is less
than the allocations in that cycle. That is,Ri = RGi and
RGi < ai. Thus, in the worst case,

Ai+1 − Ai = ai − RGi (10)

Applying inequality 8 to the above equation, we can get:

Ai+1 − Ai ≤ CGGi ≤ CGGmax (11)

which means that if the GC tasks can provide as much
free memory asCGGmax at the beginning of any cycle,
the cumulation of the allocated memory can always be sat-
isfied. However, in order to synchronize reclamation and
allocation, we need to preserveFpre free memory as well.
Therefore, in order to guarantee that the application never
runs out of memory, we must be able to provide at least
Fpre + CGGmax free memory at the beginning of any cy-
cle.

Minimum free memory provided

By changing the form of equation 1, we can obtain:

Fi+1 = H − (Li+1 + FCGi + Gi − Ri) (12)

In order to calculateFmin, the upper bound ofLi+1 +
Gi − Ri + FCGi (or Ai+1 in another word) should be de-
termined first:

Theorem 1. If the deadlines of GC tasks are guaranteed,
the amount of allocated (non-free) memory at the very be-
ginning of any release of the tracing task is bounded by
Lmax + CGGmax. (the proof of this theorem is included
in appendix)

Consequently,Li+1 + Gi − Ri + FCGi ≤ Lmax +
CGGmax and equation 12 can be modified as:

Fmin = H − Lmax − CGGmax (13)

Deadline and Priority

To ensure that the user tasks execute without any block-
ing due to garbage collection, the minimum amount of free
memory at the beginning of each cycle must be satisfied.
Therefore,

Fpre + CGGmax = H − Lmax − CGGmax (14)

and thus,

CGGmax =
H − Lmax − Fpre

2
(15)

As defined previously,CGGi ≤ CGGmax so we can
get:

CGGi ≤
H − Lmax − Fpre

2
(16)

Assuming in the worst case that all the hard real-time
user tasks arrive at the same time (soft real-time user tasks
don’t contribute toCGGi), CGGi can be represented as:

CGGi =
∑

j∈P

(⌈

D

Tj

⌉

· cggj

)

(17)

Applying this to inequality 16, the deadline of the GC
tasks can finally be calculated.

∑

j∈P

(⌈

D

Tj

⌉

· cggj

)

≤
H − Lmax − Fpre

2
(18)

SinceD is mainly determined by the heap size and the
rate of cyclic garbage cumulation rather than the rate of al-
location, the value ofD could be much higher than its pure
tracing counterpart. Therefore, tracing would be invoked
less frequently.

Next, we present how to determineFpre:

Rpre =
∑

j∈hp(GC)

[⌈

Rpre

Tj

⌉

(Cj + RR · aj)

]

(19)

Fpre =
∑

j∈hp(GC)

(⌈

Rpre

Tj

⌉

· aj

)

(20)

Notice that to calculateRpre and Fpre, we need to
know the GC tasks’ priorities in advance since we need
to know who belongs tohp(GC). However, if we adopt
DMPO (deadline monotonic priority ordering) mechanism,
we should have already known the deadline of the GC tasks
so there’s obviously a recursion. In order to resolve this re-
cursion, we need to treat equation 19, 20 and 18 as a group.

At the very beginning, assume that the priorities of GC
tasks are the lowest two priorities among all the hard real-
time tasks (within the same band). Then, we can get the cor-
respondingRpre, Fpre, D and consequently the priorities
corresponding to theD. If the GC priorities are the same
as we assumed, that is the result. Otherwise, we should use
the new GC priorities to recalculateRpre, Fpre, D and the

new priorities until the old version and the new version of
the GC tasks’ priorities equal each other3.

WCET and Response Time

So far, we have been able to estimate the WCETs and the
worst case response time of the GC tasks:WCETtracing,
WCETreclaiming andRgc respectively.

WCETtracing = TR·(Lmax + CGGmax)+MWR·NTM

(21)
WCETreclaiming = RR · amax (22)

Rgc =
∑

j∈hp(GC)

(⌈

Rgc

Tj

⌉

· Cj

)

+WCETtracing + WCETreclaiming (23)

We can now compare the GC tasks’ worst case response
time Rgc with their deadlineD. If Rgc ≤ D, the GC tasks
are schedulable. Moreover, we can also use the parameters
of the GC tasks (e.g. the period,D, WCETtracing and
WCETreclaiming) to estimate the response time of the hard
real-time tasks with lower priorities than those of the GC
tasks (within the same band). If their response time values
are smaller than their deadlines, they are also schedulable.
Otherwise, the designer has to redesign the system to reduce
either the memory usage or the WCET of some of the user
tasks.

6 Empirical Results

We have implemented our algorithm by modifying GCJ
compiler (the GNU compiler for the Java language, ver-
sion 3.3.3) and jRate library (version 0.3.6)[4], which is a
RTSJ-compliant real-time extension to the GCJ compiler.
All the results presented in this section were obtained on a
1.5 GHz Intel CPU with 1MB L2 cache and 512MB RAM,
running SUSE Linux 9.3 together with “linuxlib” architec-
ture MaRTE OS version 1.57.

For the purpose of this report, impacts of our algorithm
on the user task performance are studied first. This includes
testings on worst case computation time of both object and
root write barriers (see figure 5). In order to perform the
analysis described in the previous section,RR, TR and
MWR must be obtained from experiments as well (see fig-
ure 6). All the testings are performed 1000 times in a row
through the worst case path and the results are presented

3Unfortunately, this process sometimes does not converge, so we may
have to use other priority assignment techniques for the GC tasks, for ex-
ample, perhaps using some global optimization approaches suchas genetic
algorithms .

in terms of worst value, best value, average value and 99%
worst value4. Notice that the computation time of opera-
tions that are used to protect critical sections are not in-
cluded in the aforementioned tests because first, this is a
platform dependent overhead which could be as low as sev-
eral instructions or as high as several function calls for each
pair of them; Secondly, how frequently such operations are
executed depends on the requirements of applications.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

root barrierobject barrier
ex

ec
ut

io
n

tim
e(

m
ic

ro
se

co
nd

s)

best case
average case

99% worst case
worst case

Figure 5. Write Barrier Computation Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

MWRTRRR

ex
ec

ut
io

n
tim

e(
m

ic
ro

se
co

nd
s)

best case
average case

99% worst case
worst case

Figure 6. RR, TR and MWR Results

As defined previously,RR is the worst case computa-
tion time needed to reclaim a memory block. If any acyclic
garbage exists at the free memory producer release point,
this is exactly the free memory producer latency. Other-
wise, the free memory producer latency of our approach is
comparable with that of a pure tracing collector.

With these information, we can perform analysis on hard
real-time task sets given in table 3 and 4. All the values
in tables hereafter are measured in milliseconds for time or
bytes for space. Priorities are assigned according to DMPO.

499% worst value means the highest value below the top 1% values.

Tasks Cj Tj (Dj) aj cggj Lj

1 1 5 320 0 320
2 2 10 960 192 1600
3 5 50 1920 320 3200
4 12 120 5760 640 9600

Table 3. Hard Realtime Task Set 1

Tasks Cj Tj (Dj) aj cggj Lj

1 1 5 640 192 640
2 2 10 1920 576 3200
3 5 50 3840 1152 6400
4 12 120 11520 3456 19200

Table 4. Hard Realtime Task Set 2

Parameters task1 task2
H 34752(1.48Lmax) 80768(2.19Lmax)

Fpre 3520 7040
D 120 120

amax 30720 61440
WCETtracing 5.14 11.22

WCETreclaiming 3.07 6.13
Rgc 24.21 38.35

utilization 6.84% 14.46%

Table 5. GC parameters

Furthermore, a non-real-time task which simply performs
an infinite loop executes at a priority lower than all the tasks
in table 3 or 4. For simplicity and without loss of gener-
ality, only the GC tasks are scheduled according to dual-
priority algorithm. We’ll apply dual-priority schedulingto
other hard real-time tasks in the near future.

The execution time of a pair of operations that protect
critical sections on our platform is2.4 microseconds ac-
cording to our test. As a result, we adjust theRR to 3.19
microseconds,TR to 3.20 microseconds and finallyMWR

to 2.47 microseconds. To perform static analysis,Lmax is
calculated first according to [10]. The maximum amount
of live memory of all the hard real-time tasks in task set 1
and 2 are estimated as 14080 and 27520 bytes respectively
and we set the maximum amount of static global live mem-
ory to be 9344 bytes for both task sets. Therefore, the total
amount of live memory cannot exceed 23424 bytes for task
set 1 or 36864 bytes for task set 2. By performing static
analysis with the given heap sizes, we assign GC tasks with
promoted priorities between task 3 and 4 for both task sets
and all the other parameters needed by the GC tasks are pre-
sented in table 5.

Given these parameters, we execute both task sets with
our garbage collector to justify the correctness of our algo-
rithm and static analysis. Two different GC promotion time
are selected for each task set to compare their impacts on the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 400 800 1200 1600 2000 2400

fr
ee

 m
em

or
y(

bl
oc

ks
)

allocation id

Lmax

Fpre

free memory

Figure 7. Task set 1 with Promotion time 10ms

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 400 800 1200 1600 2000 2400

fr
ee

 m
em

or
y(

bl
oc

ks
)

allocation id

Lmax

Fpre

free memory

Figure 8. Task set 1 with Promotion time 90ms

memory usage of our system. Both configurations for both
task sets can generate safe execution which means no dead-
line is missed and no task is blocked by the garbage collec-
tor. The memory usages of both task sets are presented in
figure 7, 8, 9 and 105.

These figures illustrates the fundamental difference be-
tween our approach and a pure tracing one, which is that
the amount of free memory in our system no longer de-
creases monotonically in each GC period. This is because
our approach possesses a relatively lower free memory pro-
ducer latency. Not only tracing but also reclamation can be
performed incrementally. Secondly, the later the promotion
time is, the smaller the space margin we’ll have. This sup-
ports our argument in section 4.4, which suggests that users
tasks should be given preference over GC tasks by squeez-
ing the heap harder.

5Allocation idx means thexth allocation.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 800 1600 2400 3200 4000 4800

fr
ee

 m
em

or
y(

bl
oc

ks
)

allocation id

Lmax

Fpre

free memory

Figure 9. Task set 2 with Promotion time 10ms

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 800 1600 2400 3200 4000 4800

fr
ee

 m
em

or
y(

bl
oc

ks
)

allocation id

Lmax

Fpre

free memory

Figure 10. Task set 2 with Promotion time 80ms

To compare our algorithm with a pure tracing one, we
choose [12] as a rival. According to their analysis, one can-
not calculate a deadline for a pure tracing GC task with task
set 1 but for task set 2, we can expect the longest deadline
to be 20 milliseconds which implies a 56.1% utilization6.
On the other hand, if we assume the priority and utilization
of the pure tracing GC task are the same as our GC tasks,
the pure tracing period will be 75.13 milliseconds for task
set 1 or 77.6 milliseconds for task set 2. According to [12],
this corresponds to a heap of 68224 bytes (2.91Lmax) for
task set 1 or 126464 bytes (3.43Lmax) for task set 2. By
contrast, the heap sizes of our system vary from 1.48Lmax

to 2.19Lmax.

6We assume that the pure tracing GC task has the same WCET as that
of our tracing task.

7 Conclusion and Future Work

This report has illustrated the inherent limitation of cur-
rently used real-time tracing garbage collectors and pro-
poses two new metrics that can better describe the overall
real-time capability of a garbage collector. These metrics
motivate the development of a hybrid approach to garbage
collection. Such an approach has been described along with
its scheduling parameters, static analysis and some empiri-
cal results. The benefit of our approach includes:

• Due to the contribution of reference counting algo-
rithm and the fine grained model, our approach can
achieve relatively low memory consumption.

• We make reference counting and mark-and-sweep co-
operate with each other. On the one hand, the occa-
sionally invoked mark-and-sweep can help reference
counting find cyclic garbage. On the other hand, ref-
erence counting can eliminate the root scanning phase
for the mark-and-sweep collection and make it much
less frequent so that a greater amount of unnecessary
system resource consumption is avoided.

• Our approach is flexible enough so that the GC tasks
can adapt to different applications and heap sizes au-
tomatically: the smaller the heap size is or the more
cyclic garbage, the shorter the deadline could be. For
a system which is mainly composed of acyclic data
structures, the deadline of the GC tasks could be very
long. However, for a system which is mainly com-
posed of cyclic data structures, our approach grace-
fully degrades. Fortunately, the above analysis pro-
vides the designers with a way to quantitatively deter-
mine whether our approach is suitable for their appli-
cation or not.

• We can provide real-time guarantees for all the hard
real-time tasks as in non-garbage-collected real-time
systems.

• All the hard real-time tasks follow dual priority
scheduling approach so spare capacity can be re-
claimed and the responsiveness of soft real-time tasks
is improved.

Our current work is now focused on the soft real-time
tasks and how their impact on the overall memory consump-
tion can be identified and kept under control.

References

[1] D. F. Bacon, P. Cheng, and V. Rajan. The metronome: A
simpler approach to garbage collection in real-time systems.
In Proceedings of OTM 2003 Workshops, pages 466–478.

[2] H. G. Baker. List processing in real time on a serial com-
puter.Communications of the ACM, 21(4):280–294.

[3] A. Borg, A. Wellings, C. Gill, and R. K. Cytron. Real-time
memory management: Life and times. InProceedings of
Euromicro 2006.

[4] A. Corsaro and D. C. Schmidt. The design and performance
of the jrate real-time java implementation. InProceedings
of the 4th International Symposium on Distributed Objects
and Applications.

[5] R. Davis and A. Wellings. Dual priority scheduling. InPro-
ceedings of the 16th IEEE Real-Time Systems Symposium.

[6] E. W. Dijkstra. On-the-fly garbage collection: An exercise in
cooperation.Communications of the ACM, 21(11):966–975.

[7] B. Goldberg. Incremental garbage collection without tags.
In Proceedings of the 4th European Symposium on Program-
ming.

[8] R. Henriksson.Scheduling Garbage Collection in Embed-
ded Systems. PhD thesis, Lund University.

[9] R. L. Hudson and J. E. B. Moss. Incremental collection of
mature objects. InProceedings of the International Work-
shop on Memory Management.

[10] T. Kim, N. Chang, and H. Shin. Joint scheduling of garbage
collector and hard real-time tasks for embedded applica-
tions. Journal of Systems and Software, 58(3):247–260.

[11] T. Ritzau. Hard real-time reference counting without ex-
ternal fragmentation. InJava Optimization Strategies for
Embedded Systems Workshop at ETAPS 2001.

[12] S. G. Robertz and R. Henriksson. Time-triggered garbage
collection—robust and adaptive real-time gc scheduling for
embedded systems. InProceedings of LCTES 2003, pages
93–102.

[13] F. Siebert. Eliminating external fragmentation in a non-
moving garbage collector for java. InCompilers, Architec-
tures and Synthesis for Embedded systems(CASES2000).

[14] F. Siebert. Hard Realtime Garbage Collection in Modern
Ojbect Oriented Programming Languages. PhD thesis, Uni-
versity of Karlsruhe, May 2002.

Appendix

Theorem 1. If the deadlines of GC tasks are guaranteed,
the amount of allocated (non-free) memory at the very
beginning of any release of tracing task is bounded by
Lmax + CGGmax.

Proof. Since at the first release, this is automatically guar-
anteed, proving the above theorem is equivalent to proving:
Li+1 + Gi −Ri + FCGi ≤ Lmax + CGGmax with i ≥ 0.

WhenGi − Ri = 0,

Li+1 + Gi − Ri + FCGi = Li+1 + FCGi (24)

In the worst case scenario, all the cyclic garbage objects
emerged in cyclei become floating so the upper bound of
FCGi is the same as that ofCGGi, i.e. CGGmax. There-
fore,

Li+1 + Gi − Ri + FCGi ≤ Lmax + CGGmax (25)

On the other hand, whenGi − Ri > 0, Ri reaches its
upper boundamax. Consequently, we only need to prove
that:

Li+1 + Gi − amax + FCGi ≤ Lmax + CGGmax (26)

sinceLi+1 = Li +ai −RGi −CGGi andGi = RGi +
FCGi−1 + CGGi − FCGi + Gi−1 − Ri−1, we can get

Li+1 + Gi − amax + FCGi = Li + Gi−1 − Ri−1

+FCGi−1 + ai − amax (27)

Becauseai is defined to be smaller thanamax, Li+1 +
Gi − amax + FCGi is bounded by:

Li+1+Gi−amax+FCGi ≤ Li+Gi−1−Ri−1+FCGi−1

(28)
As we have proved,Li + Gi−1 − Ri−1 + FCGi−1 is

bounded byLmax + CGGmax whenGi−1 − Ri−1 = 0.
Thus, inequality 26 is proved in the situation whereGi−1 −

Ri−1 = 0.
If however,Gi−1 − Ri−1 > 0, Li + Gi−1 − Ri−1 +

FCGi−1 is bounded byLi−1 + Gi−2 − Ri−2 + FCGi−2.
Therefore, we only need to prove thatL1 + G0 − R0 +
FCG0 ≤ Lmax + CGGmax. Since this has already been
proved ifG0−R0 = 0, we only consider the situation when
G0 − R0 > 0.

Based on equations 4 and 5, the following equation can
be developed:

L1 + G0 − R0 + FCG0 = L0 + a0 − amax ≤ L0 (29)

and therefore,

L1+G0−R0+FCG0 ≤ Lmax ≤ Lmax+CGGmax (30)

which completes the proof.

