
Improved Schedulability Analysis for Multiprocessor Systems with Resource Sharing

Yang Chang, Robert Davis and Andy Wellings
University of York, UK,

{yang, robdavis, andy}@cs.york.ac.uk

Abstract—This report presents our recent efforts to close
the gap between the state-of-the-art homogeneous (or identical)
multiprocessor and uniprocessor schedulability analysesin the
context of resource sharing. Although many multiprocessor
resource sharing protocols have been proposed, their impact on
the schedulability of real-time tasks is largely ignored inmost
existing literature. Recently, work has been done to integrate
queue locks (FIFO-queue-based non-preemptive spin locks)
with multiprocessor schedulability analysis but the techniques
used introduce a substantial amount of pessimism, some of
which, as explained in this report, can be easily eliminated. For
global fixed task priority preemptive multiprocessor systems,
this pessimism impacts low priority tasks, greatly reducing the
number of tasksets that can be recognised as schedulable. We
develop a new schedulability analysislp-CDW to target this
issue specifically. By combinglp-CDW with existing techniques,
we significantly increase the number of tasksets that can be
recognised as schedulable.

I. I NTRODUCTION

Today, more and more real-time embedded systems are
being built with multiprocessor (or multicore) technology.
This is the industry’s response to the physical limitation on
processor clock speeds. Motivated by this trend, the real-
time embedded system research community has recently
given much attention to extending the knowledge gained in
the uniprocessor era to the development of real-time multi-
processor systems [1]. Unfortunately, most of the techniques
developed for uniprocessor systems cannot simply be reused
in a multiprocessor environment. Schedulability analysisand
resource sharing are prominent examples of such transition
difficulties.

Schedulability analysis for uniprocessor systems has been
studied for decades and is well understood. Exact analyses
(both sufficient and necessary) have been developed and task
characteristics such asrelease jitter, constrained/arbitrary
deadlines, context switch timesetc. have all been considered.
One of the task characteristics that has to be considered in
any useful schedulability analysis is theworst-case blocking
time of each task, which represents the maximum total time
during which a job of this task is blocked by any lower
priority job. In order to bound and reduce the worst-case
blocking time as well as to prevent deadlocks, resource

This work has been funded by the European Commission’s 7th frame-
work program’s JEOPARD project, no. 216682 and eMuCo project, no.
FP7-ICT-2007-1

sharing protocols have been proposed, among which the
Priority Inheritance Protocol, Priority Ceiling Protocol [2]
andStack Resource Policy[3] are the most widely used.

The most thoroughly studied scheduling policies of real-
time tasks on homogeneous (or identical) multiprocessors
are fully partitionedandglobal scheduling policies. A fully
partitioned system allocates each task to a single processor
and disallows any task migration. This divides the multi-
processor scheduling problem into a task allocation problem
and a uniprocessor scheduling problem. By contrast, a global
system dynamically determines on which processor a task
should be executed. Execution of a job may migrate from
one processor to another. Multiprocessor real-time schedul-
ing can also be categorised, according to when the priorities
can be changed, into 3 classes [4] :fixed task-priority,
fixed job-priority and dynamic-priority. This work focuses
on global fixed task-priority scheduling, which is referredto
asglobal FP schedulingin this report.

Schedulability of global FP scheduling systems has been
studied and many analysis approaches have been proposed
[5], [6], [7], [8], [9], [10], [11], [12]. However, global FP
schedulability analyses are not as mature as their uniproces-
sor counterparts. Tractable exact analysis is so far unknown
for sporadic tasks and resource sharing is ignored in most
existing work though efforts have been made on multipro-
cessor resource sharing protocols themselves. These efforts
have resulted in theMultiprocessor Priority Ceiling Protocol
(MPCP)[13], Multiprocessor Stack Resource Policy (MSRP)
[14] and the Flexible Multiprocessor Locking Protocol
(FMLP) [15]. One of the building blocks of these protocols
is queue lock(FIFO-queue-based non-preemptive spin lock),
which is deemed to be a simple, yet efficient mechanism
of protecting short critical sections on multiprocessors [16].
In a queue lock system, a task becomes non-preemptible
when it tries to access a shared resource. If the resource
is available, the requesting task locks it and then accesses
it non-preemptively. Eventually this task releases the lock
and becomes preemptible again. Otherwise, the requesting
task busy-waits non-preemptively in a FIFO queue until the
resource is made available to it.

There are other spin lock algorithms that make use
of prioritised queues, preemptive execution and/or priority
inheritance [17], [18]. However, in this report, we focus on

the impact of non-nestable queue locks (i.e. queue locks that
do not consider any nested resource access) on global FP
multiprocessor schedulability analysis, leaving the study of
other spin lock algorithms and nested resource accesses to
future work. The essential ideas and improvements proposed
in this report may also be applied to other spin lock
algorithms.

As will be discussed shortly, even this simple mecha-
nism’s impact on multiprocessor schedulability analysis has
not been well understood. The state-of-the-art approach to
modeling queue locks inflates the worst-case execution time
of every task to account for the longest time that could
be spent on spinning by that task [13], [14], [15], [19].
As will be explained shortly, this approach is pessimistic
because in reality only some resource accesses spin and
they do not always spin for the longest possible duration.
For a global FP system, the current worst-case execution
time inflation approach introduces too much pessimism at
low priority levels where more tasks can interfere with the
task under analysis. The main contribution of this paper
is to provide a new model for analyzing queue locks that
significantly reduces this pessimism. By supplementing an
existing approach (designed for independent tasks) with this
new model, we obtain a new sufficient analysislp-CDW (in
which “lp” stands for low priority and “CDW” is the initials
of the authors’ names). Experiments reveal that combining
lp-CDW with a state-of-the-art queue-lock-aware analysis
can significantly increase the number of tasksets that can
be recognised as schedulable.

This report is organized as follows. First, we summarise
relevant existing work in section II. Next, section III presents
our task model, terminology and notation. This is followed
by discussion of the source of pessimism in existing work
and the introduction of our new approach to modeling
spinning time. Sections V elaborates the proposedlp-CDW
analyses. In section VI, we discuss whylp-CDW should be
combined with a state-of-the-art queue-lock-aware analysis
and also how we this can be achieved. Experimental results
are presented in section VII. Finally, we draw conclusions
and discuss possible future work.

II. RELATED WORK

A. Resource Sharing

In 1988, uniprocessor priority inheritance and priority
ceiling protocols were proposed by Rajkumar et al. [13]
and first integrated with Liu and Layland’s utilisation-based
analysis [20]. A few year later, Audsley et al. integrated
Rajkumar et al.’s protocols with response time analysis
[21]. In 1991, Baker [3] proposed another resource sharing
protocol called the Stack Resource Policy, which provides
simpler support for EDF scheduling and guarantees a job
can only be blocked at the beginning of its execution. This

makes it possible to use a single shared runtime stack for
all the tasks.

Because of the discovery of the “Dhall effect” by Dhall
and Liu [22], global multiprocessor scheduling was, for
many years, considered inferior to the fully partitioned
approach and therefore initial efforts on multiprocessor re-
source sharing protocols mainly focused on fully partitioned
systems. This has resulted in two approaches: MPCP [13]
and MSRP [14]. MPCP and MSRP both prevent deadlocks
and bound the worst-case blocking time of each task as a
function of other tasks’ critical section lengths rather than
other tasks’ execution times. However, when a task is denied
access to a global resource, MPCP suspends this task and
allows lower priority local tasks to execute (and even lock
resources) while MSRP works according to the queue lock
algorithm. Moreover, local resource accesses can be nested
and are managed according to PCP (SRP) under MPCP
(MSRP). Accesses to global resources are not allowed to
be nested within any resource access andvice versa.

In 1997, Philips et al. [23] showed that the “Dhall effect”
was more of a problem with high utilisation tasks than it
was with global scheduling algorithms. This discovery not
only influenced the schedulability analysis research but may
also have affected the course of research in multiprocessor
resource sharing.

Recently, more attention has been given to resource
sharing protocols for globally scheduled multiprocessors.
Block et al. [15] proposed a new policy called FMLP, which
categorises resources into two classes:short and long. The
queue lock algorithm is used to protect accesses to short
resources. On the other hand, long resources are protected by
suspension-based locks with priority inheritance. The only
requirement regarding nested resource accesses is that no
long resource access can be nested within a short resource
access. Easwaran and Andersson [24] proposed a new proto-
col calledparallel-PCPor P-PCP. This is a generalization of
the uniprocessor PCP for global FP multiprocessor systems.
Instead of using non-preemptive spin locks, P-PCP suspends
tasks when resources cannot be accessed. A unique feature
of this protocol is a new mechanism that limits the system-
wide parallelism of resource accesses.

To the best of our knowledge, only a small number of
existing (global) schedulability analysis papers deal with
resource sharing [19], [24]. Although resource sharing pro-
tocols are usually proposed along with some blocking time
analyses, full schedulability analysis is rarely given in these
papers [13], [14], [15].

B. Multiprocessor Schedulability Analysis for Independent
Tasks

Multiprocessor real-time scheduling has attracted much
attention during the last decade [1]. Many algorithms and

2

schedulability analyses have been proposed for independent
tasks (i.e. resources are not shared among tasks). Carpenter
et al. categorized and compared different types of algorithms
and analyses in [4].

In Baker’s 2003 seminal work [8], an analysis based on
theproblem jobandproblem windowwas presented for both
global EDF and global FP scheduling. In this approach,
a job called the problem job is assumed to be the first
one in the whole system to miss a deadline. The problem
window of a problem job starts from a time instant before
the release of the problem job and ends at the problem job’s
deadline. The essential idea of this analysis is to establish a
condition necessary for the problem job to miss its deadline.
This requires the upper bound on the maximum interference
caused by other tasks in the problem window.

Both Baruah [9] and Bertogna and Lipari [10] noticed
a fact ignored by Baker, that a task’s interference to the
problem job within its problem window is bounded by the
length of the problem window less the problem job’s worst-
case execution time. They both eliminated this overestimated
interference by setting an upper bound on each task’s inter-
ference to the problem job. They also both noticed another
source of pessimism in Baker’s analysis, which is the carry-
in contribution (workload carried into the problem window
by tasks released before the problem window) to the total
interference. Baruah’s analysis [9] limits the number of tasks
that can carry in any workload by setting the beginning
of each problem window to the last time instant before
its problem job’s arrivalak when any processor can be
idle. By contrast, Bertogna and Lipari’s (non-iterative and
iterative) analyses [10] assume each problem window starts
at the same time as its problem job’s arrivalak. In the
iterative version of their analyses, the slack of each task
is considered when determining its carry-in contribution to
the total interference to the problem job. This analysis has
recently been improved upon by Guan et al. [11]. Alternative
analyses that were also inspired by Baker’s work include [7],
[12], [25].

III. M ODEL, TERMINOLOGY AND NOTATION

In this report, we focus on global FP scheduling of
applications that require resource sharing on a homogeneous
multiprocessor system comprisingm identical processors.
An application consists of a static number (n) of tasks
τ1...τi...τn, each of which has a unique ID and priorityi
(1 ≤ i ≤ n where 1 (n) represents the highest (lowest)
priority).

We assume that each task gives rise to a potentially infinite
sequence of jobs and all the jobs of a task are released either
periodically at fixed intervals of time, orsporadicallyafter
some minimum inter-arrival time has elapsed. Therefore,
every taskτi can be characterised as(Ci, Di, Ti) whereCi

denotes the worst-case execution time of all the jobs ofτi
excluding any time spent on spinning;Di represents the
relative deadline of each job ofτi and finallyTi denotes the
release period or minimum inter-arrival time ofτi. It is also
assumed that all the tasks have constrained deadlines, i.e.
Di ≤ Ti. Furthermore, once a job starts to execute it will
not voluntarily suspend itself.

Intra-task parallelism is not permitted; hence, at any given
time, each job may execute on at most one processor. As
a result of preemption and subsequent resumption, a job
may migrate from one processor to another. The cost of
preemption, migration, and the runtime operation of the
scheduler is assumed to be either negligible, or subsumed
into the worst-case execution time of each task.

As noted by Block et al. in [15], current global schedul-
ing algorithms (including global FP) do not consider non-
preemptive sections. Simply running the highest priority
tasks on the remaining preemptible processors is not a good
solution as it is possible for a task to benon-preemptively
blockedwhenever other tasks are released or resumed. A
task is non-preemptively blocked if this task is one of the
m highest priority runnable tasks and it is not scheduled
because a lower priority task’s non-preemptive section has
been scheduled.

Instead, Block et al. proposed the concept of a task
being linked to a processor. Basically, a task is linked to
a processor at timet if this task would have been scheduled
on that processor at timet under the assumption that all tasks
are fully preemptible. If a task is linked yet not scheduled,
it is deemed to be non-preemptively blocked. During this
blocking, the blocked task may be unlinked but it is not
allowed to execute on any other processor.

In this work, we assume a standard global FP algorithm
has been modified to implement Block et al.’s scheduling
algorithm (but not their FMLP protocol). All tasks are
scheduled according to this new algorithm. By using this
algorithm, a job in our system can only be non-preemptively
blocked once at the beginning of its execution.

In the proposed analyses, if a job ofτk arrives atak,
it can have 5 different states within[ak, ak + Dk): non-
preemptively blocked, unlinked, busy-waiting, executingand
completed. Taskτk is said to be non-preemptively blocked
when it is currently among them highest priority ready tasks
but cannot be scheduled to run. Taskτk is said to be unlinked
when it is not among them highest priority ready tasks (τk
is always ready within[ak, ak + Dk) assuming it has not
completed). Taskτk is said to be busy-waiting when it is
spinning non-preemptively, trying to lock a resource that is
currently being used by another task. Taskτk is executing
when it is consuming processor time while not busy-waiting.
Finally, taskτk is schedulable if it always completes before
or at its deadline(ak +Dk).

3

According to the state of taskτk, the window[ak, ak +
Dk) can be divided into 4 sets of time intervals:Θk, Γk,
Λk andΩk.

These are respectively the collection of all the time
intervals (not necessarily contiguous) within[ak, ak +Dk)
during which the job ofτk is:

• non-preemptively blocked (Θk);
• unlinked (Γk);
• busy waiting (Λk);
• executing (Ωk);

We denote byρ = {ρ1,, ρj,ρl} the set of all the
resources in the system. Each resource has a unique ID
1 ≤ j ≤ l where l denotes the number of resources in the
system. Different instances of the same type of resource are
considered different resources. It is assumed that resource
accesses are never nested and all resources are protected by
queue locks only.

Let ρx,ji,k denote taskτi’s kth job’s xth access to re-
source ρj and |ρx,ji,k | denote the execution time ofρx,ji,k
(excluding any spinning). Then, we can represent the
longest critical section of taskτi regarding resourceρj
as |ρji | = maxk,x(|ρ

x,j
i,k |). The longest critical section of

all tasks regarding resourceρj can therefore be denoted
as ηj = maxi(|ρ

j
i |). The longest critical section of tasks

with priorities lower thanτk can be denoted asbk =
max{i,j|τi∈lp(k)∧τi∈ac(ρj)}(|ρ

j
i |) wherelp(k) denotes the set

of tasks with priorities lower thanτk andac(ρj) denotes the
set of tasks that accessρj . The size ofac(ρj) is represented
by nj and we further definênj = min(m,nj). We also use
ψji to denote the maximum number of accesses to resource
ρj by any job of taskτi.

Let Bi,k denote the longest time a job of taskτi can
be non-preemptively blocked by tasks with priorities lower
than τk. We also denote byβi the worst-case total time a
job of taskτi accesses resources (this does not include any
spinning time).

In order to make this report easier to understand, we
summarise some frequently used notations in table I with
a brief explanation of their meaning.

IV. I MPACT OF QUEUE LOCKS

A. Pessimism in Current Approaches

The state-of-the-art approach to integrating queue-lock-
based protocols with schedulability analysis is to inflate the
worst-case execution time of each task by the maximum
amount of computation time that could be wasted on spin-
ning by the corresponding task [15], [19], [14]. Because it
is too difficult to predict what other processors are doing
when a resource is requested on a specific processor, all
existing analyses [15], [19], [14] assume that every resource

access protected by a queue lock can be blocked byn̂j − 1
accesses to the same resource on other processors (recall
that n̂j = min(nj ,m) andnj represents the total number of
tasks that access resourceρj). In other words, it is assumed
that whenever a resource is requested, this request is always
queued at the end of a full FIFO queue. According to the
current approach [19], the inflated worst-case execution time
of task τi can be represented as:

C
wia
i = Bi,i + Ci +

X

ρj∈ρ

((n̂j − 1) · ηj · ψ
j
i) (1)

whereBi,i denotes the longest blocking timeτi can suffer;
Ci denotes the worst-case execution time ofτi excluding
spinning time; ηj denotes the longest critical section of
resourceρj ; ψ

j
i denotes the maximum number of accesses

to resourceρj in any job of taskτi.

Every taskτi characterised by(Ci, Di, Ti) can then be
substituted byτwiai which is characterised by(Cwiai , Di, Ti)
to form a new taskset. Many global FP analyses designed for
independent tasks can be applied to this new taskset without
any significant change. If such an analysis considersτwiai

schedulable, the corresponding taskτi will be schedulable
as well. However, inflating every task’sCi according to
Equation (1) is pessimistic. This is because not all resource
requests can be issued in parallel and serial resource requests
never cause any spinning among each other (Requests issued
by the same task can only happen serially.).�������� ���� ���	
��� ������ ����

� �����
��� ���������������

(b)
�

������������� �����
�����

(a)

��� !��� "��� #��� $
Figure 1. Observed Pessimism

As illustrated in figure 1, suppose a 4 processor system
consists of 4 tasks and 1 shared resource. Also assume that
each task except task 1 can only request this resource once
betweent1 andt2 even in the worst case. On the other hand,
task 1 could access the resource 100 times within the same
time interval. Finally, this example assumes each resource
access takes exactly 1 time unit. Figure 1a shows that the
maximum total time that could be wasted on spinning in
this case occurs when one of each task’s resource requests
is issued simultaneously and task 1’s request is the first
to be served and task 1 immediately requests again after
its previous access is finished. In this worst case, the total
wasted time (shown in grey) is 9 time units. By contrast, all

4

Symbols Definitions

Task Scheduling Related Notations
m the total number of processors
n the total number of tasks in each taskset
nj the total number of tasks in each taskset that access resource ρj

n̂j n̂j = min(m, nj)
hp(k) the set of tasks with priorities higher than taskτk
lp(k) the set of tasks with priorities lower than taskτk
[ak, ak +Dk) the problem window of taskτk
Ci the worst-case execution time of taskτi, excluding spinning time
Di the relative deadline of taskτi
Ti the minimum inter-arrival time or period of taskτi
Time intervals
Θk the set of time intervals during whichτk is non-preemptively blocked
Γk the set of time intervals during whichτk is unlinked
Λk the set of time intervals during whichτk is busy waiting
Ωk the set of time intervals during whichτk is executing
Resource Access Number Nota-
tions
ψ

j
i the maximum number of accesses to resourceρj by any job of taskτi

Ψj
i,k

the maximum total number of accesses to resourceρj by taskτi within τk ’s problem window[ak, ak +
Dk)

G
j,k
x the maximum number of resource request groups in whichx requests toρj can be in parallel within

τk ’s problem window[ak , ak +Dk)
Resource Access Time Notations
(without spinning)
ηj the length of the longest critical section of resourceρj

|ρj
i | the length of the longest critical section of resourceρj that can be entered by taskτi

bk the length of the longest critical section of any tasks with priorities lower thanτk
βi the worst-case total time a job of taskτi spends on resource accessing
ωx,j the total of thex longest|ρj

i | among all tasks using resourceρj

Non-Preemptive Section Notations
Bi,k the longest time a job of taskτi can be non-preemptively blocked by tasks with priorities lower thanτk
Contributions to Total Interference
Υk the maximum total resource access time introduced by tasks with priorities lower thanτk within Γk

Πk the maximum total amount of time that could be wasted on spinning within problem window[ak, ak +
Dk)

Φk the contribution of the execution of tasks with priorities higher thanτk to the total interference
∆k the contribution of intervalΛk to the total interference that has not been considered inΠk

Table I

NOTATION DEFINITION

existing analyses [14], [15], [19] would give an estimation
of 309 (figure 1b).

In the current model (under global FP scheduling), when
analyzing a task at priorityk, only tasksτi /∈ lp(k) (where
lp(k) denotes the set of tasks with priorities lower thank)
have to inflate their worst-case execution times according to
Equation (1). This is because allτi ∈ lp(k) have no effect on
taskτk according to this model and hence are not considered
when analyzing taskτwiak . Consequently, ifk is a relatively
high priority, only a few tasks will have to inflate their worst-
case execution times, which counteracts the pessimism of
execution time inflation. However, when priorityk becomes
lower, more and more tasks will have to inflate their exe-
cution times and the pessimism increases cumulatively. We
therefore expect a performance degradation of the state-of-
the-art queue-lock-aware global FP analyses as task priority
decreases. Next, we show how to take advantage of our

observation to eliminate some pessimism, especially at low
priorities.

B. A Less Pessimistic Modeling of Spinning Time

In order to reduce the pessimism cumulated at low pri-
orities in the current model, our new approach groups, for
each resource, potentially parallel requests to that resource
(issued by any task) in each problem window to ignore those
that can never be in parallel with others. The worst-case
grouping of requests to a specific resource should maximize
the total spinning time caused by accesses to that resource
in a given problem window. It should be noticed that the
total spinning time consists of the spinning time introduced
by tasks with any priority. Therefore, our new model does
not cumulate pessimism as the priority of the problem job
decreases. Because the grouping of requests to a specific
resource ignores those requests that can never be in parallel,

5

this model is more accurate if the priority of the problem job
is low. However, when this priority is high, too many tasks
(with priorities lower than the problem job) unnecessarily
contribute to the estimated total spinning time.

First of all, we consider how resource access requests
generate the maximum amount of spinning. In a multi-
processor system that is scheduled according to the global
FP algorithm of Block et al. described in section III, the
maximum amount of spinning time that can be introduced
by tasks accessing a resourceρj can only be achieved
when resource requests on each processor arrive one by one
without any delay and the first request in each processor’s
resource request sequence arrives simultaneously.

%&'(('() *'+, -,%./-0, 100,%% *'+,23456234572345823459
Figure 2. The maximum total spinning time

This situation is illustrated in figure 2 where most of the
resource requests are blocked (and therefore spinning) for
the same amount of time as described in existing work [15],
[19], [14].

In order to estimate the total spinning time in the problem
window, we need to calculateΨj

i,k, the maximum total
number of accesses toρj by task τi within τk ’s problem
window [ak, ak +Dk). This is given below

Ψj
i,k = Ni,k · ψ

j
i

whereNi,k denotes the maximum number of jobs ofτi
that can be executed inτk ’s problem window andψji denotes
the maximum number of accesses to resourceρj by any job
of task τi.

:;<= =>? >?>?;? ;? @ A?;B CDCEF:GHI HJ KHL< ;B @ AB
:;<= G

Figure 3. The maximum number of jobs ofτi that can be executed in
τk ’s problem window

Based on the worst-case situation given in figure 3, we
can derive the following:

Ni,k = ⌈
Dk +Di

Ti
⌉ if i 6= k

and

Ni,k = 1 if i = k

Having got every task’sΨj
i,k regarding a specific resource

ρj in task τk ’s problem window, we could simply assume
that any two resource requests (as part of

∑
i Ψ

j
i,k) can be

issued in parallel and then derive a formula based on this
assumption to calculate the total spinning time. However, as
discussed previously, not all resource requests can be issued
in parallel and those requests that can never be issued in
parallel never cause any spinning on each other.

In order to facilitate the proposed total spinning time
analysis, we need to group all the accesses to resourceρj in
τk ’s problem window in such a way that each group contains
at mostm requests for resourceρj issued by different tasks.
Because resource requests of the same task can never run in
parallel, this grouping method ensures that no unparallelable
resource accesses can be in the same group.

Among all the possible results of this grouping method
(when used on resource requests in a specific problem
window), we are only interested in the worst-case grouping
that maximizes the estimated total spinning time in the
whole problem window. The development of an algorithm
that finds the worst-case grouping requires knowledge of
the total spinning time caused by each request group with a
different size.

According to Block et al. [15] and Gai et al. [14], the
longest access to the same resource by different tasks may
be different. Therefore, it is pessimistic to assume that each
request to resourceρj spins for(n̂j −1) ·ηj . The real worst
case is given in figure 4 according to which the maximum
total time that could be wasted on spinning by a group of
x parallel resource requests (toρj) is ωx,j · (x − 1) where
ωx,j denotes the total of thex longest|ρji | among all tasks
regarding resourceρj .

MNOPQMRN SRRNOO TUVNOWUXXUXY TUVNZ w[\]^_`ab^_`ac^_`ad^_`ae
Figure 4. A better estimation of the maximum total spinning time

6

Then, we get the following lemma.

Lemma 1. Suppose a taskset either runs on a system that
has a n̂j < 4, or satisfies the restriction that for any3 <
x ≤ n̂j , ωx,j−ωx−1,j ≥

x−3
x−1(ωx−1,j−ωx−2,j). Then, such

a taskset is guaranteed to have the following characteristic
for any 2 < x ≤ n̂j and x′ = x− 1:

(x − 1)ωx,j − (x− 2)ωx−1,j ≥

(x′ − 1)ωx′,j − (x′ − 2)ωx′−1,j (2)

Proof: First, let’s assumex = 3, then proving the
lemma is equivalent to proving that2ω3,j − ω2,j ≥ ω2,j.
According to the definition ofωx,j, ω3,j > ω2,j so 2ω3,j −
ω2,j ≥ ω2,j .

When x > 3, the taskset under discussion must be
scheduled on a system with at leastn̂j = 4. Therefore, for
any 3 < x ≤ n̂j , ωx,j − ωx−1,j ≥ x−3

x−1 (ωx−1,j − ωx−2,j)
must be satisfied by this taskset. Proving the lemma for this
case is equivalent to proving that:

(x− 1)ωx,j − (2x− 4)ωx−1,j + (x− 3)ωx−2,j ≥ 0

3 < x ≤ n̂j

Becauseωx,j − ωx−1,j ≥
x−3
x−1(ωx−1,j − ωx−2,j),

(x− 1)(ωx,j − ωx−1,j) − (x− 3)(ωx−1,j − ωx−2,j) ≥ 0

3 < x ≤ n̂j

Consequently,

(x− 1)ωx,j − (x− 1)ωx−1,j − (x− 3)ωx−1,j

+(x− 3)ωx−2,j ≥ 0

3 < x ≤ n̂j

and finally,

(x− 1)ωx,j − (2x− 4)ωx−1,j + (x− 3)ωx−2,j ≥ 0

3 < x ≤ n̂j

which proves the lemma.

In essence, Lemma 1 suggests that by respecting the above
restriction, the total spinning time difference between a size
x group and a sizex − 1 group is always no less than that
between a sizex− 1 group and a sizex− 2 group.

Lemma 2. Given a taskset as described in Lemma 1, sup-
pose there are integersx1 andx2 where2 < x1 < x2 ≤ n̂j .
Then, it is guaranteed that:

(x2 − 1)ωx2,j − (x2 − 2)ωx2−1,j ≥

(x1 − 1)ωx1,j − (x1 − 2)ωx1−1,j (3)

Proof: If x1 = x2 − 1, this is exactly the same as
Lemma 1, which has been proved.

Otherwise, if x1 < x2 − 1, we can recursively apply
Lemma 1 to any value betweenx1 and x2 − 1 to prove
the lemma.

The restriction described in Lemma 1 requires that for any
3 < x ≤ n̂j, thexth largest|ρji | among all tasks regarding
resourceρj should be no less thanx−3

x−1 times of the(x −
1)th largest one. For those tasksets that do not obey this
restriction, we can easily inflate some of then̂j largest|ρji |
regarding resourceρj when calculating eachωx,j. Then, the
maximum total spinning time that could be caused by any
group ofx resource requests is still(x− 1)ωx,j (with ωx,j
recalculated).

For any taskset (or any adjusted taskset) as described
in Lemma 1, if we usegx to represent the number of
size x groups (not necessarily according to the worst-case
grouping), the total spinning time can then be denoted as∑2

x=n̂j
(x − 1)ωx,j · gx. The worst-case grouping should

maximize this estimated total spinning time.

Theorem 1. Suppose there is an algorithm that always
makes as many sizex parallel request groups as possible
where x is initially set to n̂j and decreases only when
the remaining requests can no longer be grouped to the
current group size. For any taskset (or any adjusted taskset)
as described in Lemma 1, this algorithm gives the worst-
case grouping and therefore maximizes the estimated total
spinning time

∑2
x=n̂j

(x− 1)ωx,j · gx.

This theorem is proved in appendix A.

As an example of such an algorithm, we developed
Algorithm 1 to calculate, for each2 ≤ x ≤ n̂j (from n̂j to
2), Gj,kx , the maximum number of resource request groups
in which x of the remaining ungrouped requests, can be in
parallel.

In this algorithm, line1 initializes the group size iterator
ǫ to zero.(n̂j − ǫ) represents the current group size, which
can be reduced by increasing the group size iteratorǫ when
necessary. Lines2-3 initialize the number of groups of every
size to zero.

For each iteration of the infinite loop (lines5-20), we
first sort all tasks’ non-zeroΨj

i,k in ascending order. If the
number of non-zeroΨj

i,k is no smaller than the current group
size (n̂j − ǫ) (line 8), a new group of size(n̂j − ǫ) can be
found as a result of this iteration (line14). In this case,
each of the largest(n̂j − ǫ) non-zeroΨj

i,k are reduced by
one (lines15 - 18).

When the number of non-zeroΨj
i,k is smaller than the

current group size (line8), it is no longer possible to find any
new group of the current size. Therefore, the group size is
reduced (line9). If the next group size is one, the algorithm
stops (lines10 and12).

7

Algorithm 1 CalculateGj,kx for every2 ≤ x ≤ n̂j

Input: j, k and non-zeroΨj

i,k of everyτi.
Output: Gj,k

x (2 ≤ x ≤ n̂j), the maximum number of resource
request groups in whichx resource requests can be in parallel

1: ǫ = 0;
2: for x = n̂j to 2 do
3: Gj,k

x = 0;
4: end for
5: loop
6: Sort Ψj

i,k in ascending order to form listlist;
7: Let L denote the length of listlist;
8: if L < n̂j − ǫ then
9: ǫ = ǫ+ 1;

10: if ǫ = n̂j − 1 then
11: return
12: end if
13: else
14: G

j,k

n̂j−ǫ = G
j,k

n̂j−ǫ + 1;

15: for each of the last(n̂j − ǫ) Ψj

i,k in list list do
16: Ψj

i,k = Ψj

i,k − 1;
17: Remove anyΨj

i,k that becomes zero;
18: end for
19: end if
20: end loop

Because this algorithm always takes requests from the
largestx remainingΨj

i,k of all tasks (lines15-18) to form a
request group of sizex, as many tasks’Ψj

i,k as possible are
always left greater than zero. Hence, this algorithm creates
the biggest possible request group on every iteration.

Lemma 3. The maximum total amount of time that could
be wasted on spinning (by any task) in the whole problem
window [ak, ak +Dk) can be upper bounded by:

Πk =
∑

ρj∈ρ

(

2∑

x=n̂j

Gj,kx · ωx,j · (x− 1)) (4)

Proof: This lemma is derived from Theorem 1 andGj,kx
represents the value ofgx regarding resourceρj according
to the worst-case grouping.

It should be noticed thatΠk includes all tasks’ (evenτk
itself) spinning time that could exist inτk ’s problem window.

V. A NALYSIS LP-CDW

The lp-CDW analysis is based on Bertogna and Lipari’s
polynomial time sufficient non-iterative analysis (referred
to as “BL” in this report) [10] and requires no further
modifications to the standard scheduling and queue lock
algorithm apart from those discussed in section III.

The BL analysis works on a task by task basis, from the
highest priority down to the lowest priority. When analyzing
the schedulability of a taskτk, BL considers one job of

that task a problem job and derives an upper bound on
the interference of every higher priority taskτi to the
problem job within τk ’s problem window[ak, ak + Dk).
This interference is defined as the total length of all intervals
within [ak, ak + Dk) during which τk does not execute
(though it is ready) whileτi does. Since the problem job
is always ready to execute within[ak, ak +Dk), tasks with
priorities lower thanτk can never interfere with the problem
job. Moreover, because the global FP scheduling algorithm
(without queue locks) iswork conserving[10], there can
never be any idle processor when the problem job does not
execute. Therefore, if the sum of the upper bounds on all
higher priority tasks’ interference to taskτk is no more than
m(Dk − Ck) then all jobs ofτk will be schedulable.

Compared to theBL analysis, the tasksets our analysis
targets have two important differences. First, in our tasksets,
tasks with priorities lower than taskτk can also interfere
with τk within its problem window[ak, ak + Dk). This
is because parts of the low priority tasks can be executed
non-preemptively. Second, some resource accesses can cause
non-preemptible spinning, which wastes computation time.
Furthermore, because of the non-preemptible sections, our
modified global FP scheduling algorithm is no longer work
conserving. Therefore, we need a new definition of interfer-
ence in this work.

Definition 1. The total interference (Ik) to the problem job
(a job of taskτk) within its problem window[ak, ak +Dk)
is the total of any idle time, task execution time or spinning
time that happens whenτk is not executing. For the purpose
of this report,τk is not considered to be executing when it
is spinning.

Theorem 2. If the total interference (Ik) to the problem job
(a job of taskτk) within its problem window[ak, ak +Dk)
is no more thanm(Dk − Ck), taskτk will be schedulable.

Proof: Because our total interference includes all the
possible idle time that may exist when the problem job does
not execute, we can follow Bertogna and Lipari’s work [10]
to get the theorem even though our scheduling algorithm is
not work conserving.

As discussed previously in section III, a problem window
is composed of 4 time interval sets:Θk, Γk, Λk and Ωk.
Because the problem job executes inΩk, this time interval
set contributes nothing to the total interferenceIk. In the
other 3 time interval sets, there is interference that can be
more accurately analyzed across all time interval sets. There
is also interference that is unique to a specific time interval
set. Such interference can be better analyzed within its own
time interval set.

First, we model the interference that should be analyzed
acrossΘk, Γk andΛk. This includes the interference caused
by the execution of tasks with priorities higher than that of

8

τk and the interference caused by the spinning of any task
(section IV-B). Other interference (i.e. idle time and lower
priority task execution) will be discussed later.

As it is very difficult, if not impossible, to estimate the
exact total interference toτk ’s problem job, we instead
derive an upper bound for each type of interference and
then use the sum of these upper bounds as an upper bound
on the total interferenceIk.

A. Total Workload in the Problem Window

Let’s consider the interference caused by the execution of
tasks with priorities higher thanτk. This has been addressed
in the BL analysis [10]. They used each task’s maximum
workload during [ak, ak + Dk) as an upper bound on
each task’s maximum interference during[ak, ak + Dk) to
estimate the schedulability ofτk.

The maximum workload of taskτi (τi ∈ hp(k)) within
[ak, ak +Dk) can be calculated as:

Wi(Dk) = Ni(Dk) · Ci + min(Ci,

Dk +Di − Ci −Ni(Dk) · Ti)

where

Ni(Dk) = ⌊
Dk +Di − Ci

Ti
⌋

Lemma 4. The contribution of the execution of tasks with
priorities higher thanτk to the total interference is no more
than

Φk =
∑

τi∈hp(k)

min(Wi(Dk), Dk − Ck) (5)

wherehp(k) denotes the set of tasks with priorities higher
than that ofτk.

Proof: Follows from Bertogna and Lipari’s analysis
[10].

Next, we study each of the 3 time interval setsΘk, Γk and
Λk to investigate what contributes to the total interference
Ik during each of them.

B. Θk — non-preemptively blocked

Block et al. [15] proved that by disallowing the migration
of a job that is linked to a processor until it is unlinked,
this job can only be non-preemptively blocked once at the
beginning of its execution in the absence of any suspension.
The maximum length of this non-preemptive blocking is the
longest non-preemptible section of all the jobs with lower
priorities.

Lemma 5. The maximum length of the time intervalΘk is:

Bk,k = max
{i,j|τi∈lp(k)∧τi∈ac(ρj)}

(ωn̂j ,j) (6)

wherelp(k) denotes the set of tasks with priorities lower
than taskτk; ac(ρj) denotes the set of tasks that access
resourceρj and ωn̂j,j denotes the total of thênj longest
|ρji | among all tasks using resourceρj .

Proof: Follows from Block et al.’s work [15].

Lemma 6. The upper bound onΘk ’s contributions to the
total interferenceIk is m ·Bk,k.

Proof: Sinceτk cannot run duringΘk, all the execution
time, spinning time, idle time occurred within this time
interval contributes to the total interferenceIk. According to
Lemma 5, the maximum length ofΘk is Bk,k. Hence, the
upper bound onΘk’s contributions to the total interference
Ik is m · Bk,k.

It should be noticed that we do not make any assumption
on the cause ofΘk ’s contribution to the total interference.
It may be caused by any task other thanτk. It may simply
be idle time.

C. Γk — unlinked

Lemma 7. During Γk, all processors must be running
(executing and/or spinning) either tasks with priorities
higher thanτk or the non-preemptible sections of tasks with
priorities lower thanτk.

Proof: Proving this lemma is equivalent to proving that
no processor can be idle or running any pre-emptable section
of any task with a priority lower thanτk duringΓk.

Suppose there is an idle processor duringΓk. As there is at
least one ready task that has a priority no lower thanτk and
that is currently unlinked duringΓk, the scheduler would
have picked this task to run on the idle processor, which
contradicts the assumption. Based on the same reasoning,
no pre-emptable sections of any task with a priority lower
thanτk can be scheduled in preference toτk which is aways
ready duringΓk.

According to this lemma, only four types of execution can
contribute to the total interference duringΓk. This includes
the execution of tasks with priorities higher thanτk, the
spinning of tasks with priorities higher thanτk, the spinning
of tasks with priorities lower thanτk and finally the non-
preemptive resource accesses of tasks with priorities lower
thanτk. In this subsection, we derive only an upper bound
on the low priority tasks’ non-spinning contribution to the
total interference since all other contributions to the total
interference are considered elsewhere.

9

Lemma 8. During Γk, the maximum amount of non-
preemptive resource accesses introduced by tasks with pri-
orities lower thanτk is no more than:

∑

i∈lp(k)

min(ˆβi,k, Dk − Ck) (7)

where ˆβi,k denotes the total time taskτi non-preemptively
accesses any resource within[ak, ak +Dk).

Proof: BecauseΓk is part of the problem window
[ak, ak + Dk), the maximum amount of non-preemptive
resource accesses introduced by taskτi ∈ lp(k) during
Γk can never be more thanˆβi,k the total time (with-
out any spinning) taskτi accesses any resource during
[ak, ak +Dk). Therefore, duringΓk, the maximum amount
of non-preemptive resource accesses introduced by tasks
with priorities lower than τk can never be more than∑

i∈lp(k)
ˆβi,k. Moreover, if Γk is longer thanDk − Ck

then the taskset will definitely fail the test. According to
Bertogna and Lipari [10],

∑
i∈lp(k)

ˆβi,k can be substituted

by
∑

i∈lp(k) min(ˆβi,k, Dk − Ck).

fgh ijklmnoplh mjmpq mrsh p tju jv mplw r poohllhl khljxkohlymghk hzhoxmrj{ jv mplw r
f| f|f|p| p| } ~| mplw rp� p� } ~� mplw w

Figure 5. How to calculate ˆβi,k

Next, we demonstrate how to calculatêβi,k. Figure 5
illustrates the situation in whichˆβi,k reaches its maximum
value. The worst case happens whenτi’s carry-in job’s non-
preemptive resource accesses and only those accesses (with
a total length ofβi) are carried into the problem window
[ak, ak+Dk) and the carry-in job completes at its deadline.
Then, all other jobs ofτi run immediately at their arrivals
and always run all their non-preemptive resource accesses
at the beginning. Hence, the maximum number of complete
βi execution within the problem window[ak, ak + Dk) is
given by.

N̄i(k) = ⌊
Dk +Di − βi

Ti
⌋

Thus, ˆβi,k is given by:

ˆβi,k = N̄i(k) · βi + min(βi, Dk +Di − βi − N̄i(k) · Ti)

wheremin(βi, Dk +Di − βi − N̄i(k) · Ti) represents the
carry-out part of the resource accesses.

Lemma 9. During Γk, whenever a taskτi ∈ lp(k) is
running non-preemptively, a taskτj ∈ hp(k) must be non-
preemptively blocked byτi. lp(k) (hp(k)) denotes the set of
tasks with priorities lower (higher) than taskτk.

Proof: Suppose a taskτi runs non-preemptively without
blocking any task with a priority higher thanτk during Γk.
Then, τk would have been linked toτi’s processor. This
contradicts the definition ofΓk.

According to Lemma 9, whenever a non-preemptive re-
source access is introduced by a taskτi ∈ lp(k) during
Γk, this resource access must non-preemptively block a task
τj ∈ hp(k). According to Block et al. [15], a high priority
taskτj ∈ hp(k) can only be non-preemptively blocked once
per release. Consequently, the maximum number of non-
preemptive resource accesses introduced by tasks with pri-
orities lower thanτk duringΓk is bounded by the maximum
number of releases of tasks with priorities higher thanτk
during the same time interval.

Lemma 10. During Γk, the maximum amount of non-
preemptive resource accesses introduced by tasks with pri-
orities lower thanτk is no more than:

∑

i∈hp(k)

min(ˆbi,k, Dk − Ck) (8)

where ˆbi,k denotes the total timeτi can be non-
preemptively blocked by resource accesses (without any
spinning) of tasks with priorities lower thanτk within
[ak, ak +Dk).

Proof: According to Block et al. [15], our high priority
taskτi ∈ hp(k) can only be non-preemptively blocked once
per release at the beginning of its execution in the absence
of any suspension. Consequently, in the worst case, every
release ofτi ∈ hp(k) during [ak, ak+Dk) corresponds to a
non-preemptible section of someτj ∈ lp(k). To make things
even worse, it is possible that all such non-preemptible
sections are executed duringΓk. Therefore, the total amount
of resource accesses of tasks with priorities lower thanτk
that actually executes withinΓk and causes taskτi to be
blocked is no more thanˆbi,k.

Moreover, according to Lemma 9, any non-preemptive
execution caused byτi ∈ lp(k) duringΓk must block some
task with a priority higher thanτk. Otherwiseτk would
be linked. Therefore, duringΓk, the maximum amount of

10

non-preemptive resource accesses introduced by tasks with
priorities lower thanτk is no more than

∑
i∈hp(k)

ˆbi,k. Due
to the limitation of the length ofΓk, this upper bound can
be improved to

∑
i∈hp(k) min(ˆbi,k, Dk − Ck) ���� ��� ������ �� � ���� ���� ��� � ��

��� ��������� �� ���� ���� ������� �������� ������� �� ����� ���� ���������� ����� ���� ��
Figure 6. How to calculateˆbi,k

Figures 6 illustrate the situations in whicĥbi,k reaches
its maximum value. This happens whenbk (length of the
longest critical section of tasksτj ∈ lp(k)) and onlybk is
completely carried into the problem window[ak, ak +Dk)
and ends at the deadline of the carry-in job and then, all
other jobs ofτi are blocked bybk at their arrivals. Hence,
the maximum number of completebk execution within the
problem window[ak, ak+Dk) can be calculated as follows:

Ñi(k) = ⌊
Dk +Di − bk

Ti
⌋

Then, ˆbi,k can be represented as:

ˆbi,k = Ñi(k) · bk + min(bk, Dk +Di − bk − Ñi(k) · Ti)

wheremin(bk, Dk +Di − bk − Ñi(k) · Ti) represents the
carry-out part of the non-preemptive resource access.

Lemma 11. During Γk, the maximum amount of non-
preemptive resource accesses introduced by tasks with pri-
orities lower thanτk is no more than:

Υk = min(
∑

i∈hp(k)

min(ˆbi,k, Dk − Ck),

∑

i∈lp(k)

min(ˆβi,k, Dk − Ck)) (9)

Proof: Follows from Lemmas 8 and 10.

D. Λk — busy waiting

During Λk, processors other thanτk ’s could be idle or
executing any task other thanτk or spinning waiting for a
resource. Irrespective of what these processors are doing,all

processors totally contributeL ·m to the total interference,
whereL denotes the maximum length ofΛk. However, parts
of this contribution may have already been considered in the
previous subsections. If we let∆k = L · m represent the
maximum contribution to the total interference duringΛk,
significant pessimism may be introduced to our analysis. In
this subsection, we demonstrate how to improve∆k.

According to the definition ofΛk, taskτk must be spin-
ning waiting for a resource that has been locked by another
task. During Λk, it is likely that some other processors
are also spinning waiting for the same resource and their
requests for this shared resource are queued beforeτk. This
may cause further spinning ofτk. As all possible spinning
time has been considered inΠk, ignoring some spinning
time during Λk may prove useful in calculating a less
pessimistic value for∆k.

First of all, for a request byτk for resourceρj that is
blocked by some other task, suppose that it is blocked by
x resource accesses. The longest duration of this blocking
is ωx,j and hence the maximum contribution to the total
interference during this blocking ism · ωx,j. In order to
make this blocking lastωx,j time units, the total amount
of computation time wasted on spinning by all processors
during this blocking must be at leastx · ωx,j −

∑x−1
y=1 ωy,j

(grey area in figure 7). As the minimum total spinning time
during this blockingx ·ωx,j−

∑x−1
y=1 ωy,j must have already

been considered inΠk and allx resource accesses within this
time interval must have also been considered inΦk, we only
need to consider(m−1) ·ωx,j−xωx,j+

∑x−1
y=1 ωy,j = (m−

1− x) · ωx,j +
∑x−1
y=1 ωy,j when estimating the contribution

to the total interference during this time interval.��� ¡��� ¢��� £��� ¤��� ¥ ¦ §¨©ª« ¬§¨«®¯°¨®§ ¨§¨§¨±² ®¨ª«³ª«ª¬ª´°«®µ«ª¶§°«¬ª ±¬¬ª¶¶ ¨®¦ª¶·®®µ ¨®¦ª
¸¹º»¼
Figure 7. How to calculate∆k

Lemma 12. For any 0 < x ≤ m− 1,

(m−1−x)·ωx,j+

x−1
X

y=1

ωy,j ≤ (m−1)·x·ηj−
(x+ 1)2 − (x+ 1)

2
·ηj

(10)

Proof: Suppose that|ρji | of task τi is among thex

11

largest ones. Then, we defineqji = ηj − |ρji |. Therefore, if
we enlarge the maximum critical section of taskτi regarding
resourceρj to ηj , we obtain:

ω̂x,j = ωx,j + qji (11)

whereω̂x,j is used to denote theωx,j after the maximum
critical section of taskτi regarding resourceρj is inflated to
ηj . Hence, we get:

(m− 1 − x) · ω̂x,j +

x−1
X

y=1

ω̂y,j − ((m− 1 − x) · ωx,j +

x−1
X

y=1

ωy,j)

= (m− 1 − x)qj
i + (

x−1
X

y=1

ω̂y,j −

x−1
X

y=1

ωy,j)

(12)

Because0 < x ≤ m− 1, (m− 1 − x)qji ≥ 0. Moreover,
becausêωx,j ≥ ωx,j for any 0 < x ≤ m− 1,

∑x−1
y=1 ω̂y,j −∑x−1

y=1 ωy,j ≥ 0. Therefore,

(m− 1 − x)qj
i + (

x−1
X

y=1

ω̂y,j −

x−1
X

y=1

ωy,j) ≥ 0 (13)

Applying equation 12 gives:

(m−1−x)·ω̂x,j+

x−1∑

y=1

ω̂y,j−((m−1−x)·ωx,j+

x−1∑

y=1

ωy,j) ≥ 0

(14)

Consequently, the value of(m−1−x) ·ωx,j+
∑x−1
y=1 ωy,j

cannot be reduced by enlarging the maximum critical section
of a (randomly chosen) taskτi regarding resourceρj to ηj .
The above process can be conducted iteratively to prove
that the value of(m− 1− x) · ωx,j +

∑x−1
y=1 ωy,j cannot be

reduced by enlarging allx largest|ρji | to ηj . In this case,
(m− 1 − x) · ω̂x,j +

∑x−1
y=1 ω̂y,j can be represented as:

(m−1−x)·ω̂x,j+
x−1
X

y=1

ω̂y,j = (m−1)·x·ηj−
(x+ 1)2 − (x+ 1)

2
·ηj

(15)

Therefore, for any0 < x ≤ m− 1,

(m−1−x)·ωx,j+

x−1
X

y=1

ωy,j ≤ (m−1)·x·ηj−
(x+ 1)2 − (x+ 1)

2
·ηj

(16)

which proves this lemma

Lemma 13. During Λk, the contribution to the total inter-
ference that needs to be considered in our analysis is no
more than:

∆k =
∑

ρj∈ρ

(ψjk ·
m2 − 3m+ 2

2
· ηj) (17)

Proof: According to Lemma 12, duringΛk, the contri-
bution to the total interference that needs to be consideredin
our analysis is bounded by(m−1)·x·ηj−

(x+1)2−(x+1)
2 ·ηj .

It is trivial to prove that this function reaches its maximum
value m2−3m+2

2 whenx = m− 1. Therefore, we prove this
lemma.

Since the problem job of taskτk executes in time interval
Ωk, nothing contributes to the total interference to the
problem job in this time interval. Therefore, summing the
terms in Lemmas 3, 4, 6, 11 and 13 gives an upper bound
on the total interference to the problem job (a job of task
τk) during its problem window[ak, ak +Dk):

Ik ≤ m ·Bk,k + Υk + Πk + ∆k + Φk (18)

Theorem 3. A tasksetτ is schedulable on a multiprocessor
system with resources shared among tasks according to the
queue lock algorithm if for eachτk ∈ τ ,

m ·Bk,k + Υk + Πk + ∆k + Φk ≤ m(Dk − Ck) (19)

Proof: Follows from Theorem 2 and Equation (18).

VI. A NALYSIS M-CDW

Initial experiments have been conducted to study the
effectiveness of thelp-CDW analysis under different cir-
cumstances. Comparisons are made between thelp-CDW
analysis and a variant of theBL analysis extended according
to existing approaches introduced in section IV-A (named
WIA in this report) to understand their different characteris-
tics and justify the usefulness of the new analysis. Although
the lp-CDW analysis performs better in many cases, it can
sometimes be outperformed significantly, in terms of the
number of recognised schedulable tasksets, by theWIA
analysis. However, if reconfigured to study the schedulability
of each individual task, our experiments reveal that the
two analyses actually complement each other as they work
better at different priorities. Consequently, we combine them
(referred to asm-CDW (“m” stands for “mixed”)) to apply
different schedulability tests (lp-CDW or WIA) to different
task priorities. The performance of this hybrid analysis is
compared to the others’ in section VII.

In this section, only a few experiments are presented to
explain howlp-CDW andWIA complement each other. All
these experiments simulate a four processor system in which
only one resource is shared among tasks. Hence, there is
not any nested resource access.20000 tasksets are randomly
generated for each total utilisation (x axis value) in every
experiment. The success rates (the number of recognised

12

schedulable tasksets divided by20000) of WIA, lp-CDW
and BL (which does not consider any resource sharing)
performed on the same20000 tasksets are reported (y axis).
Because theBL analysis does not consider any resource
sharing and all other analyses are derived from it, theBL
analysis effectively dominates all other analyses discussed
in this report. Therefore, we use the performance ofBL as
a reference for the evaluation of other analyses. Details of
experiments and more results are given in section VII.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
WIA

BL

Figure 8. lp-CDW vs WIA when task number is15 and every job accesses
resource at most5 times

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
WIA

BL

Figure 9. lp-CDW vs WIA when task number is10 and every job accesses
resource at most10 times

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
WIA

BL

Figure 10. lp-CDW vs WIA at the highest priority only

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
WIA

BL

Figure 11. lp-CDW vs WIA at the lowest priority only

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
S

uc
ce

ss
 r

at
e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 12. m-CDWvs lp-CDW vs WIA on 4 processors underDkC when
task number is20

In figure 8, each taskset consists of15 tasks andlp-
CDW outperformsWIA when the total utilisation of every
taskset is set to between1.5 and 2.3. When tested with
other utilisations,lp-CDW andWIA give very similar results.
However, as illustrated by figure 9, the performance oflp-
CDW degrades when the maximum number of resource
accesses in any job is changed from5 (as in figure 8) to10
and each taskset is modified to contain10 tasks. With this
configuration,WIA outperformslp-CDW at all utilisations
below 2.4.

In order to better understand the performance degradation,
we break down the experiment given in figure 9 to show the
schedulability analysis success rate of each individual task
τi (the number of priorityi tasks that are recognised as
schedulable in all tasksets divided by20000).

In figure 10, lp-CDW can recognise as few as just a
little more than50% of all the highest priority tasks as
schedulable ones. However,WIA considers nearly all highest
priority tasks schedulable. On the other hand, figure 11
shows the success rates of the lowest priority task according
to the two analyses. In this figure,lp-CDW outperformsWIA
significantly when the total utilisation of every taskset isset
to between1.5 and2.7.

This trend is mirrored by experiments with tasks at other

13

priorities: the higher the priority, the betterWIA performs;
the lower the priority, the betterlp-CDW performs. This is
mainly caused by the different approaches used byWIA and
lp-CDW to modeling spinning time. As explained previously,
theWIA analysis assumes that every resource request always
causes(n̂j−1) ·ηj spinning time. However, when analyzing
taskτk, theWIA analysis only considers tasks with priorities
higher thanτk. Consequently, only spinning executed by
higher priority tasks will be counted. On the other hand, the
lp-CDW analysis has to consider all tasks’ resource accesses
when estimating the total spinning time for the analysis of
τk. The advantage of this analysis is that the estimation of
the total spinning time of all the tasks within the problem
window is much more accurate thanWIA. Hence, whenτk ’s
priority is high, the pessimism ofWIA can be compensated
by ignoring lower priority tasks. Whenτk ’s priority is low,
the pessimism ofWIA increases significantly as it has to
consider more and more tasks. However, aslp-CDW always
considers all tasks’ resource accesses when estimating total
spinning time, it performs better thanWIA whenτk is at a
low priority.

m-CDWcombines bothWIA and lp-CDW. It analyzes the
schedulability of tasks one by one in the descending order
of their priorities. At each priority, it first uses theWIA
analysis and only if that fails is thelp-CDW analysis used.
In the end, them-CDW analysis fails if lp-CDW fails at
any priority. Accordingly, them-CDW analysis dominates
both WIA and lp-CDW. As will be seen in section VII, in
many experiments,m-CDW significantly outperforms both
analyses of which it is composed (An example is given in
figure 12.).

VII. E VALUATIONS

In this section, we compare the performance of an existing
WCET inflation analysisWIA (as given in section VI),
Bertogna and Lipari’sBL analysis [10] (which does not
consider resource sharing) and both analyses proposed in this
report (i.e. lp-CDW and m-CDW). First of all, we present
the details of the experiment setup. Then, we compare all
the above analyses empirically.

A. Methodology

In order to observe the behaviour of the proposed analyses
in different circumstances, our experiments were conducted
on randomly generated tasksets with different parameters
specified. Such parameters include the total number of pro-
cessorsm, the priority assignment policy, the total utilization
of each taskset, the number of tasks in each setn, the
maximum number of resource accesses in any job of any
taskψbound as well as the upper (CSub) and lower (CSlb)
bounds of the randomly generated longest critical section of
every resource accessing task.

All experiments in this report assume that only one
resource exists. Therefore, no nested resource access can
happen. The maximum number of resource accessesψji
(where j is constant) in any job of taskτi is randomly
generated between0 andψbound. This process is also subject
to another restriction, which requires

∑
i ψ

j
i = ψbound·2n

m
.

This restriction is introduced to reasonably constrain the
experiments and to make different tasksets comparable.

The longest critical section of taskτi, which is denoted as
|ρji | (wherej is constant), has a uniform distribution between
CSub andCSlb. Supposeβub = |ρji | · ψ

j
i . Then the worst-

case total time a job of taskτi spends on resource accessing,
denoted asβi, has a uniform distribution between(βub −
|ρji |) · 0.4+ |ρji | andβub. The coefficient0.4 is configurable
and it controls how closeβi is to βub.

As can be seen shortly, the priority assignment policy
has an impact on the schedulability of tasksets in many
cases. The policies we tested include deadline monotonic
DM (the longer the deadline, the lower the priority),(D−C)
monotonicDCM (the higher the(Di − Ci), the lower the
priority) and (D − k · C) monotonicDkC (the higher the
(Di − k · Ci), the lower the priority;k is an coefficient
calculated according to [5]).

Moreover, the total utilization of our tasksets ranges
between0 andm. The number of tasks in each taskset is
varied between10 and 25. Task periods in each set have
a log-uniform distribution between2000 and 25000. The
utilisation and hence worst-case execution time of each task
is generated according toUUnifast-Discard[26]. Deadlines
have a uniform distribution between the worst case execution
times and the periods.

For each experiment, we randomly generate20000
tasksets for each configuration (including all the above
parameters) and record the number of these tasksets that
pass each analysis. It should be noticed that we have no
way of knowing how many tasksets are indeed schedulable.
The figures from our experiments only show the number of
schedulable tasksets that can be identified by our analyses.
As explained in section VI, we use the performance ofBL
as a reference for the evaluation of other analyses.

B. Priority Assignment Policy

The goal of this experiment is not to find the optimal prior-
ity assignment policy for the proposed analyses. Instead, we
intend to find out if any of the three concerned analysis can
benefit more from a particular priority assignment policy.
Also, we are interested in finding out if there is one priority
assignment policy under which all analyses perform better
than under other policies.

First, am = 4 processor system is evaluated. The number
of tasks in each taskset is set to20 (Three other taskset sizes

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 13. m-CDW vs lp-CDW vs WIA on 4 processors underDM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 14. m-CDW vs lp-CDW vs WIA on 4 processors underDCM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 15. m-CDW vs lp-CDW vs WIA on 4 processors underDkC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

DM
DCM
DkC

Figure 16. m-CDW on 4 processors under different priority assignment
policies

10, 15 and 25 are also tested and the results are given in
appendix B.).ψbound, CSlb andCSub are always set to5,
10 and25 respectively.

Figures 13 to 15 depict the performance of all three
concerned analyses underDM, DCM and DkC policies
when each taskset consists of20 tasks. Thex axis in each
figure denotes the total utilisation of each taskset. They
axis in each figure shows the success rate of each analysis
(which is defined as the number of schedulable tasksets
recognised by an analysis divided by the total number of
tested tasksets, i.e.20000 in our experiments.). As can be
seen in these figures, the performance oflp-CDW (as a
standalone analysis) is not as good as that ofWIA. This
is becauselp-CDW overestimates the total spinning time in
each high priority task’s problem window. By contrast,m-
CDW outperforms bothWIA andlp-CDW substantially. This
will be explained by other experiments shortly.

According to figures 13 to 15 (and those in appendix B),
priority assignment policy does not have a big impact on
the relative performance of the three concerned analyses.
However, these figures do not clearly show whether any
priority assignment policy is better than the others for theab-
solute performance of the concerned analyses. As the relative
performance of each analysis has been illustrated in figures
13 to 15, only them-CDWanalysis is tested for the impact
of priority assignment policies on its absolute performance.
As illustrated by figure 16, the priority assignment policy
DkC generally has a better performance than the other two
policies. However, the performance difference betweenDkC
andDCM is insignificant.

Next, we change the number of processors tom = 8
and keep all other parameters unmodified. As illustrated by
figures 17 to 19,m-CDWstill outperformsWIA significantly.
The performance gap betweenm-CDW and WIA becomes
even larger than the4 processor case. It is also clear the
DM policy is not as good as the other two policies in terms
of the absolute performance of all three analyses.

The relative performance ofWIA is worse in this case
than in the4 processor case because: 1) the increase of
processor number has a direct impact on the spinning time
of every resource access inWIA (The spinning time more
than doubles); 2)lp-CDW and m-CDW are less influenced
since it is more difficult to find many groups ofx potentially
parallel resource accesses whenx is large.

As illustrated by figure 20, the priority assignment policy
DkC always performs better than the other two policies for
m-CDW in the8 processor case. The performance ofDM is
particularly poor.

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 17. m-CDW vs lp-CDW vs WIA on 8 processors underDM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 18. m-CDW vs lp-CDW vs WIA on 8 processors underDCM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 19. m-CDW vs lp-CDW vs WIA on 8 processors underDkC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

DM
DCM
DkC

Figure 20. m-CDW on 8 processors under different priority assignment
policies

C. Taskset Size

In this experiment, we study, in more detail, the impact
of taskset size on the performance of each schedulability
analysis. First, we assume tasks execute on am = 4
processor system and their priorities are assigned according
to DkC. The number of tasks in each taskset is varied
between10 and25. The total utilisation of each taskset tested
in this experiment is chosen among1.5, 2 and2.5. ψbound,
CSlb andCSub are always set to5, 5 and20 respectively.

Figure 21 illustrates the performance of all three analyses
with different taskset sizes when each taskset has a total
utilisation of1.5. Thex axis in the following figures denotes
the number of tasks in each taskset. They axis shows the
success rate of each analysis. Since the total utilisation of
this test is relatively low, most tasksets are recognised as
schedulable byBL and m-CDW. However, both theWIA
and lp-CDW analyses begin to miss significant number of
schedulable tasksets after task number reaches16 under this
configuration. The performance oflp-CDW drops even more
quickly thanWIA as taskset size increases.

After the total utilisation of each taskset is increased to
2, our test clearly shows (in figure 22) the performance of
all three analyses degrades as task number increases. The
performance of all three analyses degrades at similar speeds
but the absolute performance ofm-CDW is always better.
It should also be noticed that thelp-CDW analysis becomes
better than theWIA analysis at all task numbers in this more
demanding test.

When the total utilisation of each taskset is set to2.5
(figure 23), it becomes very hard for all three analyses to
recognise any schedulable taskset. They can only recognise
a few when the taskset size is low. Nevertheless,m-CDW
still outperforms all other analyses.

Next, we change the number of processors tom = 8 and
adjust the total utilisations of tasksets to3, 3.5, 4 and 4.5
in different tests. The taskset sizes are still varied between
10 and25.

At utilisation 3 (figure 24),m-CDWcan recognise nearly
all tasksets schedulable irrespective of the number of tasks
in each taskset. Althoughlp-CDW cannot recognise as many
schedulable tasksets asm-CDW, its performance is also
hardly affected by the increase of taskset size. However, the
success rate ofWIA drops as the taskset size increases.

When total utilisation is raised to3.5 (25), m-CDW can
still recognise nearly all tasksets schedulable at all task
numbers. The success rate oflp-CDW becomes lower than
the previous test but the impact of taskset size changes on
its performance is still limited. The performance ofWIA
degrades more quickly than the other two analyses along the
x axis. As illustrated by figures 26 and 27, the performance
of WIA degrades more and more quickly along thex axis

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Task number

lp-CDW
m-CDW

WIA
BL

Figure 21. m-CDW vs lp-CDW vs WIA on 4 processors when the total
utilisation is1.5 and task number varies between10 and25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Task number

lp-CDW
m-CDW

WIA
BL

Figure 22. m-CDW vs lp-CDW vs WIA on 4 processors when the total
utilisation is2.0 and task number varies between10 and25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Task number

lp-CDW
m-CDW

WIA
BL

Figure 23. m-CDW vs lp-CDW vs WIA on 4 processors when the total
utilisation is2.5 and task number varies between10 and25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Task number

lp-CDW
m-CDW

WIA
BL

Figure 24. m-CDW vs lp-CDW vs WIA on 8 processors when the total
utilisation is3 and task number varies between10 and25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Task number

lp-CDW
m-CDW

WIA
BL

Figure 25. m-CDW vs lp-CDW vs WIA on 8 processors when the total
utilisation is3.5 and task number varies between10 and25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Task number

lp-CDW
m-CDW

WIA
BL

Figure 26. m-CDW vs lp-CDW vs WIA on 8 processors when the total
utilisation is4.0 and task number varies between10 and25

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Task number

lp-CDW
m-CDW

WIA
BL

Figure 27. m-CDW vs lp-CDW vs WIA on 8 processors when the total
utilisation is4.5 and task number varies between10 and25

as the utilisation further increases. On the other hand,m-
CDW andlp-CDW are more resilient to both the increase of
taskset utilisation and the increase of taskset size.

D. ψbound — maximum number of resource accesses

This experiment studies the behaviour of all three analyses
when the maximum number of resource accesses per job
ψbound is set differently. Suppose all tasks are ordered
according toDkC and execute onm = 4 processors. Each
taskset consists of10 tasks.CSlb and CSub are set to5
and15 respectively. In each test,ψbound is set to one of the
following values(5, 10, 15, 20).

As in figure 28 whereψbound is set to 5, the success
rates of all three analyses are relatively close. Moreover,the
performance of all three analyses is also relatively close to
BL in this test. This is because the lowψbound set for this
test causes not only smaller number of resource accesses
in individual tasks but also a lower total resource access
number (according to the methodology of our evaluation).
As ψbound increases (figures 29 to 31), the performance gap
betweenm-CDW and BL grows larger, so does the perfor-
mance gap betweenWIA and m-CDW. Although lp-CDW
plays an important role in the performance improvement of
m-CDWover WIA, this analysis, when used alone, is much
less resilient to theψbound increase.

Next, in order to see more clearly the impact ofψbound on
the absolute performance of each analysis, we varyψbound

between5 and20 at the step of1 for three particular total
utilisations:1.5, 2 and2.5. At utilisation 1.5 (figure 32), the
success rate ofm-CDW can drop to as low as around80%
when ψbound = 20. The success rate ofWIA drops more
quickly than that ofm-CDW at high ψbound values. The
quick performance degradation oflp-CDW along thex axis
echoes the previous tests. At higher utilisations (figures 33
and 34), the performance ofm-CDWremains better than the
other two analyses. The success rates of all three analyses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 28. m-CDW vs lp-CDW vs WIA whenψbound = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
S

uc
ce

ss
 r

at
e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 29. m-CDW vs lp-CDW vs WIA whenψbound = 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 30. m-CDW vs lp-CDW vs WIA whenψbound = 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 31. m-CDW vs lp-CDW vs WIA whenψbound = 20

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18 20

S
uc

ce
ss

 r
at

e

Max resource access number in any job

lp-CDW
m-CDW

WIA
BL

Figure 32. m-CDW vs lp-CDW vs WIA with different ψbound when the
total utilisation is1.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18 20

S
uc

ce
ss

 r
at

e

Max resource access number in any job

lp-CDW
m-CDW

WIA
BL

Figure 33. m-CDW vs lp-CDW vs WIA with different ψbound when the
total utilisation is2.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18 20

S
uc

ce
ss

 r
at

e

Max resource access number in any job

lp-CDW
m-CDW

WIA
BL

Figure 34. m-CDW vs lp-CDW vs WIA with different ψbound when the
total utilisation is2.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 35. m-CDW vs lp-CDW vs WIA whenCSlb = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 36. m-CDW vs lp-CDW vs WIA whenCSlb = 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
S

uc
ce

ss
 r

at
e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 37. m-CDW vs lp-CDW vs WIA whenCSlb = 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 38. m-CDW vs lp-CDW vs WIA whenCSlb = 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Max resource access time lower bound

lp-CDW
m-CDW

WIA
BL

Figure 39. m-CDW vs lp-CDW vs WIA with different CSlb when the
total utilisation is1.4

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Max resource access time lower bound

lp-CDW
m-CDW

WIA
BL

Figure 40. m-CDW vs lp-CDW vs WIA with different CSlb when the
total utilisation is1.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Max resource access time lower bound

lp-CDW
m-CDW

WIA
BL

Figure 41. m-CDW vs lp-CDW vs WIA with different CSlb when the
total utilisation is1.8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16 18 20 22 24

S
uc

ce
ss

 r
at

e

Max resource access time lower bound

lp-CDW
m-CDW

WIA
BL

Figure 42. m-CDW vs lp-CDW vs WIA with different CSlb when the
total utilisation is2.0

drop monotonically as the maximum number of resource
accesses per job increases.

E. CSlb — lower bound of longest critical section

Next, we investigate how differentCSlb values affect the
performance of our analyses whenCSub is constant. Again,
all tasks execute onm = 4 processors and are ordered
according toDkC. Each taskset is composed of10 tasks.
ψbound andCSub are set to10 and25 respectively. In each
test,CSlb is set to one of the following values(5, 10, 15, 20).

According to figures 35 to 38, the change ofCSlb has
very little effect on the relative performance of our analyses.
In order to see more clearly the impact of this change on
the absolute performance of each analysis,CSlb is varied
between5 and25 at the step of1 for 4 different utilisations:
1.4, 1.6, 1.8 and 2. As can be seen in figures 39 to 42,
WIA is the most resilient to theCSlb variation though its
performance is not as good as that ofm-CDW. This can be
explained by examining equation 1 in section VI. In this
equation,WIA assumes every request for resourceρj wastes
ηj · (n̂j − 1) time units on spinning. Asηj = maxi(|ρ

j
i |),

CSlb has very little influence on it as long asCSub remains
unchanged. Hence,WIA is less sensitive to the change of
CSlb than the other two analyses, which both consider the
|ρji | differences.

Moreover, the performance oflp-CDW degrades more
quickly than that ofm-CDW asCSlb increases.

F. CSub — upper bound of longest critical section

By contrast, in this experiment, we investigate how dif-
ferentCSub values affect the performance of our analyses
whenCSlb is constant. Again, all tasks execute onm = 4
processors and are ordered according toDkC. Each taskset
is composed of10 tasks.ψbound and CSlb are set to10
and 5 respectively. In each test,CSub is set to one of the
following values(15, 20, 25, 30).

According to figures 43 to 46, the performance gap
betweenm-CDWandBL becomes larger and larger asCSub

increases, so does the gap betweenWIA and m-CDW. The
lp-CDW analysis is much less resilient to theCSub variation
than the other two analyses.

Next, we varyCSub between15 and30 at the step of1
for 4 different utilisations:1.4, 1.6, 1.8 and 2. As can be
seen in figures 47 to 50,m-CDW is the most resilient to the
CSub variation as it degrades slower along thex axis. In
contrast to theCSlb experiments, the performance ofWIA
degrades quickly asCSub increases. This is becauseCSub

has a greater impact onηj .

The success rate ofm-CDWis always better than the other
two analyses.

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 43. m-CDW vs lp-CDW vs WIA whenCSub = 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 44. m-CDW vs lp-CDW vs WIA whenCSub = 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 45. m-CDW vs lp-CDW vs WIA whenCSub = 25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 46. m-CDW vs lp-CDW vs WIA whenCSub = 30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 16 18 20 22 24 26 28 30

S
uc

ce
ss

 r
at

e

Max resource access time upper bound

lp-CDW
m-CDW

WIA
BL

Figure 47. m-CDW vs lp-CDW vs WIA with different CSub when the
total utilisation is1.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 16 18 20 22 24 26 28 30

S
uc

ce
ss

 r
at

e
Max resource access time upper bound

lp-CDW
m-CDW

WIA
BL

Figure 48. m-CDW vs lp-CDW vs WIA with different CSub when the
total utilisation is1.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 16 18 20 22 24 26 28 30

S
uc

ce
ss

 r
at

e

Max resource access time upper bound

lp-CDW
m-CDW

WIA
BL

Figure 49. m-CDW vs lp-CDW vs WIA with different CSub when the
total utilisation is1.8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 16 18 20 22 24 26 28 30

S
uc

ce
ss

 r
at

e

Max resource access time upper bound

lp-CDW
m-CDW

WIA
BL

Figure 50. m-CDW vs lp-CDW vs WIA with different CSub when the
total utilisation is2.0

21

G. m-CDW Internal

As explained in section VI,WIA and lp-CDW work
better for high priority and low priority tasks respectively.
Therefore, them-CDW analysis appliesWIA analysis to
every task in the descending order of their priorities until
the first time theWIA analysis fails. Thenlp-CDW will
be more often used to analyze all the remaining tasks and
the task deemed to be unschedulable byWIA. For ease
of presentation, we name the priority at which am-CDW
analysis begins to uselp-CDW, the critical priority .

It should be noticed that different tasksets may have
different critical priorities though they are all analyzed
according tom-CDW. A taskset may have no critical priority
if the whole taskset is schedulable according toWIA.

In this experiment, we study different tasksets to find out
which priorities are more likely to become critical priorities.
This helps us better understand how the use oflp-CDW
improvesWIA so dramatically. All tasks execute onm = 4
processors and are ordered according toDkC. Each taskset
consists of15 tasks.CSlb and CSub are set to5 and
20 respectively. In each test,ψbound is set to one of the
following values (5, 10, 15). The total utilisation of each
taskset is varied between1.5 and2.5 at the step of0.2.

For each combination of total utilisation andψbound, we
randomly generate20000 tasksets in the same way as all
previous experiments. Then this experiment records the total
number of tasksets that are considered schedulable bym-
CDW (Stotal). For each priority, this experiment also records
the total number of times it becomes a critical priority in
any recognised schedulable taskset (Pi, where i denotes
a priority). Finally, this experiment reports each priority’s
possibility of becoming a critical priority in the form of
Pi

Stotal
(y axis).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 3 6 9 12 15

P
os

si
bi

lit
y

of
 B

ec
om

in
g

C
rit

ic
al

 P
oi

nt

Task Priority

U=1.5
U=1.7
U=1.9
U=2.1
U=2.3
U=2.5

Figure 51. Possibility of each priority to become a criticalpriority when
ψbound = 5

In figure 51, there are at most5 resource accesses in
any job of any taskset. When the total utilisation is1.5,
no priority shows a high possibility of becoming a critical

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 3 6 9 12 15

P
os

si
bi

lit
y

of
 B

ec
om

in
g

C
rit

ic
al

 P
oi

nt

Task Priority

U=1.5
U=1.7
U=1.9
U=2.1
U=2.3
U=2.5

Figure 52. Possibility of each priority to become a criticalpriority when
ψbound = 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 3 6 9 12 15

P
os

si
bi

lit
y

of
 B

ec
om

in
g

C
rit

ic
al

 P
oi

nt

Task Priority

U=1.5
U=1.7
U=1.9
U=2.1

Figure 53. Possibility of each priority to become a criticalpriority when
ψbound = 15

priority, which means most schedulable tasksets are purely
recognised byWIA. As utilisation increases, each priority’s
possibility of becoming a critical priority becomes higher
and higher. When utilisation is2.5, more than25% of all
the recognised schedulable tasksets have a critical priority of
14. Also in this case, more than10% recognised schedulable
tasksets need only uselp-CDW at the lowest priority. How-
ever,m-CDWis so critical that around86% of all recognised
schedulable tasksets have their own critical priorities, which
means they cannot be found schedulable byWIA alone. Also
in this figure, priority as high as7 (1 represents the highest
priority) can become a critical priority (when utilisationis
1.9 or 2.1).

According to figure 52, when utilisation is2.5 and
ψbound = 10, half of the recognised schedulable tasksets
have a critical priority of13 and the other half have a critical
priority of 14. In this case, all schedulable tasksets have
their own critical priorities (either13 or 14). As illustrate
by figure 53, increasingψbound to 15 makes some priority’s
possibility of becoming a critical priority even higher or in
some other cases, forces higher priorities to become critical
priorities. TheU = 2.3 and U = 2.5 cases are ignored

22

in this figure because evenm-CDW cannot recognise any
schedulable taskset at these utilisations.

Our experiments showed thatm-CDWhas significant bet-
ter performance thanWIAand the extent of this improvement
tends to increase as the number of processors, taskset sizes
and the upper bound on the critical section length increase.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this report, we provided significantly improved schedu-
lability analysis for multiprocessor real-time systems that
allow resources to be shared among tasks. This effort was
made in particular for global FP (global fixed task prior-
ity preemptive scheduling) multiprocessor scheduling that
requires the use of queue locks (FIFO-queue-based non-
preemptive spin locks) to protect shared resources. Although
queue lock is a very simple resource sharing protocol,
it is effective and efficient for many practical industrial
applications [16].

To the best of our knowledge, all previous multiprocessor
schedulability analyses that consider the use of queue locks
take the worst-case execution time inflation approach to
modeling time wasted on spinning. It has been shown in this
report how this approach introduces a significant amount of
pessimism, especially at low priorities. This motivated the
development of a new schedulability analysis, which takes a
unique way to model spinning. Instead of inflating the worst-
case execution time of every task, the new analysislp-CDW
groups potentially parallel resource requests (to ignore those
that can never be in parallel with others) and considers tasks’
differences in their maximum critical section lengths when
modeling the total spinning time.

Experiments showed that althoughlp-CDW outperforms
the existing approach (WIA as an example) in many cases,
there are situations whereWIA gives much better results. A
close investigation on the failure rates at different priorities
revealed the true characteristic oflp-CDW andWIA — they
complement each other. When analyzing the schedulability
of high priority tasks,WIAusually shows a much higher suc-
cess rate. However, the lower the task priority is, the poorer
the performance ofWIA is and the better the performance of
lp-CDW is. Consequently, we combined bothWIA and lp-
CDW to create a better hybrid analysis calledm-CDW. Our
studies showed that it is usually only necessary to use the
lp-CDW part of m-CDW for tasks at the lowest priorities.
However, some experiments also show that nearly no taskset
can be identified schedulable without using thelp-CDW part
of m-CDW.

The m-CDW analysis dominatesWIA and lp-CDW and
outperforms both of them significantly in most experiments
conducted. Our experiments also suggest that the most ef-
fective priority ordering available for the proposed analyses
is DkC monotonic. Taskset utilisation, the total number

of tasks in each taskset, the number of processors, the
maximum number of resource accesses allowed in each job
and the lengths of resource accesses all have a big impact
on the performance of the above analyses.

It remains an open question whether other spin lock
algorithms can also benefit from the proposed analyses. Such
algorithms may make use of prioritised queues, preemptive
execution and/or priority inheritance [17], [18]. It is also
unclear how to apply the intuition behind this work to
multiprocessor systems based on resource sharing protocols
that combine queue locks and suspension-based locks (e.g.
FMLP). Another issue we intend to solve is nested resource
accesses. So far, they are either not allowed in the proposed
analyses or assumed to share a common lock.

REFERENCES

[1] R. Davis and A. Burns, “A survey of hard real-time schedul-
ing algorithms and schedulability analysis techniques for
multiprocessor systems,” University of York, Department of
Computer Science, Tech. Rep. YCS-2009-443, 2009.

[2] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance
protocols: An approach to real-time synchronisation,”IEEE
Transactions on Computers, vol. 39, no. 9, pp. 1175–1185,
1990.

[3] T. Baker, “Stack-based scheduling of realtime processes,”
Real-Time Systems, vol. 3, no. 1, pp. 67–99, 1991.

[4] J. Carpenter, S. Funk, P. Holman, A. Srinivasan,
J. Anderson, and S. Baruah, “A categorization of
real-time multiprocessor scheduling problems and
algorithms,” in Handbook on Scheduling Algorithms,
Methods, and Models. Chapman Hall/CRC, Boca, 2004,
http://www.cs.unc.edu/∼anderson/papers/multibook.pdf.

[5] B. Andersson and J. Jonsson, “Fixed-priority preemptive
multiprocessor scheduling: to partition or not to partition,”
in Proceedings of the RTCSA, 2000.

[6] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority
scheduling on multiprocessors,” inProceedings of the 22nd
IEEE Real-time Systems Synmposium, 2001, pp. 193–202.

[7] M. Bertogna, M. Cirinei, and G. Lipari, “New schedulability
tests for real-time task sets scheduled by deadline monotonic
on multiprocessors,” inProc. 9th International Conference on
Principles of Distributed Systems, 2005.

[8] T. P. Baker, “Multiprocessor EDF and deadline monotonic
schedulability analysis,” inProceedings of the 24th IEEE
Real-time Systems Symposium, 2003, pp. 120–129.

[9] S. Baruah, “Techniques for multiprocessor global schedula-
bility analysis,” in Proceedings of the 28th IEEE Real-Time
Systems Symposium, 2007, pp. 119–128.

[10] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability
analysis of global scheduling algorithms on multiprocessor
platforms,” IEEE Transactions on Parallel and Distributed
System, vol. 20, no. 4, pp. 553–566, 2009.

23

[11] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response
time bounds for fixed priority multiprocessor scheduling,”in
Proceedings of RTSS, 2009, pp. 387–397.

[12] S. Baruah and N. Fisher, “Global fixed-priority scheduling of
arbitrary-deadline sporadic task systems,” inProceedings of
the 9th ICDCN, 2008, pp. 215–226.

[13] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synchro-
nization protocols for multiprocessors,” inProceedings of
Real-time Systems Symposium, 1988, pp. 259–269.

[14] P. Gai, G. Lipari., and M. Natale, “Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip,” inProceedings of Real-time Systems
Symposium, 2001, pp. 73–83.

[15] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson,
“A flexible real-time locking protocol for multiprocessors,”
in Proceedings of RTCSA, 2007, pp. 47–56.

[16] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and
J. Anderson, “Real-time synchronization on multiprocessors:
To block or not to block, to suspend or spin?” inProceedings
of RTAS, 2008, pp. 342–353.

[17] T. Johnson and K. Harathi, “A prioritized multiprocessor
spin lock,” IEEE Transactions on Parallel and Distributed
Systems, vol. 8, no. 9, pp. 926–933, 1997.

[18] C. Wang, H. Takada, and K. Sakamura, “Priority inheritance
spin locks for multiprocessor real-time systems,” inProceed-
ings of ISPAN, 1996.

[19] U. Devi, H. Leontyev, and J. Anderson, “Efficient synchro-
nization under global EDF scheduling on multiprocessors,”in
Proceedings of ECRTS, 2006, pp. 75–84.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,”JACM,
vol. 20, no. 1, pp. 46–61, 1973.

[21] N. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. Wellings, “Applying new scheduling theory to static pri-
ority pre-emptive scheduling,”Software Engineering Journal,
vol. 8, no. 5, pp. 284–292, 1993.

[22] S. Dhall and C. Liu, “On a real-time scheduling problem,”
Operations Research, vol. 26, no. 1, pp. 127–140, 1978.

[23] C. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-
critical scheduling via resource augmentation,” inProceed-
ings of the 29th Annual ACM Symposium on Theory of
Computing, 1007.

[24] A. Easwaran and B. Andersson, “Resource sharing in global
fixed-priority preemptive multiprocessor scheduling,” inPro-
ceedings of Real-time Systems Symposium, 2009, pp. 377–
386.

[25] S. Baruah and J. Goossens, “The EDF scheduling of sporadic
task systems on uniform multiprocessors,” inProceedings of
the 29th Real-Time Systems Symposium, 2008, 2008, pp. 367–
374.

[26] R. Davis and A. Burns, “Priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time
systems,” inProceedings of Real-time Systems Symposium,
2009, pp. 398–409.

APPENDIX A.
PROOF OFTHEOREM 1

In this appendix, we prove Theorem 1. First, we assume
that all the requests in a given problem window have been
grouped according to the algorithm described in the theorem
(e.g. Algorithm (1)). For ease of presentation, we refer to
this state as theoriginal state. Two grouping results are
consideredequivalentif the numbers of groups of each size
in both results are identical.

Our proof for this theorem works iteratively.

On each iteration, we first randomly choose a resource
request group and reduce its size by one. Then, we randomly
choose another group and increase its size by one as long as
this increase of group size does not violate the requirement
that resource requests in the same group must be issued by
different tasks. If a group of sizex is changed to sizex−1,
then sizex − 1 will be called anegative dirty size. On the
other hand, if a group of sizex is changed to sizex + 1,
then sizex+1 will be called apositive dirty size(see figure
54). ½¾¿À Á ÂÃÄÅÆÇ

½¾¿À Á ÂÃÄÅÆÇ½¾¿À È ÂÃÄÅÆÇ ½¾¿À ÈÉÊÂÃÄÅÆÇ ½¾¿À ÁËÊÂÃÄÅÆÇ
½¾¿À È ÂÃÄÅÆÇ½ÌÍÌÀÊ

½ÌÍÌÀÎ
ÏÐÑÒ ÐÓÒ ÔÒÕÐÖÔ×Ò ÔÒØÖÒÕÙ ÚÔÐÛ Ü ÕÝÞÒ ß àÔÐÖá ÙÐ Ü ÕÝÞÒ â àÔÐÖáã äåæçè æéê åëìçëíîí ï ðñòóôòõ öñ÷øó÷ùúù

Figure 54. In state2,x− 1 is a negative dirty size andy+1 is a positive
dirty size

An iteration is anecessary iterationif it neither enlarges
any group of a negative dirty size; nor reduces any group
of a positive dirty size. Otherwise, it is anunnecessary
iteration. For any sequence of iterations that contains some
unnecessary iterations, a sequence of necessary iterations
can always be found to generate an equivalent grouping
result. Therefore, we can safely ignore all unnecessary iter-
ations in the proof of this theorem. By repeating necessary
iterations indefinitely, we can get all possible valid grouping
results. Proving Theorem 1 is equivalent to proving that after

24

any number of necessary iterations, the new set of groups
always cause no more total spinning time than the original
state.

Definition 2. An iteration is called asafe iterationif the
group chosen to reduce size in this iteration was (before
this iteration) larger than the group chosen to increase size.
All other iterations are calledunsafe iterations.

For example, the iteration illustrated in figure 54 is a safe
iteration asx > y.

Lemma 14. For any sequence of necessary iterations start-
ing from the original state, it contains only safe iterations.

Proof: ûüýþ ÿ ������ûüýþ � ������ � �	
��
 �	���������ü�ü��� û���þ ûüýþ ���������� ����� � ! �"#�"$%$
ûüýþ � ������û���þ �� �&þ �þ�����' �� ����'þ ü�þ��� ü��

()*+),+ -+.)/-0+ -+1/+.2 3-)4 5 .67+ 8 9-)/: 2) 5 .67+ ;<= 9-)/:ûüýþ ÿ ������ ûüýþ ÿ��������
>?@AAABC >DEB

Figure 55. The first iteration cannot be an unsafe iteration

First, let’s consider the first iteration which is performed
when the groups are in the original state. In this case,
any iteration is a necessary iteration as there is not any
previous iteration. The number of groups of sizex cannot
be increased by reducing the number of groups of sizey if
x − 1 ≥ y (figure 55). This is because the result of such
an operation would be one more sizex group compared
to the original state while all groups of sizes greater than
x are identical to the original state (figure 55). This is
impossible according to the algorithm described in Theorem
1. Consequently, the first iteration has to be a safe iteration.

Next, we choose an integeri ≥ 1 and assume that all the
i iterations made since the original state are all necessary
safe iterations and the(i + 1)th iteration is a necessary
unsafe iteration. Then, we denote bypdssi (ndssi), the set
of all positive (negative) dirty sizes afteri iterations. We also
denote bymin(pdssi) (max(ndssi)) the minimum positive
(maximum negative) dirty size. Because all of the firsti iter-
ations are necessary and safe,max(ndssi) ≥ min(pdssi).

There is only one way to make the(i + 1)th iteration a
necessary but unsafe iteration:

• choose a group sizez wherez /∈ pdssi; reduce a group

from sizez to sizez− 1 and transform a group of size
(q ≥ z) ∧ (q /∈ ndssi) to q + 1.

There are 4 cases to consider:

Case 1

If q > max(ndssi), the result of the(i+1)th iteration is
one more size(q + 1) group compared to the original state
while all groups of sizes greater than(q+1) are identical to
the original state (figure 56). This is impossible according
to the algorithm described in Theorem 1.FGHIHJKL MNKNO

MNKNO HPQ
MHRO S IGTUVWX YZ[\] [^_ Z`_\`abaMHRO SPQIGTUVW

MHRO S IGTUVWMHRO SPQIGTUVW MHRO c IGTUVW MHRO cdQIGTUVW
efghhhij ekliMHRO c IGTUVWm nopqrps touvquwxwyz{|} ~�� �{|}�{����

�K�H�U� �HGNc WHROK�NOG � HNOGKNHTJW
Figure 56. The(i+1)th iteration cannot be an unsafe iteration (situation1)

Case 2

����� ��� ����������
���� � ��� ¡¢ ���� �£¤��� ¡¢

���� � ��� ¡¢ ���� �£¤��� ¡¢�¥¦¥� �§¤ ¨�©�¨ ¨ ª��¥� ¢���¦«¥�� ¬ �¥��¦¥��©¢

���� §¤��� ¡¢ ���� ��� ¡¢¦ ��� ¡�« ��� �¢¥¢
���� §¤��� ¡¢ ���� ��� ¡¢®¯°±±±²³ ®´µ²¶����©¦· �¥¦¥�

Figure 57. The(i+1)th iteration cannot be an unsafe iteration (situation2)

If, immediately before the(i + 1)th iteration, q <
min(pdssi) , groups of sizesq and z have never been
touched by the previousi iterations. Then, we undo the
operations of all the previousi iterations in reverse order.
Because operations of all the firsti iterations are valid, each
undo operation only moves a resource access from a group
back to where is was in a previous valid state. Consequently,
if the (i+1)th iteration is a valid one, the state must remain

25

valid after all the undo operations. Hence, if the result after
all the undo operations is invalid, the(i + 1)th iteration
must also be an invalid one. In this case, the result of our
undo operations is one more size(q + 1) group compared
to the original state while all groups of sizes greater than
(q+ 1) are identical to the original state (figure 57). This is
impossible according to the algorithm described in Theorem
1 and implies that the(i+1)th iteration in this case is invalid.

Case 3

If, immediately before the (i + 1)th iteration,
max(ndssi) > q ≥ min(pdssi) and z < min(pdssi)
(figure 58), we undo, after the(i + 1)th iteration, the
operations of all the previousi iterations in reverse order.
The groups of sizez − 1 have no effect on the undo
operations becausez < min(pdssi). As the (i + 1)th
iteration enlarges a group of sizeq, q can never be a
negative dirty size, which implies that either groups of size
q have never been touched by the firsti iterations, or they
were obtained by only adding resource accesses into them.
This means that our undo operations either ignore groups
of size q or remove resource accesses from these groups.
Consequently, we can undo the firsti iterations without
undoing the result of the(i+ 1)th iteration, which enlarges
a group of sizeq to q+1. The result of our undo operations
is equivalent to moving one request from a group of sizez
to another group of sizeq′ ≥ min(pdssi)−1 in the original
state while all groups of sizes greater than(q′ + 1) are
identical to the original state. This is because, accordingto
the definition ofmin(pdssi), no group that is smaller than
min(pdssi) − 1 in the original state can ever be increased
to sizeq after thei iterations. Therefore, after all the undo
operations, a group of size(q + 1) can only be changed to
some size ofq′ + 1 ≥ min(pdssi). This result is invalid
according to the algorithm described in Theorem 1 because
q′ ≥ z (q′ ≥ min(pdssi) − 1 andz < min(pdssi)).

Case 4

If, immediately before the (i + 1)th iteration,
max(ndssi) > q ≥ z > min(pdssi), we undo, after
the (i + 1)th iteration, the operations of all the previous
i iterations. As the(i + 1)th iteration reduces a group of
size z, z can never be a positive dirty size, which implies
that either groups of sizez have never been touched by the
first i iterations, or they were obtained by only removing
resource accesses from them. Similarly, either groups of
size q have never been touched by the firsti iterations, or
they were obtained by only adding resource accesses into
them. This means that our undo operations either ignore
groups of sizeq (z) or remove (add) resource accesses
from (into) groups that have the size ofq (z) immediately
after the firsti iterations. Consequently, we can undo the
first i iterations without undoing the result of the(i + 1)th

¸¹º»»»¼½ ¸¾¿ÀÁÂÃÄÃÅÆÇ ÈÉÆÉÊËÌÍ¼½ Î ÏÍ¼½ºÍÏÐÑ¸
¸¹º»»»¼½ ¸¾ ¾ÒÓÔÕÖ×ØÙÚÚÏÛÔÜÝ×ÖÙÚÚÏÛ ¿À¿ÀÞÓ ¸¹º»»»¼½ ¸¾ ¾ÒÓÔÜÝ×ÖÙÚÚÏÛ ¿ ÔÕÖ×ØÙÚÚÏÛ¿ÞÓ ËÌÍ¼½ ßÑàÐ á½¼âÏÐß¸ Î ÏÍ¼½ºÍÏÐÑ¸ ¸¹º»»»¼½ ¸¾¿À¿ÔÜÝ×ÖÙÚÚÏÛ ÔÕÖ×ØÙÚÚÏÛËÌÍ¼½ Íã¼ äÎåæçèé ÏÍ¼½ºÍÏÐÑ¸

Figure 58. The(i+ 1)th iteration cannot be an unsafe iteration, situation
3 (An arrow fromx to y means a group of sizex is increased/decreased
to sizey)

iteration, which enlarges a group of sizeq to q + 1 and
reduces a group of sizez to z− 1. The result of these undo
operations is equivalent to moving one request from a group
of sizez′ ≥ z to another group of sizeq′ ≥ min(pdssi)−1
in the original state while all other groups are identical to
the original state. In this case,q ≥ z′ because otherwise
q would become a negative dirty size before the(i + 1)th
iteration (Sincez′ > q ≥ z and a group can only change
its size by at most one in each iteration, a group of sizez′

has to become sizeq before it reaches a size ofz.), which
implies that the(i+ 1)th iteration would be an unnecessary
operation.

If q′ ≥ z′, the result of the undo operations is invalid
because the result contains one more sizeq′ + 1 group
compared to the original state while all groups of sizes
greater thanq′ + 1 are identical to the original state. This is
impossible according to the algorithm described in Theorem
1. In the cases wherez < q′ < z′, becauseq ≥ z′, a negative
and positive dirty point can always be formed during the
first i iterations, which prevents both groups of sizesq′ and
z′ from reaching sizesq and z. This makes the(i + 1)th
operation impossible. If otherwise,q′ ≤ z < z′, then z
must be a positive dirty size after the firsti iterations (Since
q′ ≤ z < z′ ≤ q and a group can only change its size
by at most one in each iteration, a group of sizeq′ has to
become sizez before it reaches a size ofq.). This makes the
(i+1)th iteration an unnecessary iteration, which contradicts
our assumption. Consequently, in this case, the(i + 1)th
iteration cannot be an unsafe iteration, which completes the
proof.

Theorem 1. Suppose there is an algorithm that always
makes as many sizex parallel request groups as possible
where x is initially set to n̂j and decreases only when
the remaining requests can no longer be grouped to the

26

current group size. For any taskset (or any adjusted taskset)
as described in Lemma 1, this algorithm gives the worst-
case grouping and therefore maximizes the estimated total
spinning time

∑2
x=n̂j

(x− 1)ωx,j · gx.

Proof: As a result of Lemma 14, all theunsafe itera-
tions can be ignored when proving Theorem 1. Therefore,
we only need to prove that after any number of necessary
safe iterations, the new set of groups always cause no more
total spinning time than the original state.

First, suppose2 < x ≤ m. For a request group of sizex,
its maximum total spinning time is(x− 1)ωx,j. If the size
of this group is reduced tox−1, its maximum total spinning
time will be reduced by(x− 1)ωx,j − (x− 2)ωx−1,j.

Because all iterations have to be both necessary and safe,
the removed request cannot be added to a group of size
y ≥ x− 1.

If the removed request is added to a group of sizey ≤
x−2, we will get a new group of sizey+1. This introduces
(y + 1 − 1)ωy+1,j − (y − 1)ωy,j more spinning time.

According to Lemma 2, becausex > y + 1,

(x− 1)ωx,j− (x− 2)ωx−1,j ≥ yωy+1,j − (y− 1)ωy,j (20)

Next, if x = 2, after removing one request from a group
of size2, the removed request can only form a new size one
group by itself. In this case, the estimated total spinning time
cannot be increased.

Therefore, the estimated total spinning time cannot be
increased, compared to the immediate prior state, after each
individual necessary safe iteration. Consequently, afterany
number of necessary safe iterations, the new set of groups
always causes no more total spinning time than the original
state, which proves Theorem 1.

APPENDIX B.
MORE EXPERIMENTS

First, am = 4 processor system is evaluated. The number
of tasks in each taskset is set to10, 15 or 25 in different
tests.ψbound, CSlb andCSub are always set to5, 10 and
25 respectively.

Figures 59 to 61 depict the performance of all three
concerned analyses underDM, DCM andDkC policies when
each taskset consists of10 tasks. As can be seen in these
figures,lp-CDW generally performs better thanWIA under
all three priority assignment policies. However, when the
total utilisation is low,WIA does outperformlp-CDW by
a small difference underDCM and DkC. Nonetheless,m-
CDW always performs better than the other two analyses
regardless of the priority assignment policy chosen.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 59. m-CDWvs lp-CDW vs WIA on 4 processors underDM when
task number is10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e
Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 60. m-CDW vs lp-CDW vs WIA on 4 processors underDCM
when task number is10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 61. m-CDWvs lp-CDW vs WIA on 4 processors underDkC when
task number is10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 62. m-CDWvs lp-CDW vs WIA on 4 processors underDM when
task number is15

27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 63. m-CDW vs lp-CDW vs WIA on 4 processors underDCM
when task number is15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 64. m-CDWvs lp-CDW vs WIA on 4 processors underDkC when
task number is15

When the task number in each taskset is raised to15
(figures 62 to 64), the relative performance oflp-CDW
compared againstWIA degrades in the low utilisation cases,
especially under theDkC priority assignment policy. How-
ever, the relative performance ofm-CDWcompared against
the other two remains strong. The success rate gaps become
even larger. This trend continues when the task number is
increased to25 (figures 65 to 67). Interestingly, the relative
performance ofm-CDWcompared againstWIA remains very
good even when thelp-CDW analysis can barely recognise
any schedulable tasksets by itself (figure 67).

As illustrated by figures 68 to 70, the priority assignment
policy DkC generally has a better performance than the other
two policies. However, the performance difference between
DkC and DCM is insignificant if the task number in each
taskset is no fewer than15.

Next, we change the number of processors tom = 8
and keep all other parameters unmodified. As illustrated by
figures 71 to 73, in the10 task cases, the performance of all
three analyses is very close under every priority assignment
policy thoughm-CDW still dominates the other two. It is
also clear theDM policy is not as good as the other two
policies in terms of the absolute performance of all three
analyses.

When the number of tasks is changed from10 to 15

(figures 74 to 76),lp-CDW and m-CDW are more resilient
to this change while the performance ofWIA degrades
more quickly. This trend continues when the task number
is increased to25 (figures 77 to 79).

As illustrated by figures 80 to 82, the priority assignment
policy DkC always performs better than the other two poli-
cies for m-CDW in the 8 processor case. The performance
of DM is particularly poor andDCM is only close toDkC
when the number of tasks in each taskset is10.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 65. m-CDWvs lp-CDW vs WIA on 4 processors underDM when
task number is25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 66. m-CDW vs lp-CDW vs WIA on 4 processors underDCM
when task number is25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 67. m-CDWvs lp-CDW vs WIA on 4 processors underDkC when
task number is25

28

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

DM
DCM
DkC

Figure 68. m-CDW on 4 processors under different priority assignment
policies when task number is10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

DM
DCM
DkC

Figure 69. m-CDW on 4 processors under different priority assignment
policies when task number is15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

S
uc

ce
ss

 r
at

e

Task set utilization

DM
DCM
DkC

Figure 70. m-CDW on 4 processors under different priority assignment
policies when task number is25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 71. m-CDWvs lp-CDW vs WIA on 8 processors underDM when
task number is10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 72. m-CDW vs lp-CDW vs WIA on 8 processors underDCM
when task number is10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 73. m-CDWvs lp-CDW vs WIA on 8 processors underDkC when
task number is10

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 74. m-CDWvs lp-CDW vs WIA on 8 processors underDM when
task number is15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 75. m-CDW vs lp-CDW vs WIA on 8 processors underDCM
when task number is15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 76. m-CDWvs lp-CDW vs WIA on 8 processors underDkC when
task number is15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 77. m-CDWvs lp-CDW vs WIA on 8 processors underDM when
task number is25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 78. m-CDW vs lp-CDW vs WIA on 8 processors underDCM
when task number is25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

lp-CDW
m-CDW

WIA
BL

Figure 79. m-CDWvs lp-CDW vs WIA on 8 processors underDkC when
task number is25

30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

DM
DCM
DkC

Figure 80. m-CDW on 8 processors under different priority assignment
policies when task number is10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

DM
DCM
DkC

Figure 81. m-CDW on 8 processors under different priority assignment
policies when task number is15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

S
uc

ce
ss

 r
at

e

Task set utilization

DM
DCM
DkC

Figure 82. m-CDW on 8 processors under different priority assignment
policies when task number is25

31

	Introduction
	Related Work
	Resource Sharing
	Multiprocessor Schedulability Analysis for Independent Tasks

	Model, Terminology and Notation
	Impact of Queue Locks
	Pessimism in Current Approaches
	A Less Pessimistic Modeling of Spinning Time

	Analysis lp-CDW
	Total Workload in the Problem Window
	k --- non-preemptively blocked
	k --- unlinked
	k --- busy waiting

	Analysis m-CDW
	Evaluations
	Methodology
	Priority Assignment Policy
	Taskset Size
	bound --- maximum number of resource accesses
	CSlb --- lower bound of longest critical section
	CSub --- upper bound of longest critical section
	m-CDW Internal

	Conclusions and Future Work
	References
	Appendix A: Proof of Theorem 1
	Appendix B: More Experiments

