
A Reference Implementation for UML

Tony Clark * — Andy Evans** — Stuart Kent ***

* Department of Computer Science,
King’s College, Strand, London, UK.
** Department of Computer Science,
University of York, Heslington, York, UK.
*** Computing Laboratory,
University of Kent, Canterbury, Kent

ABSTRACT.In this paper, we consider the problem of building a reference implementation (RI)
to support a proposed semantics for UML . The purpose of the RI is to enable the automated
exploration of the semantics and to permit tool vendors to verify tool compliance. In doing so,
we consider the support required to implement UML profiles; specific extensions of UML that
are based on a common semantic core. Using the RI, a vendor should be able to show that
the abstract syntax of UML models processed by their tool and the semantics of those models
comply with a ratified profile.

RÉSUMÉ.If you cannot translate your abstract in French, anyway I will do that.

KEYWORDS: Meta-modelling, Profiles, Semantics, UML, Verification

MOTS-CLÉS :French keywords.

L’objet. Volume 7 - n◦ 1/2001

2 L’objet. Volume 7 - n◦ 1/2001

1. Introduction

The Unified Modelling Language (UML) [1] is a language for modelling object
systems based on a unification of Booch, Rumbaugh and Jacobson’s popular object-
oriented modelling methods. It is rapidly emerging as a de facto standard for the mod-
elling of such systems. The UML provides many standard diagrammatic modelling
techniques representing static and dynamic system information.

Currently, UML version 1.3 is defined a collection of UML meta-models (a defini-
tion of UML in a subset of itself). Each meta-model describes the structure of part of
the language and provides a collection of well-formedness constraints. The semantics
of the language are given in informal text. The definition is unsatisfactory because it
is partial, unstructured and introduces questions relating to the soundness of such a
meta-circular language definition.

Under the auspices of the precise UML (pUML) group we have proposed a re-
structuring and semantic definition of the current version of UML (1.3) [5]. This work
aims to provide a modular definition of the semantics that can support a wide variety
of profiles. There are number of components to this definition: a kernel library, which
provides a collection of modelling concepts essential to the building of UML profiles,
an extension mechanism for constructing profiles as extensions of the kernel library or
other profiles, and a constraint language for expressing invariant properties of UML
models. It is intended that once completed, the kernel and associated domain specific
profiles will provide a standard reference library for the UML.

In this paper, we consider the problem of building a reference implementation
(RI) to support the proposed semantics structure. The purpose of the RI is to enable
the automated exploration of the semantics and to permit tool vendors to verify tool
compliance. Using the RI, a vendor should be able to show that the abstract syntax of
UML models processed by their tool and the semantics of those models comply with
a ratified profile. The tool vendor may also show that the concrete syntax of the tool
complies with a standard profile or use the features of the reference library to define a
new concrete syntax and establish its semantic credentials.

As a pre-requisite to constructing the reference implementation (RI), we identify a
number of key features that it must support. These include:

– A common model format: a meta-modelling sub-language which enables in-
stances of profiles to be specified and dynamically created within the tool. We show
how this can be reduced to a simpler semantic model called the meta-kernel which can
be implemented more easily.

– An implementation of OCL: which encodes the semantic properties of OCL
within the tool.

– An architecture for structuring and modelling profile semantics, and rules for
translating meta-model descriptions of profiles into the common model format.

A Reference Implementation for UML 3

We will show that these features can be used to construct standard profiles in the
form of packages. Thus, it will be possible to test whether a given model, expressed in
the common model format, is consistent with a particular profile. Tool compliance can
be established by translating snapshots of the tool states (or sequences of snapshots) to
the common model format and then showing that the profile’s constraints (expressed
as OCL expressions) are satisfied.

The aim of this paper is to report on preliminary work being done to specify and
implement the RI. The specification defines the essential features of the RI and estab-
lish the criteria for satisfaction. The paper is structured as follows: section 2 analyses
the current state of the UML 1.3 definition and identifies a list of requirements for the
RI; section 4 describes a formal basis for the semantics to be supported by the RI; sec-
tion 5 defines the meta-modelling sub-language used to define UML profiles; section
6 defines an example UML profile and shows how a tool might use the RI to check
it; section 7 describes the RI in terms of how it will be used by the UML community;
finally, section 8 outlines our future plans for implementing the RI.

2. Requirements of the RI

The purpose of the RI is to enable the automated exploration of the semantics of
UML and to support automatic testing of conformance of CASE tools to the language
definition. Examples of semantics-oriented tasks are: model simulation or (partial)
execution; checking that different views on a model (class diagrams, invariants, state
diagrams, sequence diagrams, etc.) are consistent with one another; checking that
the behaviour of a superclass is preserved in a subclass; and so on. In the following
section we examine a number of features of UML 1.3. and argue that it is currently
not suitable as a basis for constructing a reference implementation for UML. We then
propose how these limitations can be addressed.

2.1. Limitations of UML 1.3

2.1.1. Semantic Foundation

To define a semantics requires (at least) an abstract syntax, a semantics domain
and a relationship between the two to be defined (see [2] for more details). In the
current UML semantics document, the abstract syntax is defined using a meta-model
approach (class diagrams + OCL constraints), the semantics domain is English, and
the relationship between the two is also expressed in English. Thus the semantics
document is not a precise or formal description of the language.

Unfortunately, for a machine to process a language, that language must be defined
precisely. If it is to perform semantics-oriented tasks, then its semantics must be
defined precisely. Therefore, a pre-requisite for developing an RI for UML is the
existence of a precise description of the UML semantics.

4 L’objet. Volume 7 - n◦ 1/2001

2.1.2. Multiple Modelling Languages

The current version of UML provides a large number of modelling facilities. Be-
cause of this, there is a danger of becoming overloaded with too many concepts, many
of which are not widely used except in very specific circumstances. For example, the
definition of class diagrams (static model elements) supports a wide variety of facili-
ties for expressing constraints. In practice, these facilities are rarely used, or may be
used inappropriately.

There has already been some attempt to architect the meta-model into packages
so that pieces are brought in stage by stage. The limited power of the current UML
package imports has meant that this is relatively coarse grained. It is not possible to
define pieces of a class or in one package, then add more pieces in another package
that imports it (and that adding might be by importing another package that supplies
other pieces of that class). Thus, when a concept is introduced in a particular package
(e.g. the concept of Operation in the core package), one is forced to introduce all the
different facets of that concept, even if they are not relevant at that stage.

In practice, it is very important to be able to construct different semantic definitions
for specific modelling domains. Some examples that have already been proposed for
UML are: real-time, business and networking domains, among others. This has led to
the notion of a UML profile[3]: a semantics definition which is specifically aimed at
supporting a single modelling domain.

Ideally, an RI should be flexible enough to support profiles. Furthermore, it needs
to provide extension mechanisms for constructing profiles from pre-existing ones, thus
enabling profile reuse. For example, it should be possible to have a core or kernel pro-
file (introducing common UML semantic concepts: classes, associations, operations,
etc.), then for each profile to import from the core, adding further concepts and placing
restrictions on the use of imported concepts. One way in which this can be achieved
is by providing a

2.1.3. Constraint Language

In addition to its many diagrammatical notations, the UML semantics definition
currently provides a textual language, the Object Constraint Language (OCL), which
is used to describe constraint on UML models. These constraints include: invariants,
pre- and post-conditions and guards. An OCL constraint is applied in the context of
a specific class instance using basic predicate logic and set theory operators (for a
detailed description of the language see [4]).

Clearly, in order that the RI can be used to explore the effect of constraints on the
logical properties of a UML model, the RI needs to support a constraint language.
However, the current definition of OCL suffers from a number of limitations which
make it difficult to support at present:

– It does not have a precise semantics, i.e. there is no means of taking an OCL ex-
pression and rigorously evaluating whether or not a particular model instance satisfies

A Reference Implementation for UML 5

the implied constraint.

– The language uses a rather non-intuitive syntax, which is still not entirely re-
solved.

– The language supports a very rich set of expressions. This richness mitigates
against providing OCL with a precise semantics.

Thus, some means must be found to provide a simpler, more precise definition of
OCL, before it can be considered suitable for implementation in an RI.

2.2. Summary of Requirements

In order to support the development of an RI, the following are required:

– A precise semantics definition of UML.

– A modular architecture for the semantics, which can support the incremental
definition of profiles.

– A semantic definition of a simple (OCL) like constraint language

Finally, for a the RI to support the above semantics, a mechanical means must be
found for incorporating their definition in a tool, and for calculating whether or not
constraints are satisfied by instances of a particular UML model.

3. A Semantic Architecture for UML

This section briefly summarises recent work done to provide a semantics architec-
ture for UML, which supports the precise definition of UML profiles. This work was
presented as a response to the OMG’s request for information (RFI) regarding the next
major release of UML (version 2.0) by the precise UML group [5].

The semantics architecture presented in [5] is based upon the use of meta-modelling
to provide a precise denotational description of UML concepts. The definition is struc-
tured into packages, based on a kernel library of language definition tools and compo-
nents. A profile is a definition of a language that may specialise and/or extend other
profiles, and incorporate components from the kernel library. Figure 1, shows the
general architecture.

The kernel library consists of a number of basic packages containing fundamental
UML concepts. These include:

Static basics - generalised constructs for modelling the static properties of sys-
tems.

Constraint basics - constructs relating to the expression of constraints.

Dynamic basics - constructs for modelling the behaviour of systems.

6 L’objet. Volume 7 - n◦ 1/2001

Constraint

Basics

Static

Basics

Model

Management

Behavioural

Basics

Profile A Profile B

Figure 1. Profile architecture

Model management basics - general mechanisms for extending and specialising
the components of the language.

As shown, profiles are extensions of these basic packages. An extension mecha-
nism, similar to that proposed in the Catalysis method [6] is used to copy elements
from one package into another, whilst also permitting extension of their features.

Each profile is organised into abstract syntax, semantics domain and a satisfac-
tion/denotation relationship between the two (see Figure 2). Both abstract syntax and
semantics domain may have many concrete representations.

Abstract

Syntax

Semantics

Denotational

Mapping

Figure 2. Profile semantics

A Reference Implementation for UML 7

3.1. Meta-modelling sub-language

An essential component of the proposed architecture is ameta-modelling sub-
language. This is used to characterise all aspects of a profile and the kernel library. It
provides all the facilities necessary to write profiles, including: simple class diagrams,
a simple constraint language, packages (to represent models), an enhanced version of
package imports, and a notion of package realisation.

Like any other profile, the meta-modelling sub-language imports a number of con-
cepts from the kernel library (see figure 3).

StaticBasics

(from KernelLibrary)

Constraint

Basics

(from KernelLibrary)

Meta-Modelling

Sub-Language

ModelManagement

Basics

(from KernelLibrary)

Figure 3. The meta-modelling sub-language package

As an example, figure 4 shows some of the classes that might belong to the ab-
stract syntax of the sub-language. These deal with two fundamental static modelling
concepts: classifiers and attributes. Note that there will be many other classes defined
in the sub-language, including packages, associations, generalization and constraints.
However, these are omitted for brevity.

A number of OCL constraints are required in order to ensure that the concepts
in the abstract syntax are well-formed. In this example it is required that attributes
belonging to a classifier have unique names:

c : Classifier
c.attributes -> forall(a1, a2 | a1.name = a2.name implies a1 = a2)

The semantics domain of the meta-modelling sub-language is described by the
class diagram shown in figure 5. This represents the values that denote the meaning of
the constructs in the abstract syntax package. For example, a classifier is denoted by
a collection of objects, each of which conform to the various features of the classifier
(e.g. attributes). There are no well-formedness constraints required in this package.

Finally, both the abstract syntax and semantic packages will be imported by the
mapping package, as shown in figure 6.

8 L’objet. Volume 7 - n◦ 1/2001

Attribute

multiplicity : Multiplicity

Classifier

*

1

*

+type
1

*

1

+attribute
*

+owner

1

Figure 4. Abstract syntax fragment of meta-modelling sub-language

Instance

AttributeLink

1

*

1

*

1

*

+value1

+slot *

Figure 5. Semantic domain of meta-modelling sub-language

Associations between the classifiers in the abstract syntax package and those in the
semantics domain describe the denotational relationship between the various language
constructs. A number of additional OCL constraints are required. The first constraint
requires that values of an attribute are objects of the type of the attribute:

a : Attribute
a.instances -> forall(al | al.value.classifier = a.type)

Secondly, it is required that each object has attribute slots corresponding to the at-
tributes of its classifier:

o : Object
o.slots.attribute -> includesAll(o.classifier.attributes)

A Reference Implementation for UML 9

Attribute

multiplicity : Multiplicity

AttributeLink

Classifier

*

1

*

+type
1

*

1

+attribute*

+owner
1

Instance

1

*

1

*

1

*

+value1

+slot *

Figure 6. Mapping between abstract syntax and semantic domain

This example, though short, illustrates the general approach used to construct a
precise description of the meta-modelling sub-language. It is important to note that
if a precise description of the meta-modelling sub-language can be given, then any
profiles built using the language will be reducible to well-defined expressions in this
language.

As an example, consider the object diagram (snapshot) shown in figure 7, which
describes a fragment of a profile, written using the meta-modelling sub-language. This
profile contains two classifiers, Operation and Parameter. Operation has an attribute,
parameter, whose type is the class Parameter. Their instances are represented by in-
stances of Instance and AttributeLink classifiers.

:Classifier :Classifier:Attribute

:Object :Object:Attribute

Link

name = "Operation" neme = "parameter" name = "Parameter"

type

slots value

Figure 7. Example of profile snapshot

As we will discuss in the next section, the meta-modelling sub-language is of
central importance to the implementation of the RI for this ability to represent the
elements of any profile using a common set of concepts.

10 L’objet. Volume 7 - n◦ 1/2001

4. The Meta-Kernel Calculus

As discussed in section 2, the purpose of the RI is to enable the implementation
and manipulation of different UML profiles. This goal can be elegantly achieved if
the RI implements the meta-modelling sub-language. If the semantics of the meta-
modelling profile are built into the RI, the RI can assist with exploring the properties
of the profile being defined by looking at particular examples of expressions of that
profile, their mappings into the semantics domain, and so on.

Whilst it would be possible to directly implement the meta-modelling sub-language
described above, there are a number of disadvantages to this approach. Firstly, the full
meta-modelling sub-language will be quite large (although not as large as the cur-
rent UML semantics). Significant work will therefore be required to implement the
language. Secondly, the implementation will be inflexible: if the meta-modelling sub-
language is changed, modifications would be required of the RI. For example, if one
wanted to change the mechanism for dealing with profile extension, a major rewrite
would be necessary. Finally, any attempt at giving an external definition to the lan-
guage (for example using set theory and predicate logic) would also be lengthy. Each
concept in the sub-language definition would have to be mapped to an expression in
an appropriate mathematical language.

One approach which overcomes all these problems is to provide a semantic def-
inition for a meta-modelling sub-language that supports a reduced set of language
concepts. This idea is similar to a reduced instruction set, where large instructions are
broken down into a number of very small, general purpose instructions built from a
restricted operation set. In the case of the UML semantics, the aim is to define rules
for translating each concept or expression in the meta-modelling sub-language into a
restricted set of concepts in a simpler semantic model. The advantage of this approach
is its great flexibility, simpler semantic definition, and generality. In particular, the ap-
proach makes the task of grounding the semantics and its implementation much easier
due to the reduced number of language constructs.

The simple semantic language adopted here is based on a very small set of con-
cepts: objects and slots (relations between objects). This is because any concept can
be viewed as a collection of related objects. For example, classifiers, attributes, pack-
ages, instances and even profiles themselves can all be thought of as objects. So, an
object representing a classifier would be related to other objects representing its at-
tributes, and so on. Because this language is suitable for describing concepts at all
levels of abstraction, we have called it themeta-kernel language.

In the following section a definition of the semantics of the meta-kernel is given.
This is given using set theory and predicate logic (as opposed to a meta-model). A
meta-model definition would eventually reach a point where features of the language
were defined in terms of circular definitions, thus leading to infinite regress.

A Reference Implementation for UML 11

e ::= expressions
a constants

| v variables
| {e, . . . , e} sets
| [vi = ei

i∈1,...,n] objects
| e.v field reference
| ee operation invocation
| λv.e method
| e → iterate(v v = e|e) iteration
| if e then e else e conditionals
| e → including(e) set extension

Figure 8. Meta-Kernel Calculus Syntax

4.1. Meta-Kernel Calculus Syntax

The Meta-Kernel Calculus syntax is defined in figure 8. Expressions in the calculus
denote values from the following categories: atomic constants; objects; sets of values.

Atomic constants include integers, booleans and strings. Objects are simple record
structures consisting of field names and field values. All the field names in an object
must be distinct. Sets are builtin to the calculus, but bags and sequences are not. We
claim that sets are the underlying representation for UML collections and that all other
types of collection can be expressed in terms of objects and sets.

A core OCL expression syntax is builtin to the calculus. The core abstracts the
details of OCL operations such as conjunction and disjunction. All operations are
represented uniformly as operators that are applied to operands. All operators are
defined to take a single operand. Multiple arguments are simply packaged up into a
single object. OCL operators such asand are defined as builtin operators (see below).

The core constructs of OCL are therefore: constants, variables, field reference,
operation invocation, iteration, conditionals and set extension. We claim that all other
OCL constructs can be defined as either builtin operators of the calculus or syntactic
sugar (see below). OCL expressions denote objects of an appropriate OCL expression
type and therefore do not require a new value domain. The class of OCL expressions
are those calculus expressions that denote boolean constants.

Figure 9 defines the substitution of values for variables in Meta-Kernel Calculus
expressions. A substitutionδ is a sequence of variables and expressions[e1/v1, . . . , en/vn].
A substitution is applied to an expressioneδ; all free occurrences of each variable in
δ are simultaneously replaced with the corresponding expression. Variables in a setV
are removed from a substitution byδ\V .

12 L’objet. Volume 7 - n◦ 1/2001

aδ = a
vδ = δ(v)
{ei∈1,...,n

i }δ = {ei∈1,...,n
i δ}

[v1 = ei
i=1,...,n]δ = [vi = (ei(δ\{vi∈1,...,n

i }))
i∈1,...,n

]
(e.v)δ = (eδ).v
e1e2δ = (e1δ)(e2δ)
(λv.e)δ = λv.(e(δ\{v}))
(e1 → iterate(v1 v2 = e2|e3))δ = (e1δ) → iterate(v1 v2 = (e2δ)|e(δ\{v1, v2}))
(if e1 then e2 else e3)δ = if e1δ then e2δ else e3δ
(e1 → including(e2))δ = (e1δ) → including(e2δ)

Figure 9. Substitution into Meta-Kernel Expressions

[vi = ei
i∈1...,n].vj = (ej [self.vi/vi

i∈1,...,n])[[vi = ei
i∈1,...,n]/self] j ∈ 1, . . . , n REF

(λv.e1)e2 = e1[e2/v] APP

e′[ei/v1, e′i/v2] = e′i+1 i ∈ 1, . . . , n

{ei∈1,...,n
i } → iterate(v1 v2 = e′1|e′) = e′n+1

ITER

(if true then e1 else e2) = e1 IFTRUE

(if false then e1 else e2) = e2 IFFALSE

{ei∈1,...,n
i } → including(e) = {e, ei∈1,...,n

i } SETINC

Figure 10. Meta-Kernel Expression Equivalence

4.2. Meta-Kernel Calculus Semantics

The semantics of the Meta-Kernel Calculus is defined by a congruence relation
(reflexive, transitive, associative and equality of all sub-expressions implies equality
of composite expressions) on expressions in figure 10. Ife1 = e2 then the two ex-
pressions denote the same value. The rest of this section describes key features of the
semantics.

An object is a collection of definitions. The definitions are mutually recursive and
shadow any definitions for variables in scope with the same name. The variable ‘self’
may be used in each of the slot value expressions to refer to the object. The semantics
of field selection (axiom REF) shows that the fields and ‘self’ are substituted into the
field value when it is extracted from an object.

A Reference Implementation for UML 13

[[e1 → forAll(v1 | e2)]] =
[[e1]] → iterate(v1v2 = true | if [[e2]] then v2 else false)

[[e1 → exists(v1 | e2)]] =
[[e1]] → iterate(v1v2 = false | if [[e2]] then true else v2)

[[e1 → select(v1 | e2)]] =
[[e1]] → iterate(v1v2 = [[e1]] | if [[e2]] then v2 else v2.excluding(v1))

[[e1 → reject(v1 | e2)]] =
[[e1]] → iterate(v1v2 = [[e1]] | if [[e2]] then v2.excluding(v1) else v2)

[[e1 → collect(v1 | e2)]] =
[[e1]] → iterate(v1v2 = {} | v2.including([[e2]]))

Figure 11. Translation of Iteration Expressions

Method invocation is defined by the axiom APP. A method occurring in an object
must be referenced before it can be invoked. When a method is extracted from an
object using REF, the values of the fields and the value of ‘self’ will be subtituted into
the method body. In this way methods can access all components of the object.

Execution of an iterate expression is defined by rule ITER. The result of iterate is
the value accumulated inv2. This value will be atomic, an object or a collection of
values. We claim that all other OCL values can be modelled using these basic value
types.

Using iteration expressions and a notion of set extension (axiom SETINC) defined
in figure 10 we claim that all OCL set operations can be defined as sugar. Set extension
simply adds a value to an existing set.

4.3. Calculus Extensions

The Meta-Kernel Calculus provides a sub-set of OCL and support for very simple
objects. The calculus must be extended with extra features in order to support the
whole of OCL. We will extend the calculus in the following ways:

– Syntactic sugaring does not change the underlying semantics of a language; new
types of expression are defined by giving a translation to the basic calculus.

– Builtin methods extend the syntax of the calculus with new operators that can
be applied to operands. Each builtin method must have an associated rule like APP
that defines what happens when it is applied.

14 L’objet. Volume 7 - n◦ 1/2001

[[S → size]] = [[S]] → iterate(x i = 0 | i + 1)
[[S → includes(o)]] = [[S]] → exists(x | x = [[o]])
[[S1 → union(S2)]] = [[S2]] → iterate(x s = [[S1]] | s → including(x))
[[S1 → intersection(S2)]] = [[S2]] → collect(x | [[S2]] → includes(x))

Figure 12. Translation of Set Operations

4.3.1. Iteration Expressions

The ‘iterate’ expression is builtin to the Meta-Kernel Calculus. All other types of
iteration expression aresugarand can be expressed using basic ‘iterate’. Figure 11
gives a suitable translation.

4.3.2. Set Expressions

The Meta-Kernel Calculus provides a builtin operator ‘including’ that is used to
construct new sets from existing ones. All other set operations are sugar and can be
constructed using ‘including’ and ‘iterate’. Figure 12 defines some of the translations
to show how this is achieved. Note that bags and sequences are viewed as being
higher-level structures constructed using basic sets and objects.

A useful set operation istransitive closure. If the value of a fieldv in an object is
a setS then it is useful to be able to transitively follow the fieldv from the elements
of S. This is defined as syntactic sugar as follows:

[[e.v∗]] = [[e]].v → union([[e]].v → iterate(o v = {} | v → union(o.v∗)))

4.3.3. Builtin Methods

Builtin methods are used to extend the calculus with useful operations. The exten-
sions take the form of new cases for the definition of the equivalence relationship on
calculus expressions given in figure 10.

The calculus is extended with boolean operatorsand, or andnot. Operator has
a collection of equivalence rules that define what it means to apply the operator to
boolean operands, for example:

true and true = true

A useful builtin method permits OCL expressions to be viewed as objects. The rule is
as follows:

e1.satisfiedBy([vi = ei
i∈1,...,n]) = (e1[self.vi/vi

i∈1,...,n])[[vi = ei
i∈1,...,n]/self]

An OCL expression is satisfied by an object when the result of substituting the object
into the expression is equal to ‘true’.

A Reference Implementation for UML 15

4.3.4. Recursive Local Definitions

It is useful to be able to define local method definitions. This is achieved using the
following syntactic sugar:

let v = e1 in e2 = [v = e1, v′ = e2].v′

wherev′ is a fresh variable.

5. The Meta-Modelling Sub-Language

The Meta-Modelling Sub Language (MMSL) is a meta-circular representation of
the essential features necessary to define UML profiles. The language is written in the
Meta-Kernel Calculus and consists of a collection of classifiers.

A Classifier in the MMSL is an object that has instances and an OCL invariant
that is true for each of the instances. Classification is the process by which the RI
determines whether the OCL invariant of a given classifier holds for a given object.

The RI must be able to accept new profiles that define extensions to core UML
concepts at the meta-level. Each new profile must be checked against some unform
definition of profile. This is classification at the meta-level. Although many users
of the RI will not require such meta-linguistic machinery, we believe that there are
advantages in conceptual parsimony and that everything in the RI must be an object
classified by something.

Classifier

Parameterised
Classifier

Class

Association

Slot

Package

Profile

Object

Figure 13. Meta-Modelling Sub-Language Classifiers

Figure 13 shows the main MMSL classifiers and some important relationships
between them. All objects in the RI are classified by a most specific classifier. An
unbroken arrow from classifierC1 to classifierC2 defines thatC2 is the most specific

16 L’objet. Volume 7 - n◦ 1/2001

Kernel.Classifier =
classClassifier extendsKernel.Class

associations = {
invariant : OCL,
instances : Value

}
end

Kernel.Object =
classObject

associations = {
classifier : Kernel.Classifier,
identity : {Integer},
slots : {Slot}

}
end

Kernel.Class =
classClass extendsKernel.Classifier

associations = {
generalizations : {Kernel.Classifier},
specializations : {Kernel.Classifier},
name : String,
package : Kernel.Package,
associations : {Kernel.Association}

}
end

Kernel.Association =
classAssociation extendsKernel.Object

associations = {
name : String,
type : Kernel.Classifier
}

end

Kernel.Slot =
classSlot extendsKernel.Object

associations = {
name : String,
value : Value
}

end

Kernel.Package =
classPackage extendsKernel.Object

associations = {
name : String,
imports : {Kernel.Package},
definitions : {Kernel.Slot}
}

end

Figure 14. The Meta-Modelling Sub-Language

classifier forC1 viewed as an object. A broken line shows inheritance relationships
between classifiersviewed as classes.

The essential features of the MMSL is given in figure 14. The MMSL includes
syntactic sugar for class definitions, package definitions and associations. The trans-
lations for these sugared constructs simply produces the appropriate object definitions
by adding the appropriate slot information.

Each classifier has slot named ‘invariant’ that contains the OCL expression that
must be satisfied by each of its instances. The invariants are very important because
they provide the semantics of the RI. The rest of this section gives an overview of the
MMSL invariants.

‘Kernel.Classifier’ is the basic definition of a classifier. All other classifiers in the
RI are specializations. Every classifier has at least an invariant and a set of instances.

A Reference Implementation for UML 17

Kernel.Profile =
classProfile extendsKernel.Class

associations = {
syntax : Kernel.Package,
semantics : Kernel.Package

}
end

Figure 15. MMSL Profile

The invariant of ‘Kernel.Classifier’ requires that the invariant is satisfied by each in-
stance:

instances → forall(i | invariant.satisfiedBy(i))

‘Kernel.Class’ extends ‘Kernel.Classifier’ with features normally associated within-
heritance. Every class defines a collection of associations (that turn into instance
slots). Every class has a collection of generalizations. A class inherits all associa-
tions from its generalizations and all the generalization invariants must be true for the
classes instances. The following shows part of the invariant for ‘Kernel.Class’:

self.specializations∗ → forall(s |
s.instances → forall(i |

invariant → satisfiedBy(i)))

‘Kernel.Object’ defines the essential features of an object. Everything in the RI is an
object and therefore will have a classifier, an identity label and a collection of slots.

‘Kernel.Package’ defines the basic package structure that is used to build the RI.
Each package is a collection of definitions (expressed as slots). All definitions in the
MMSL involve a name and a value. A definition cannot occur outside the context of
an object or a package. A package may import the definitions from another package:
imports → forall(i | definitions → includesAll(i.definitions))

6. Profiles

A profile is a packaged language definition. The package includes a description
of the syntax and semantics of the language defined using the MMSL. A profile is a
classifier and therefore, given an instance of the profile expressed as a RI object, we
can determine whether or not the object is a correct phrase of the language using RI
classification.

18 L’objet. Volume 7 - n◦ 1/2001

classClassDiagram extendsKernel.Object
classifier = Kernel.Profile,
packagesyntax =

classClassifier extendsKernel.Object
associations = {name : String, attributes : {Attribute}},

end,
classAttribute extendsKernel.Object

associations = {name : String, type : Classifier}
end

end,
packagesemantics

classInstance extendsKernel.Object
associations = {slots : {attributeLink}},

end,
classAttributeLink extendskernel.Object

associations = {value : Instance, name : String}
end

end,
associations = {classes : {syntax.Classifier}, instances : {semantics.Instance}},
invariant =

let classifies(c, o) =
o.slots → forall(s |

c.attributes → exists(a |
s.name = a.name and
classifies(a.type, s.value)))

in
instances → forall(i |

classes → exists(c |
classifies(c, i)))

end

Figure 16. A Simple Profile for Class Diagrams

6.1. Profile Classifier

Figure 15 defines a profile classifier contained in the MMSL. A profile contains
packages defining the syntax and semantics of the language. ‘Profile’ is a meta-class
since it specializes ‘Kernel.Class’. The instances of ‘Profile’ are therefore classifiers
calledprofiles. Since it is a classifier, a profile has an invariant that is used to define
conditions that must hold between the syntactic and semantic components of instances
of the profile.

A Reference Implementation for UML 19

packageExample import ClassDiagram.syntax, ClassDiagram.semantics
Operation = [classifier = Classifier, name = ”Operation”, attributes = {param}],
paramAtt = [classifier = Attribute, name = ”param”, type = Parameter],
Parameter = [classifier = Classifier,name = ”Parameter”, attributes = {}],
o = [classifier = Instance, slots = {paramLink}],
p = [classifier = Instance, slots = {}],
paramLink = [classifier = AttributeLink, name = ”param”, value = p],
profileInstance = [classes = {Operation,Parameter}, instances = {o, p}]

end

Figure 17. Example Class Diagram

6.2. An Example Profile

Figure 16 defines a simple profile for UML class diagrams as defined by the meta-
model in figure 6. The profile, has four main components: the syntax package; the
semantics package; the associations; and, the invariant.

The package ‘syntax’ conforms to the meta-model in figure 4. A tool using the
‘ClassDiagram’ package to check its syntactic representation of class diagrams would
translate its internal representation of classes and associations to instances of ‘Class-
Diagram.syntax.Classifier’ and ‘ClassDiagram.syntax.Attribute’ respectively.

The package ‘semantics’ conforms to the meta-model in figure 5. The semantics
is used in two ways: a tool can check its own semantic model against that provided by
a profile; and, the semantics can be used to prove properties about a UML model frag-
ment. In the case of class diagrams, a tool may represent instances of classes in which
case the objects are translated to instances of ‘ClassDiagram.semantics.Instance’ and
‘ClassDiagram.semantics.AttributeLink’.

The class diagram profile defines two associations ‘classes’ and ‘instances’. A tool
will check its internal representation against a profile by supplying an instance of the
profile. Instances of ‘ClassDiagram’ consist of a collection of classes (the syntactic
part) and a collection of instances (the semantic part).

6.3. Using Profiles

Consider a UML CASE tool that supports drawing class diagrams and object di-
agrams. The tool vendors wish to determine whether or not their representation of
classes and instances is correct with respect to the UML standard. Suppose also that
the standard for UML class diagrams is defined by the RI profile ‘ClassDiagram’ de-
fined in figure 16.

20 L’objet. Volume 7 - n◦ 1/2001

The RI will accept as input tool model components translated to instances of
known classifiers. The tool can then be used to check whether the instances are clas-
sified by standard profiles. The RI makes no distinction between meta-classes, classes
or objects and therefore the RI can be used to check meta-models as easily as models
or snapshots of models.

Suppose the tool wishes to check a particular class diagram containing two classes
‘Operation’ and ‘Parameter’ (see example in section 3.1). There is a single association
from ‘Operation’ to ‘Parameter’ named ‘param’. In addition the tool has a representa-
tion of a Operation ‘o’ and its parameter ‘p’. This is translated to the package shown
in figure 17.

7. The Reference Implementation

The RI is an implementation of the MKC, the MMSL and a collection of profiles
defined using the MMSL. It is intended that the RI serve as a shared resource for the
UML community and that it be used to collectively define and experiment with the
semantics for UML.

In addition, the RI provides an API that allows users to connect and use the tool
to build profiles and check candidate models against profiles. The API is planned
to include an XML interface, a textual language interface (the language used in this
paper) and a programming interface in Java.

The RI will be implemented in Java and will support distributed use via the Inter-
net. Users will be able to connect to the RI and use the facilities as part of an applet.
The RI will act as a server and maintain the profiles in a database.

The scope of the RI does not extend beyond checking the conformance of UML
models in a standard format. However, it does provide the basis for a standard repre-
sentation for a suite of tools that extend the capabilities of the RI. Tools that are able
to interface with the RI will be able to make use of the semantic definitions encoded
in profiles to perform sophisticated manipulation of UML models. We would expect
the RI to be the basis for tools for: editing; model checking; proof; code generation;
reverse engineering.

8. Conclusion

This paper has investigated the requirements of a reference implementation (RI)
for UML. It has concluded that the current status of the UML definition is presently
unsuitable as a foundation for an RI due to its large size, lack of precise semantics and
inflexibility. A meta-modelling sub-language was then proposed which overcomes all
these limitations. This language can be used to describe the semantics of any UML
profile using a relatively small number of concepts. A further reduction in the size

A Reference Implementation for UML 21

of the language was achieved by showing how this language can be translated into a
meta-kernel language consisting of slots and links and a simple constraint language.

The meta-kernel language will form the basis for the reference implementation.
We have shown that its simple object/links semantics model can be readily imple-
mented in the RI and that it can be used to check the validity of snapshots against
profiles. Work will now continue to further develop the tool. This will include work
to develop its user interface and its analysis capabilities. For example, the ability to
‘model check’ profiles would be extremely useful. In the medium to long term, we
believe that the semantics approach taken in this paper, and the preliminary work done
on its implementation, are a major step towards our broader goals of developing the
UML as a precise, adaptable, and scalable modelling language. By providing devel-
opers with such tools and techniques, it is hoped that the development of new profiles
(i.e. new modelling language) will increasingly become a precise and verifiable pro-
cess.

8.1. Related work and issues

How does the proposed semantics compare with those of other modelling languages?:
The denotational approach has been used in the definition of many modelling lan-
guages and notations. For example, formal specification notations such as Z [7] and
CSP [8] use this approach. The novelty of our approach is that we have concentrated
on building a meta- semantics model that has the flexibility to be applied in the defini-
tion of any UML-like language. Languages such as those above do not have this flex-
ibility, and therefore are not capable of adapting to changes in language requirements.
Many other have looked at formalising OO methods and UML [9, 10]. However, we
believe that ours is the first comprehensive semantics that can deal with UML profiles
and OCL. Recently, Alloy [11] has been proposed by Daniel Jackson as a precise lan-
guage for object modelling. Alloy also has an associated tool, Alcoa, which permits
model checking of alloy expressions. However, the language does not conform to the
UML standard, and has a single, unchangeable semantics. Others have provided pre-
liminary work on OCL meta-modelling semantics, including [12, 13]. However, these
are not yet complete.

Isn’t the meta-modelling sub-language similar to the MOF?We have proposed a pre-
cise definition of a sub-language of UML for meta-modelling. This is similar to the
MOF meta-meta model [14], but defined in a more declarative, logical style. It is also,
itself, more suited to a declarative style of meta-modelling as required for UML. We
have given clear guidelines for determining what should go in this language, and have
based the language on those guidelines. In particular, the language is intended to be
small (but not too small), must at least be good enough to describe itself (completely
and with semantics), and is targeted at defining the language in a declarative fashion.
It also has constructs to support a fine-grained language architecture and development
of profiles. In [5] we have also described a richer, more precise and better delineated

22 L’objet. Volume 7 - n◦ 1/2001

architecture for language definition than the 4-level meta-model architecture (at least
as it is described in the semantics chapter of UML 1.3). We propose that this is used
as the reference architecture for defining UML.

Is the idea of a meta-modelling tool new?: No meta-case tools have been available
for over a decade. Commercial meta-CASE tools such as Toolbuilder and Meta-Edit
provide meta-repositories. Such repositories could in theory be propagated with UML
profiles. However, they currently don’t provide facilities for the semantic analysis, nor
do they support OCL.

9. References

OMG Unified Modeling Language Specification (1.3), Available from http://www.omg.org,
1999.

A.S.Evans and S.Kent: Meta-modelling semantics of UML: the pUML approach. 2nd Interna-
tional Conference on the Unified Modeling Language. Editors: B.Rumpe and R.B.France,
Colorado, LNCS 1723, 1999.

S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, A. Wills: Defining UML Fam-
ily Members Using Prefaces.In: Technology of Object-Oriented Languages and Systems,
TOOLS’99 Pacific. Ch. Mingins, B. Meyer (eds.) IEEE Computer Society

Jos. Warmer, A. Kleppe: The Object Constraint Language: Precise Modeling with UML,
Addison-Wesley, 1998.

A. Clark, A. Evans, R. France, S. Kent, B. Rumpe: Response to UML 2.0 Request for Infor-
mation, Available at: http://www.puml.org, 1999.

D.F.D’Souza and A.C.Wills: Objects, Components and Frameworks with UML, Addison-
Wesley, 1999.

J.M. Spivey: The Z Notation, Prentice Hall, 1992.

C.A.R Hoare: Communicating Sequential Processes, Prentice Hall, 1985.

R. France, J-M. Bruel, M. Larrondo-Petrie and M. Shroff: Exploring the Semantics of UML
Type Structures with Z, Proc. 2nd IFIP Conf. Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’97), 1997.

A. Evans and T. Clark: Foundations of the Unified Modeling Language, Proc. of the 2nd BCS-
FACS Northern Formal Methods Workshop, Ilkley, UK, 23-24 September 1997, 1997.

D. Jackson: Alloy: A Lightweight Object Modelling Notation, Available at:
http://sdg.lcs.mit.edu/alcoa, 1999.

M.Richters and M. Gogolla, A Meta-model for OCL. 2nd International Conference on the
Unified Modeling Language. Editors: B.Rumpe and R.B.France, Colorado, LNCS 1723,
1999.

M. Richters and M. Gogolla: On Formalizing the UML Object Constraint Language OCL,
Proc. 17th Int. Conf. Conceptual Modeling ER’98, 1998

The Meta-Object Facility Specification. Available at: http://www.omg.org, 1999.

