
Scope-tree: a Program Representation for
Symbolic Worst-Case Execution Time Analysis

Antoine Colin Guillem Bernat

Department of Computer Science, University of York
York, YO10 5DD, United Kingdom

Email:
�
acolin,bernat � @cs.york.ac.uk

Abstract

Most WCET analysis techniques only provide an upper
bound on the worst case execution time as a constant value.
However, it often appears that the execution time of a piece
of code depends on the sizes or values of its input data or
local parameters. The WCET of a function call may vary
depending on the caller and parameters. We propose an ap-
proach to express the WCET of a program or sub-program
as a symbolic expression. The obtained parametric WCET
can then be later evaluated using the knowledge of input
data and system configuration parameters.

In this paper we present the concept of scope-tree as a
generalisation of the traditional syntax tree representation
of programs. In addition to their WCET, scopes are asso-
ciated with an expression stating their maximum execution
frequency and some variable declarations. These variables
may be used for example to express data-dependent number
of iterations or non-rectangular loops. We also present how
the scope tree may be used to express inter-scope relations
(e.g. mutually exclusive paths, loop down-sampling). Fi-
nally, this paper presents the use of scope-trees and scope-
tree modifications on an example.

Keywords: Real-time systems, WCET, symbolic WCET
analysis.

1 Introduction and motivation

Real-time systems differ from other systems by a stricter
criterion of the correctness of their applications. Actually,
the correctness of a real-time application does not only de-
pend on the delivered result, but also on the time when it is
produced. In hard real-time systems, missing task deadlines
can be catastrophic. As a consequence, knowing task worst-
case execution times (WCET) is of prime importance for the
timing analysis of such systems. The purpose of worst case
execution time analysis is to estimate a priori (before exe-
cution) the WCET of a given program on a given processor.

WCET analysis is usually done at two levels [15]. The

low-level provides the execution time of basic blocks1 tak-
ing into account the effect of the hardware. On the other
hand, the high-level identifies the longest execution time of
the program using a representation of the program (control-
flow graph or syntax tree). A main issue in program tim-
ing analysis is to avoid pessimism in timing evaluation by
improving WCET bounds’ tightness. One part of the pes-
simism of WCET analysis is due to the presence of some
hardware features, such as caches, branch prediction mech-
anisms and pipelines, that affect the execution time of in-
structions. So the timing analysis of these features is an im-
portant research topic in the real-time systems area. How-
ever, they are not the only source of overestimation in
WCET analysis. To achieve a tight WCET estimation we
need information about the program behaviour such as in-
feasible paths and maximum number of iterations of loops
[16, 13, 17]. This kind of information is usually provided
by the user in the source code but may also be automati-
cally obtained. Using this information makes it possible to
tighten the estimate of the worst case behaviour of programs
and to avoid to take into account infeasible behaviours lead-
ing to WCET overestimation.

Motivations and Paper contributions

In this paper we focus on the high-level source of pes-
simism. We address the problem of obtaining high level
tight estimations of the WCET by characterising the con-
text in which the analysed code will be executed. This can
be achieved by representing the WCET as a parametrised
expression - a function of some external variables - instead
of a constant value. This technique allows to tighten the
WCET of pieces of code for which execution time may vary
depending on input data, local parameters or system wide
configuration. This is the situation found during the analy-
sis of the RTEMS kernel[6] where the WCET of run-queues
management functions depends on the maximum number of
tasks allowed to be created in the system. The introductive
example in [1] shows how the WCET of a function may
depend on its parameters. The example is the pow(f,n)

1A basic block is a sequence of one or more instructions with a single
entry point and a single exit point.

function that computes ��� using a loop that iterates � times.
This function may be called in a loop with a variable param-
eter:

for n = 1..10 do pow(2,n)

In such situation we would like to express the WCET of
pow as a function of its parameter � and not as a constant
value computed considering the worst case value of � (i.e.,
10).

In tree-based analysis [16, 14], the WCET of a program
is computed using the syntax tree of the program and the
knowledge of the WCET of its basic blocks. A set of rules
(called timing schema) are used to translate the syntax tree,
the WCET of basic blocks and some user-provided infor-
mation into an equational system which, when solved, pro-
vides the WCET. The program representation we present
in this paper (called scope-tree) is a generalisation of the
traditional syntax tree representation of programs and is in-
tended to be used in symbolic WCET analysis. A scope-
tree represents the syntax structure of the analysed code,
the WCET of basic blocks, the user-provided information
and the timing schema all at once.

The motivations for the definition of this new represen-
tation are the following:

� Extensibility: as the timing schema is implicitly de-
scribed by the scope-tree itself, the computation of
the WCET does not rely on the use of a fixed timing
schema. Thus, the set of expressions used to express
the WCET is not limited.

� Symbolic WCET: the proposed representation allows
to describe WCET using some variables. It allows us
to represent a variable WCET (see the pow(f,n) ex-
ample above) by a symbolic expression. As we rely
on computational algebra systems (like Maple [3], or
Mathematica [19]) to manipulate, simplify and evalu-
ate these expressions, the only limitation is the power
of the chosen symbolic computation tool.

� Out of hierarchy relationship: there exist cases
where particular assertions have to be made on parts
of a program as for example mutual exclusive paths or
loop down-sampling2.

� Genericity: finally, the proposed technique allows to
express all that can be expressed by other tree-based
techniques, and more.

Note that, as a first step, we consider that the WCET of
basic blocks are constant and independent. By doing this we
ignore the effects of some architectural features which add
some variability to the execution time of instructions. Such
assumption leads to some pessimism, but it is required to
keep the presentation clear and focused on the high-level

2Down-sampling: executing one part of the body of a loop less often
than the rest of the body.

analysis. We are currently working on the adaptation of the
proposed symbolic WCET computation method to take into
account basic blocks with path-dependent WCET.

Paper organisation

The remainder of the paper is structured as follows. The
next section introduces related work on high level WCET
analysis. We give (in section 3) our definitions of scope
and scope-tree and we detail how we intend to use them
to express tight WCET. Section 4 presents an example.
This example is used to illustrate the representation of data-
dependent WCET using scope-tree (i.e., the declaration and
use of variables in scope expressions), and to explain how a
scope-tree may be modified to express inter-scope relations
(e.g. mutually exclusive paths, loop “down-sampling”).
The scope-tree based computation of the symbolic WCET
of the example is also presented. Finally, we present some
conclusions as well as current and future work.

2 Related work

Static WCET analysis has been the subject of much re-
search, and substantial progress has been made in the area
over the last decade (see [15] for a review of WCET). The
WCET estimation is a twofold issue: (i) possible execu-
tion paths have to be determined to calculate the execution
time along the worst of these paths, (ii) execution time for
each atomic unit of a path has to be accurately estimated.
In this paper we will only focus on the first issue. There
are two ways to determine what sequence of instructions
will be executed. On one hand, it is possible to consider
all paths implicitly by using integer linear programming
(ILP) [10, 17, 12, 7]. On the other hand, the enumeration
of program paths can be explicit as in tree-based methods
[16, 14, 11, 5].

ILP techniques transform the control-flow graph repre-
senting a program into a constraint system and a WCET
function, which is maximised by an ILP solver that pro-
vides an integer value. All the variables of the equation sys-
tem have to be constrained, and are given integer values by
the ILP solver. So, this kind of techniques can not provide
symbolic expressions as WCET results. Thus, the ILP ap-
proach is clearly not suitable for symbolic WCET purpose.
Tree-based techniques rely on the use of timing schemas.
A timing schema is a set of rules used to translate the syn-
tax tree of a program into an equational system that must
be solved to produce the WCET. Some approaches for deal-
ing with so-called non-rectangular loops [8, 2, 9, 4] were
developed based on transforming nested loops into nested
summations and evaluate and simplify such expressions to
obtain WCET estimates. However, all of these approaches
rely on the fact that loops are bounded with constant values
and the WCET is in the end a constant number. The sym-
bolic WCET analysis proposed in [1] and the parametric
timing analysis presented in [18] both propose to compute a

2

symbolic or parametric WCET, i.e., an algebraic expression
of some variables.

The proposed technique is intended to express all the re-
sults obtained so far in tree-based approaches and to take
into account some situations that are traditionally only taken
into account by ILP approach (e.g. mutual exclusive paths).

3 From syntax tree to scope tree

The syntax tree is a representation of the program whose
nodes describe the structure of the program in the high-level
language and whose leaves represent basic blocks. The
most often, four types of tree nodes are defined: sequence,
loop, conditional and basic block (which is a node with no
child). The timing schema describes the translation of each
node into an equation that expresses its WCET based on the
WCET of its children nodes. The timing schema contains a
fixed number on “translation rules” (one per node type).

In the approach proposed in this paper, we generalise
this notion by allowing arbitrary expressions to express the
WCET and also by parametrising such expressions with
variables. Moreover the WCET of a sub-tree may not only
depend on the WCET of its sons, but may also use the
WCET of any arbitrary sub-tree.

3.1 The scope tree representation
We define the concept of scope-tree as a generalisation of

the traditional syntax tree used in tree-based analysis tech-
niques. A syntax tree can be viewed either as a collection
of nodes and edges or as a hierarchy of sub-trees. It is this
second view that fits best the concept of scope-tree. Scope-
trees are made of scopes, which are equivalent to sub-trees
of the syntax tree (see an example on figure 2).

Definition of a scope

A scope represents a sub-tree of the syntax tree, its be-
haviour and its value (i.e., its WCET). In the following, we
use uppercase latin letters to name scopes. As for nodes of
the syntax tree, a scope � has only one parent scope ,

�
� , and

may have some children scopes , ��� .
The WCET of a scope is described using two expres-

sions: � and � . The � expression represetns the WCET
of the scope and � is its worst case execution frequency. �
takes at least one parameter (e.g. an execution frequency
of 10 would be described by ���	��
���������). Then, the
WCET of a scope as seen by a parent scope is ������
 , the
WCET of the scope modified by its execution frequency
function.

More formally, a scope � is defined as the collection of:
� A WCET symbolic expression, ��� , called � expres-

sion, which expresses the WCET of � based on the
WCET and execution frequencies of its sons � � .

� An execution frequency expression , ���� , which defines
the number of executions of � regarding an outer scope

�
. We will normally only express the frequency of a

scope regarding its parent scope. For this reason �����
will be abbreviated as � � .

� A set of defined variables: � � , i.e., variables that may
be used in the � expressions of � and all of its sub-
scopes, and in the � expressions of the sub-scopes of
� .

� A set of used variables: ��� , i.e., variables which are
used in scope expressions (� and �) of � and sub-
scopes of � .

The � expression of scope � describes how to compute
the WCET of � knowing the WCET of all its sons and
how many times each of them will be executed (i.e., the
execution frequency of its sons). All declared variables
(i.e., variables in ���) may be used in the ��� expression.
So, the resulting WCET may be a parametric WCET.

The execution frequency expression expresses the exe-
cution frequency of a scope regarding another scope using
scope variables. For instance, the execution frequency ex-
pression � �� represents the number of times the scope � is
executed for each execution of an outer scope

�
(called the

reference scope). Execution frequency expressions are very
flexible and allow the definition of very tight frequencies of
exotic scopes. For example, consider three scopes

�
, � and!

with
!

being a son of � , which is a sub-scope of
�

. As-
sume that � is executed 10 times for one execution of

�
,

and that
!

is executed 2 times for one execution of
�

(see
figure 1).

for i=0..9 do

if (i==3) or (i==5)

then do something

PSfrag replacements

"#$

scope
"

scope
#

scope
$

%'&(

% ()
% &)

Figure 1. Example of relative execution fre-
quency: %'*� �+� and %'*� �-, (instead of 10).

With a tree-based WCET analysis technique that cannot
handle down-sampling, the worst case iteration number of!

would be ��� times for each execution of
�

. We want to
express the fact that

!
is executed only 2 times in

�
. This

is done by relating the execution frequency of the scope
!

to the outer scope
�

(instead of its direct parent �). The
WCET of scope

!
is � * , but from the point of view of�

it is � �* ��� *
 where � �* �.�/
��0,1�2� . More generally,
when the � expression of a scope � is ���� with

��3�
�
� , it

means that the WCET of the scope � should not be used to

3

express the WCET of scope
�
� but the WCET of scope

�
.

This kind of situation and the way they can be solved are
detailed in paragraph 4.4 and 4.5. All declared variables of
the reference scope (i.e., variables in � �) may be used in
the expression � � � .

Associated to each scope � are two sets of variables � �
and � � . � � is the set of variables defined in scope � . The
final WCET of � will be defined as a function of some vari-
ables of this set. � � is the set of used variables. As scope
expressions can be only defined in terms of scope variables
of outer scope, � � should always be included in ��� to en-
sure that all used variables are defined.

Scope-tree

A program or a section of program to be analysed can then
be seen as a hierarchy of scopes: the scope-tree. A scope-
tree is defined by its root scope, and only the variables de-
fined by the root scope of the scope-tree may appear in the
final expression of the WCET of the scope-tree.

It may happen that a sub-part of the scope-tree is un-
known when the scope-tree is first constructed. It may be
the case of some function calls in the program for which
the code and the scope-tree of the called function is not pro-
vided (e.g. functions which are part of a library).

Let us consider a function call. If the scope-tree of the
call function is not provided then function call can be repre-
sented by a scope with no son. This scope may declare and
give values to some variables: the parameters of the called
function. To evaluate the WCET of a program that contains
such a function call, a representation of the called function
has to be provided either as a scope-tree or as a � expression
representing the WCET of the called function (this expres-
sion may be parametrised by the function parameters).

3.2 Representing programs using scope trees

In the previous paragraph, we have defined scopes and
scope-trees. We now want to represent a program, or a frag-
ment of program to be analysed, using a scope-tree. As
a scope-tree is a generalisation of syntax tree, it can obvi-
ously be used to do the same WCET computations as with
syntax-tree. We show here how to translate a syntax tree
and timing schema into the equivalent scope-tree.

As an example, let us consider a syntax tree made of four
types of nodes (sequence, loop, conditional and basic block)
and the timing schema introduced in [16]. The sub-trees (or
nodes) of the syntax trees are represented by scopes. As
previously said, scope-trees are not made of a fixed number
of scope types. The “type” of a scope is defined by its �
and � expressions. To represent the syntax tree according
to the chosen timing schema, we provide three default kinds
of � expressions and two kinds of � expressions:

� �� �	��������� � �
 �
� � � �
	 ����� �

��� � �	� � ����� � �
 � Max �� � �
	 � � � �
��
���� �	
 � constant

�
� � �	��
 � �
×� � �	��
 � constant ���

Note that other kinds of � and � expressions can be de-
fined, and that these expressions may be symbolic expres-
sions (see � 4.4 for an example).

The � �� expression is used to represent sequence and
loop nodes. It calculates the sum of the WCET of all the
sons, � � , of � . The ��� � expression is used to represent
conditional nodes, it chooses the maximum WCET in a

list of WCET expressions. Finally, ���� is used when the

considered node is either a basic block (in this case ���� is
an integer) or a void sub-tree as, for instance, a non-existent

else in a conditional construct (in this case � �� � �).
The role of � expression is to describe the relative

execution frequency of a scope regarding an outer scope.
The most widely used � expression is the identity function�
� � that specifies that a scope � is executed as many times

as its parent scope. The other useful expression is
×� � ,

which specifies that a scope � is executed � times each
time its parent scope is executed. This expression is used to
represent loops of the syntax tree.

Table 1 shows the correspondence between types of node
and scope expressions. Scopes are defined for each type
of node of the original timing schema using the � and �
expressions defined above. Note that the � expression of
scope � is not defined by the node � but is defined by its
immediate outer scope

�
� .

A sequence node is represented by a scope � whose
WCET is the sum of the WCET of its sons (the � � ex-
pression is used), and whose sons’ execution frequencies

are the same as their parent frequency (expression
�
�). The

WCET of the scope � representing a loop node is the sum
of the WCET of its sons (Test and Body), and the execu-
tion frequency of its sons are multiples of the one of �
(this is expressed by

×�). A conditional node is represented
by a scope3 � whose WCET is ��� , the maximum of the
WCET of its sons, and whose sons’ execution frequencies
are the same as their parent frequency. Finally, the WCET
of scopes representing basic blocks are constant and are rep-

resented by ��� .
The example in figure 2 shows the translation of a syntax

tree into its equivalent scope-tree. To ease the graphical rep-

resentation of scope-trees, the
�
� expression can be omitted

3The test of the conditional construct is not represented in this scope
but is represented as a son of the upper “sequence” scope.

4

Sequence Loop Conditional Basic block
� : � � � ����� � � � � : while(

!
) do

�
if() then

!
else �

� � � � � � � � � � � � � ��� � � � ���
� � � � �� � � � � �� � � � � �� � � � � ��� �1��� � � �
	 � � � � *�� �	� � � � � *
� �	� � �1����� � � �
	 �

�
� � �� � ×� � �* �

�
�

� �* �	��
 � � �� �	��
�� � � �� �
�
�

Table 1. Default scope expressions corresponding to node types

in scope-tree representation as it is the default expression.

PSfrag replacements

loop

seq

if

����� �
����� �

� ��� �
�������

� �����
 �����

! �����
" ����� # �$���

×% ×% �

�%�
� � ���

 � � �'& �
! � " � # �

Figure 2. Syntax tree and equivalent scope-tree

This set of scope expressions is sufficient to represent a
traditional syntax tree as a scope-tree. But it is also possi-
ble to use some new expressions and variable definitions to
represent some more complex situations. The behaviour of
a piece of code that cannot be represented accurately in a
syntax tree, may be represented by a scope by:

� defining some of its � expressions to be different from
� � and ��� ,

� defining some of its � expressions to be different from�
� and

×� ,

� writing scope expressions using some variables de-
fined in outer scopes.

All these possibilities are illustrated in section 4.

3.3 Extracting scopes from the source code

We do not make any assumption on the way to obtain
scopes and scope expressions from the source code. The
easiest way, from the analysis point of view, is to rely
on user-provided annotations, but this requires some extra
work from the user. It has been shown in [8, 2, 9] that it is
possible for a subset of scope annotations (maximum num-
ber of iterations of loops) to be automatically extracted by
some analysis tools.

When no particular expressions are specified for a scope,
a default � expression and a default � expression are used.
These default expressions are the ones presented in table 1.

3.4 Scope motion: shadowing

As said in the definition of � , it may happen that the
execution frequency of a scope is defined relative to an outer
scope which is not its direct parent (� � � where

� 3�
�
�).

To take into account these relative execution frequencies,
the scope-tree has to be modified before the WCET evalua-
tion. The scope-tree is restructured by “moving” � so that
it becomes a direct son of

�
(an example of restructured

scope-tree is shown in figure 5). In fact, what we really
mean by moving � is simply removing a link in the scope-
tree and building a new link from the destination scope to
the “moved” scope. Scopes that have been moved are shad-
owed. A new scope, the shadow of � , is added as a son of
the destination scope. The new link is labelled with a copy
of the original � expression, and the original link to � is
removed by setting its � expression to � .

The need of shadowing is expressed by the ���� function
when

�
is not the direct parent of � . So, no additional an-

notation is needed to specify where to perform shadowing.
The semantics of the worst case execution time are pre-

served by this scope-tree transformation because the num-
ber of executions of each scope remains the same in the new
scope-tree. Scope expressions can be only defined in terms
of scope variables of an outer scope. This has to be ver-
ified when moving scopes. Basically, we must verify that
the set of used variables of the shadowed scope is included
in the set of defined variables of the destination scope (i.e,
the scope receiving the shadow). If this condition is not
verified, the annotations must be re-designed or the scope
motion dropped.

3.5 Scope-tree based WCET evaluation
The evaluation of the WCET of a program is done by

transforming its scope-tree into a set of WCET functions.
Each scope produces two functions corresponding to the �
and � expressions. The parameters of these functions are
the variables of the � set of the scope. Note that the func-
tions obtained from the � expressions have an additional
parameter: � . We propose to use a computational algebra
system like Maple to perform the simplification and evalu-
ation of the expressions. The Maple code of some example
WCET functions can be found in appendix A.

The WCET for each scope are then computed recur-
sively by symbolically evaluating the WCET functions in

5

a bottom-up manner thanks to the scope-tree. After the
WCET evaluation, the WCET of each scope of the scope-
tree is either a numeric value or a symbolic expression.

3.6 On line scheduling

The result of the evaluation of the WCET expression of
a program may be an integer value or an expression of some
variables (configuration variables). In the later case, the ex-
pression may then be used on-line to compute the actual
WCET when the exact value of the variables are known.
As the function can be arbitrary complex, we suggest to ap-
proximate it with a polynomial function that envelops the
WCET expression. Therefore the WCET of the on-line
evaluation of the expression itself can be bounded off-line.

4 Explanation of the scope-tree concept on an
example

To ease the reading of this paper, we choose to explain
the concept of scope-tree and show its expressiveness power
on an example. Note that the situations that can be rep-
resented using scope-trees are not limited to the ones pre-
sented here. We illustrate the use of scope-trees to com-
pute symbolic WCET on the example proposed in [16]. The
original example considers the problem of the localisation
of a can on a conveyor belt.

4.1 Program specifications

“Tin cans are transported on a conveyor belt. A robot
arm seizes the cans and puts them into boxes. The computer
controlling the robot arm is connected to a video camera in
order to determine the position of the can on the belt”[16].
The image provided by the camera is shown in figure 3.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

. .

.

.

.

.
.

.

.
.

.

.

.

200 pixels

640 pixels

9999

0
0

Figure 3. Image of a can on the conveyor pro-
vided by the camera

The specifications are the following:

� The image read by the camera is presented in an array
of 640*200 black or white pixels.

� The maximum area covered by the image of the can
depends on the type of cans conveyed and is known as
N. We assume that the value of N may be changed at
runtime.

� There may be some noise in the image data. The max-
imal noise ratio which is tolerated is 10% of N.

� In order to steer the robot arm to the right location, the
program has to calculate the center of the marked area.

� It may happen that the camera gives a totally blank im-
age (without any black pixel). In such case, the camera
has to be reinitialised.

� Finally, it was not possible to put the camera exactly
above the robot arm. So, due to the camera angle,
the image provided by the camera is similar to the
one presented in figure 3. As the floor is visible on
both sides of the conveyor belt, and as the floor is
dark enough to perturb the computation, the algorithm
should only be applied to the portion of the image de-
fined by ����� ,����
	����� ��������� ,�� .

A (partial) listing for the camera application is shown
in figure 4. Note that, as the issue of annotating the code
to define scopes is not discussed in this paper, this listing
does not contain any annotation. This example has some
interesting characteristics:
- The number of times the section of code between line 12
and line 17 is executed depends on the value of N, which is
unknown at analysis time.
- The section of code 12-17 is “down-sampled”. It is exe-
cuted at most N � N � ��� times instead of ��� �/� , � � � � ,�� � � �
times.
- The two loops of this program are non-rectangular loops.
The loop called loop x iterates ��� ��� ,������� times where
� is the counter variable of the outer loop (loop y).
- Finally, the section of code 12-17 and the 31st line of the
source code are mutually exclusive.

We want to compute the WCET of the example program
using all the information that can be extracted from its spec-
ifications. Representing the program using a scope-tree will
allow us to take advantage of this knowledge to tighten to
compute a tight WCET. The resulting WCET will be func-
tion of N (see end of � 4.6).

The scope tree of this program is shown in figure 4.

4.2 Data-dependent WCET

It may happen that the execution time of a piece of code
depends on the input data of the program, on the system
configuration or on some local parameters. This kind of sit-
uation is refered as data-dependent WCET. In our example,
the size (N) of the maximum area covered by the image of
the can is unknown at analysis time but will be statically
known before the execution of the program (it depends on
the system configuration, i.e., the size of the can to localise).

The data-dependent number of execution of the section
of code between line 12 and line 17 is expressed using the
���� expression of scope � in the scope-tree shown in fig-
ure 4. This expression states that the number of executions

6

0 int

W

M

calc_center(image, x_center,y_center)

1 char image[640][200];

2 int *x_center, *y_center;

3 {

4 int pixel_count, x, y, x_sum, y_sum, black_pixel;

5 black_pixel = pixel_count = x_sum = y_sum = 0;

6 for(y=0;y<200;y ++) /* loop y */

7 {

8 for(x=y/2;x<640 −(y/2);x++) /* loop x */

9 {

10 if(image[x][y])

11 {

12 int weight;

13 weight = calc_weight(image ,x,y);

14 x_sum += x * weight;

15 y_sum += y * weight;

16 pixel_count += weight;

17 black_pixel ++;

18 }

19 }

20 }

21

22 if (pixel_count)

23 {

24 *x_center = x_sum / pixel_count

25 *y_center = y_sum / pixel_count

26 }

27 else

28 *x_center = *y center = 0;

29

30 if (! black_pixel)

31 reinit_camera();

32

33 return 1;

34 }

loop x

loop y

if(image[x][y])

if(!black_pixel)

PSfrag replacements

� �

�
�

#
�

�

�
� �

�
�

����� �

 ��� �

! ��� �
" ��� �

� ��� �
� �����

×% � % !

×% # % �

% �	

%�
�

calc weight;...

reinit camera

 ��� �
� �$� �

� ��� �

 �����

shadow of
shadow of 	

�

The maximum number
of execution of

	
is

N
� N��� (cf. � 4.2).

Figure 4. Source code and scope-tree of the camera example program

of scope � is N � N � � � (this information is provided as an
annotation of the if construct). The variable N, which is de-
clared by the root scope of the scope-tree(

�
), will remain in

the final WCET expression. Therefore:

� � � � �� � N �
� � � �.�/
 � � N � N

���
��
� � � �

�
� � 	 � N �

4.3 Non-rectangular loops
In the case of nested loops, it may occur that the max-

imum number of iterations of an inner loop depends on
the iteration number of an outer loop (i.e., non-rectangular
loops). In such situation, we would like to express the
WCET of the inner loop as a function of the loop counter of
one (or several) outer loop.

The nested loops (loop x and loop y) that enumer-
ate all the � 	 � �'
 pixels of the image that have to be analysed
are non-rectangular. The number of iterations of the loop
x depends on the value of � . In the scope-tree shown in
figure 4, non-rectangular loops are described using the ex-
ecution frequency expression � � and ��� . The � variable
is declared in scope � (its value is fixed by � �) and used
in ��� and ��� . All the values of the variable � (� � � �����) are
enumerated by the summation used in � � .

��� � � �� � � �
� � �	��
 � "!#!$

� � �
�

� � �	��
 � � ��� ��� ,�� � , �
 �
��� �	��
 � ��� �.�/
�� �

The WCET of scope % is a function of � , but the WCET
of � is not because � has been valuated by the sum used to
express � � .

�'& ()+*+* � �,'-/.�01023+46587 � �9 -;:=<?>A@CB)EDGF)6HJI � �K
-L:M<?> * B)ED F)6HJI �'N�O

(@ *+P+)+*+* �QN -)+*+* : � �, - � �9 I -R@ *+P > *+* � �K
4.4 Down-sampling

By “down-sampling” we mean executing one part of the
body of a loop less often than the rest of the body. For
instance, in the following code, the execution frequency of
B is smaller than the execution frequency of A and C. Thus,
B is down-sampled.

for(i=0;i<100;i++)
A; if(modulo(i,2)==0) B; C;

�
We want to represent the fact that we know that the max-

imum number of execution of the section of code 12-17 is
��S �TS � � �
 for each execution of scope

�
. This situation

is represented in the scope-tree by stating that the execution
frequency of � (its � expression) is relative to the scope

�
(and not to U , its direct parent).

� � ���.�/
 � �VS �WS � � �
 � �
The down-sampling of this section of code is taken into

account by moving the scope � so that it becomes a son
of

�
. This is represented by the � to X arrow in figure

5. On this example, the scope � has been shadowed and
the shadow of � (called �ZY) is added as a son of

�
. The

new link from
�

to �ZY � � �Q[is a copy of ���� and the

7

δ

β

χ

ε

α

PSfrag replacements

� �

�
�

�
�

�

�

� �

�
�

� � � �

� � � �

� � � �
	 � � �

� � � �

 � � �

×% � % !

×% # % �

% �	����� � �

% �	 [���� � �

%��	 [[

%
� ���� � �

%��� [

calc weight;...

reinit camera; Down-sampling
(� 4.4)

Mutually exclusive
paths (� 4.5)

� � � �
� � � �

* � � �
� � � �

� � � �

� shadowed

�
shadowed

� [: shadow of �

� [[: shadow of � [� [: shadow of
�

Figure 5. Restructured scope-tree of the camera example program

original link between U and � as been removed by setting
� � � �.�/
 � � .
4.5 Mutually exclusive paths

In addition to the definition of properties among scopes
in a hierarchy (i.e., defining the behaviour of a scope based
on the information of one or more of its outer scopes), there
exist cases where particular assertions have to be made on
scopes which are not linked by a parent-son relation. For in-
stance, we would like to express the fact that two “brother”
scopes are mutually exclusive, i.e., that the execution of one
scope forbids the execution of the other one and vice-versa.

Considering two mutually exclusive paths within a loop.
It would be possible to specify the number of times each
path is executed as presented in the previous paragraph. But
the scope motion offers a better solution which does not re-
quire to specify precisely the number of executions of each
path.

In our example, the reinitialisation of the camera has to
be conducted only if no black pixel has been encountered
during the image processing. Which means that the execu-
tion of the section of code 12-17 (scope �) excludes the
execution of line 31 (scope �) and vice-versa. accurately.
The relation between these two scopes can only been ex-
pressed at the level of their common parent, which is scope�

. To represent the mutual exclusion, the scope-tree is re-
structured as follows:
� A new scope, � , is defined as a son of

�
. Its WCET

is the maximum of the WCET of its sons (using the

default � and � expressions: � � � ��� and � � � �
�).

� The scope �ZY is shadowed and its shadow (called �ZY Y)

is set to be a son of � (see the X to � arrow on the
figure). This is done by defining a new link � �� [[and
removing the old one (� � �Q[�.�/
 � �).

� The shadow of � (called �ZY) is added as a son of � (�
to � arrow). The original � scope is shadowed, a new
link is built (� � � [) and the original link is removed

Note that there is still only one occurrence of scopes �
and � in the scope-tree. � Y and � Y Y are only pointers to
shadowed scopes, and �ZY Y is a pointer to pointer of shad-
owed scope.

In the end, the WCET of � (which is a part of the WCET
of
�

) is:

� �� [[�	��
 � � N � N

���
 �
� � � [�	��
 � �

� � � "! 	$# � �� [[� � �
 � � � � [��� �
&%
� "! 	 # � N � N

���
 � � � � � %
Note that to express the mutual exclusion of two scopes,

they have to be moved to become children of their common
parent. This may be impossible if a scope uses some vari-
ables which are not defined in the common parent.

More complex relationship ranging from non-reflexive
exclusive paths to forced paths and relations involving more
than two conditional constructs could also be taken into ac-
count by defining the according tree modification rules.

4.6 WCET evaluation
The bottom-up traversal of the modified scope-tree pro-

vides an equational system in which some variables (the one

8

defined by the root scope) may remain in the final solution.
The equational system obtained from the scope-tree of fig-
ure 5 is represented in table 2. The � expressions that are

equal to
�
� have been omitted to ease the reading of WCET

expressions. The corresponding maple code is shown in ap-
pendix A. � �
��� (1� �� - � �� - � & - ��� � � � [:
	 I (R*- �) - � � � [: � � I - ���� & (×� , : � �, I - �� : � I ×� , :
	 I ()+*+* 	�� :
	 I (�� .�0103?4 5 	� (� �9 - ���
��� (×� K : � �K I - � N : �'N I ×� K :
	 I (: F -R@ I 	� N :�	 I (F 	�'N�(� �� - ������ (������ : � � � : � � I�� ��� I � � � :
	 I (*��� (*
� � (1� �� - ���
� � (�� ��� : � �& � � �(I�) (1� �! - ��"
� " (�� �#� : � "$: � �$ I%� � �& I � "$:�	 I (*� � (�� �#� : � �� [[: � � I�� � �$ [: � $ I�I � �� [[:�	 I (: N - N

. 5 I 	� �$ [:
	 I (
Table 2. WCET of the camera application

As said in the previous paragraph, scope � and � have
been moved from their original positions and new � ex-
pressions (���� [, � �� [[and � � � [) have been defined and the
original frequency expressions (� � � and � ��) have been set
to 0.

We now detail the computation of the WCET of scopes� (the WCET of scope � has been expressed in the previ-
ous paragraph).

��� (*
��� (����� : * � * I (*
� N (� �� - *
��� (:=<?>A@CB)ED F) HJI � �K I -;:M<?> * B)ED F) HJI � �� I
� (:=<?>A@CB)ED"F) HJI � �K I -;:M<?> * B)EDGF)6HJI � �� I - � �9
� & ()+*+* � �, - .�01023+465 7 :M<?> * B)ED F)6HJI � �K I

-L:M<?> * B)ED F) HJI � �� I - � �9 O
Finally, knowing the WCET of each basic block of the pro-

gram, we can express the WCET of the program ,
�
�����'
 ,

using the variable N (! , (and) are some constants).

! � "! 	 # � N � N

���
*(�)

5 Conclusion and future work

The new program representation (scope-tree) that has
been presented in this paper aims at representing both the
analysed code and extra-information (data dependent num-
ber of iterations, non-rectangular loops, ...) that may be pro-
vided by the user or automatically extracted from the source
code. The most important aspects of scoped-based WCET
analysis is that it provides a way to describe relationships
between scopes which are not parents (either directly or in-
directly), and that these relationships can be defined using
variables. By representing the WCET as a symbolic ex-
pression parametrised by some variables, the WCET can be
tightened by exploiting the knowledge of the specific exe-
cution context of the analysed code.

The scoped-based WCET analysis can be seen as a
tree transformation approach in which some nested scopes
may be moved up in the tree. The bottom-up traversal of
the modified scope-tree provides a symbolic expression
of the WCET of the analysed code, i.e., an expression
parametrised by variables defined in the root of the scope-
tree.

We are currently working on the adaptation of this ap-
proach so that the assumption we made on the WCET of ba-
sic blocks (i.e., constants and independents) can be relaxed.
This will allow us to take into account some hardware fea-
tures such as caches, branch prediction and pipelines that
introduce some variability into the WCET of basic blocks
and make them depend on the previously executed basic
blocks (i.e., the execution path). The best way to provide
the necessary information as annotations in the source code
is also investigated. The annotation system should allow
the user to define scopes, scope variables, and scope expres-
sions. But it could also be used to specify new scope-tree
modification rules.

References

[1] G. Bernat and A. Burns. An approach to symbolic worst-
case execution time analysis. In 25th workshop on real-time
programming, Palma, Spain, May 2000.

[2] J. Blieberger. Discrete loops and worst case performance.
Computer Languages, 20(3):193–212, 1994.

[3] B. W. Char, K. O. Geddes, and G. H. Gonnet. MAPLE V
language reference manual. Springer-Verlag, 1991.

[4] A. Colin and I. Puaut. Worst case execution time analysis
for a processor with branch prediction. Real-Time Systems,
18(2-3):249–274, May 2000.

[5] A. Colin and I. Puaut. A modular and retargetable frame-
work for tree-based wcet analysis. In Proc. of the 13th
Euromicro Conference on Real-Time Systems, pages 37–44,
Delft, The Netherlands, June 2001.

[6] A. Colin and I. Puaut. Worst-case execution time analysis of
the RTEMS real-time operating system. In Proc. of the 13th

9

Euromicro Conference on Real-Time Systems, pages 191–
198, Delft, The Netherlands, June 2001.

[7] J. Engblom and A. Ermedahl. Modeling complex flows for
worst-case execution time analysis. In Proceedings of the
21th IEEE Real-Time Systems Symposium (RTSS00), Or-
lando, Florida, Dec. 2000.

[8] C. Healy, M. Sjodin, V. Rustagi, and D. Whalley. Bounding
loop iterations for timing analysis. In Fourth IEEE Real-
Time Technology and Applications Symposium, pages 12–
21, June 1998.

[9] C. Healy, R. van Engelen, and D. B. Whalley. A general ap-
proach for tight timing predictions of non-rectangular loops.
WIP Proceedings of the 1999 Real-Time technology and Ap-
plications Symposium, pages 11–14, June 1999.

[10] Y.-T. S. Li and S. Malik. Performance analysis of embed-
ded software using implicit path enumeration. In R. Gerber
and T. Marlowe, editors, ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Tools for Embedded Systems, vol-
ume 30 of ACM SIGPLAN Notices, pages 88–98, New York,
NY, USA, Nov. 1995. ACM Press.

[11] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min,
C. Y. Park, H. Shin, K. Park, S.-M. Moon, and C.-S. Kim.
An accurate worst case timing analysis for RISC processors.
In Proceedings of the 15th IEEE Real-Time Systems Sympo-
sium (RTSS94), pages 97–108, Dec. 1994.

[12] G. Ottosson and M. Sjödin. Worst-case execution time anal-
ysis for modern hardware architectures. In ACM SIGPLAN
Workshop on Languages, Compilers, and Tools Support for
Real-Time Systems (LCTRTS’97), June 1997.

[13] C. Y. Park. Predicting program execution times by analyz-
ing static and dynamic program paths. Real-Time Systems,
5(1):31–62, 1993.

[14] C. Y. Park and A. C. Shaw. Experiments with a program tim-
ing tool based on source-level timing schema. IEEE Com-
puter, 24(5):48–57, May 1991.

[15] P. Puschner and A. Burns. A review of worst-case execution-
time analysis. Real-Time Systems, 18(2-3):115–128, May
2000. Guest Editorial.

[16] P. Puschner and C. Koza. Calculating the maximum ex-
ecution time of real-time programs. Real-Time Systems,
1(2):159–176, Sept. 1989.

[17] P. Puschner and A. V. Schedl. Computing maximum task
execution times – a graph based approach. In Proc. of IEEE
Real-Time Systems Symposium, volume 13, pages 67–91.
Kluwer Academic Publishers, 1997.

[18] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Paramet-
ric timing analysis. In ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Tools for Embedded Systems, June
2001.

[19] S. Wolfram. Mathematica: A System for Doing Mathematics
by Computer. Addison-Wesley, Reading, MA, USA, 1988.

A WCET calculation

Notations ��� . . . � ��� Wa . . .Wz

� � � [� Fm1a
×� , � Fe �� � Ff

×� K � Fi � N � Fj � � � � Fma
� "$ � Fwv � �$ [� Fw1z � �� [[� Fm11z

Numeric WCET
Wb, Wc, We, Wg, Wi, Wk, Wm, Wn, Wp, Wr, Ws, Wu, Ww and
Wx represent numeric values.

Maple code and results
Wa := Wb + Wc + Wd(N) + Wo + Wt + Fm1a(Wm) +
Wz(N):
Fm1a := (a) -> 0;

Wd := (N) -> Fe(N,We) + Ff(N,Wf(N,y)):
Wf := (N,y) -> Wg + Wh(N,y):
Wh := (N,y) -> Fi(N,y,Wi) + Fj(N,y,Wj(N,y)):
Wj := (N,y) -> Wk + Wl(N,y):
Wl := (N,y) -> max(Fma(Wm),Wn):
Wn := 0:

Fe := (N,a) -> Ff(N,a) + a:
Ff := (N,a) -> sum(a,y=0..199):
Fi := (N,y,a) -> Fj(N,y,a) + a:
Fj := (N,y,a) -> (640 - 2*floor(y/2))*a:
Fma := (N,y,a) -> 0:

Wo := Wp + Wq:
Wq := max(Wr,Ws):

Wt := Wu + Wv:
Wv := max(Fwv(Ww) , Wx):
Wx := 0;

Fwv := (a) -> 0:

Wz := (N) -> max(Fm11z(N,Wm) , Fw1z(Ww)):

Fw1z := (a) -> a:
Fm11z := (N,a) -> (N+N/10)*a:

Wd(N);

=> 201 We + 200 Wg + 108400 Wi + 108200 Wk}

Wz(N);

=> 11
=> max(Ww, -- N Wm)
=> 10

Wa;

=> Wb + Wc + 201 We + 200 Wg + 108400 Wi + 108200 Wk
=>
=> 11
=> + Wp + max(Wr, Ws) + Wu + max(Ww, -- N Wm)
=> 10

10

