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Abstract   This paper looks at possible applications of Field Programmable Gate 
Arrays (FPGAs) within the safety critical domain. We examine the potential bene-
fits these devices can offer, such as parallel computation and reconfiguration in 
the presence of failure and also the difficulties which these raise for certification. 
A possible safety argument supporting the use of basic reconfiguration facilities of 

PGA to remove Single Event Upsets (SEUs) is presented. We 
echnique which has the potential to be used to identify areas 

which are sensitive to SEUs in terms of safety effect, thus allowing optimisation 

a reprogrammable F
also demonstrate a t1 Introduction  

of an FPGAs design and supporting our argument. Programmable logic devices such as FPGAs are being increasingly used in the 
high-integrity and safety-critical domains. However, at present there is a lack of 
consensus of how FPGAs can be safely deployed and certified. One issue is 
whether the device should be treated as hardware or software during the certifica-
tion process. Another issue is the difficulty in determining the safety effect of Sin-
gle Event Upsets, leading to cautious and pessimistic design decisions. In addition, 
advanced features of FPGAs such as parallelism and reconfiguration in the pres-
ence of failure (available on some of the devices) are not being fully exploited. 
This paper aims to highlight and discuss some of these difficulties and offers po-
tential solutions, either using existing methods or via further research. 

This paper is laid out as follows: Section 2 provides an overview of FPGA fea-
tures and possible scenarios for use, Section 3 describes safety and certification is-
sues relating to FPGA use, Section 4 presents fragments of a safety argument for 
the use of cell scrubbing (the most basic form of reconfiguration) and a failure 
analysis technique which can be used to support that argument, Section 5 presents 
related work and Section 6 presents conclusions. 

2 Overview of FPGA Features 

There are numerous different types of FPGA currently available from many manu-
facturers. In order to avoid confusion this section describes what is meant by the 
term FPGA for the purposes of this paper. An FPGA is a programmable logic 
board. At its heart it may have hundreds of thousands of individual logic cells, 
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which can be connected and programmed to perform many different computa-
tional tasks. Data is typically input and output via I/O blocks on the edge of the 
cells (see Fig. 1).  Some FPGAs employ Antifuse devices on interconnects, and 
some use Static random access memory (SRAM). Antifuse routing devices can 
only be programmed once, whereas SRAM is reprogrammable. Antifuse devices 
are smaller, and so offer more routing flexibility than SRAM. They are also less 
susceptible to Single Event Upset (SEU) failures (Nallatech Ltd. 2002). However, 
any errors that occurred during configuration cannot be fixed in an Antifuse de-
vice and the logic cells are still at risk from SEUs. 
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Fig. 1. Simplified example of FPGA physical architecture. 

Some FPGAs may include additional dedicated devices such as static memory, 
multipliers and even traditional sequential microprocessors. This assists with tasks 
that the FPGA hardware is not well suited for. It also means that an FPGA can be 
used for multiple tasks (e.g. using the microprocessor for one system and the 
FPGA logic cells for another), thus reducing overall requirements for equipment, 
power and also costs. 

In order to configure an FPGA, a developer must first produce an electronics 
hardware description written in a high level Hardware Description Language 
(HDL) (such as Handel-C and VHDL). This is converted into a synthesizable form 
(e.g. a netlist) which will then be transformed by place and route algorithms to de-
termine how it will be configured on the FPGA. Note that the term ‘programming’ 
is sometimes used to describe the FPGA configuration/re-configuration process 
even though the code is different in nature. [0]Obviously, issues such as source 
level design, coding and testing need to be considered for the HDL development 
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process, but most software practices are oriented towards traditional sequential 
programming. HDL descriptions will need to be treated differently in some in-
stances, e.g. when considering reasonable coverage metrics for a concurrent pro-
gram. 

2.1 Possible Applications of FPGAs 

There are many possible uses for an FPGA within a safety critical system. Rather 
than attempt to enumerate all of these, this section lists some templates of use, and 
some different approaches to the design and configuration of FPGA devices. 
These are used as a basis for discussions of the potential benefits of FPGAs, con-
sequential certification issues and possible solutions. Note that all these designs 
could be used in combination with one another, for example IP Cores could be 
used within a highly configurable monitoring device. A further list of possible 
uses of FPGAs can be found in (Nallatech Ltd. 2002). 

2.1.1 Monitoring System 

One possible use of an FPGA is as an external monitoring device. For example, 
the FPGA might monitor the output from a sensor or an application for anomalies.  
It could also act as a voting unit for a multi-lane application. One advantage of this 
is that it is conceptually different to a traditional microprocessor so will have dif-
ferent failure characteristics to it, thus avoiding some common mode failures.  

If an FPGA is used in this way then there are some obvious considerations, 
such as the failure rate or trustworthiness of the device (who monitors the moni-
tor? Is it trusted to take full authority?) and who it should report a failure to.  

2.1.2 Legacy Device Simulation 

Another possible use of an FPGA is to simulate a legacy micro-processor. This 
means certified applications and code originally written for an older processor 
which can no longer be sourced can still be used. Obsolescence is a particular is-
sue in the aviation industry where it can be extremely costly and complex to cer-
tify and retrofit a new system. Potentially, new applications could also be written 
for the simulated processor.  

However, there are some potential issues with simulation. For example, whilst 
the execution timing will be predictable it may be slower or different to the origi-
nal. Also, an FPGA implementation will have different failure characteristics to 
the original, and be particularly susceptible to SEUs. 
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2.1.3 Highly Parallel Calculations 

FPGAs are by their nature able to perform many parallel computations. This 
makes them ideally suited for certain types of calculations such as fast Fourier 
transforms (Choi et al. 2003), at which they perform better than alternatives run-
ning on traditional processors (Bondhugula et al. 2006). However, by increasing 
parallelism, power dissipation is also increased. Therefore methods such as those 
in (Choi et al. 2003) have been developed in order to try and reduce this.  

Another possible form of parallel computing is to have multiple applications 
running on the device, either within the logic cells or by using the extra peripheral 
de

cross con-
tamination of data and other interference in accessing shared resources. 

2.1.4 Reconfigurable Applications 

ten-
tially increase the robustness of a system to failure and hence enhance safety.  

2.1.5 ASIC Replacement 

r example is given in 
(K

vices for other applications.  
Both of these uses of an FPGA can cause difficulties for a safety analyst. In 

terms of failure analysis of a single application with multiple threads potentially 
running on different types of hardware there are concerns about data and clock 
synchronisation, as well as some issues of overall complexity. In addition, if mul-
tiple applications are sharing the device an analyst will need to consider 

Another aspect of FPGAs is that some are re-configurable both prior to operation 
and during operation (unless they are Antifuse devices). Much research has been 
undertaken into exploring different types of reconfiguration e.g. (Hanchek and 
Dutt 1998, Emmert et al. 2000). These papers have a common aim – moving 
and/or changing the connections between logic cells in order to avoid a broken 
connection or cell. Many different methods have been proposed with various 
trade-offs required, such as some cells being set aside as backups and the main 
functions being paused (missing cycles), if reconfiguration takes place during op-
eration. Despite these disadvantages, using dynamic reconfiguration can po

One other use of FPGAs is as an alternative to designing and manufacturing an 
Application Specific Integrated Circuit (ASIC). An ASIC chip is custom designed 
for a specific purpose. Using an FPGA in this way is cheaper than manufacturing 
bespoke chips if only a small volume of chips is required. It is also quicker to pro-
duce a working system. One example of this type of use is bespoke processor de-
sign such as that described in (Glavinic et al. 2000). Anothe

umar et al. 2006) for a low-cost cipher breaking system.  
An FPGA suffers from different failures to an ASIC (it has more circuits which 

are sensitive to SEUs – see section 3.1). This may be beneficial (as a conceptually 
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different implementation) or disadvantageous (the FPGA may not be as tolerant to 
certain environmental conditions as an ASIC). A further downside is that the 
FPGA will be significantly slower than a dedicated ASIC.  

2.1.6 Use of IP Cores 

design, and analysis required to ensure un-
wanted functionality is not triggered. 

3 FPGA Safety Analysis and Certification 

on-
sequence of exploiting potential benefits). We also suggest possible solutions. 

3.1 Single Event Upsets 

 activated. A categorisation of SEUs can be found in (Graham et al. 
20

porarily interrupt the normal operation of an FPGA, and Single Event Transients 

Semiconductor Intellectual Property Cores (IP Cores) are reusable units of circuit 
design. These can be used in multiple designs and have the advantage that they 
provide Off The Shelf (OTS) solutions for many common functions. However, 
like all OTS solutions there are some disadvantages. Whilst the IP Core netlists 
are provided, they can be too large to easily assess for failures or unwanted behav-
iour. Also the IP Core may not provide the exact functionality required leading to 
additional work to integrate it into a 

The previous section described how FPGAs are configured and gave multiple ex-
amples of how they may be deployed, summarising some of the related pros and 
cons. This section discusses in more detail difficulties that may be encountered 
when attempting to certify and analyse an FPGA (some of which are a direct c

Single Event Upset (SEU) is the term used to describe a temporary flip in the state 
of a logic cell. It can be caused by events such as a burst of radiation or by other 
more gradual physical failures e.g. corrosion (Isaac 2004). A cell affected by an 
SEU will require resetting or reconfiguring to return it to the desired state. An ex-
ample of an SEU might be that one configuration bit for a multiplexer is flipped 
from 0 to 1. This would mean that the wrong mux output is selected, leading to 
many possible issues such as the incorrect output at the board level. Another ex-
ample might be an SEU within a 4 input LUT. In this situation the incorrect value 
will only be output for one particular combination of inputs. Thus the error may 
never be

03).   
A permanent state error in a logic cell is known as a Single Event Latchup 

(SEL), this could be fixed by a power cycle or may ultimately be permanent. Two 
other events of concern are Single Event Functional Interrupts (SEFI), which tem-
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(SET), which are brief voltage pulses which may have the same effect as an SEU 
but the cells revert to their desired state without intervention.  

In most cases it is impractical to manually analyse the effect of a single event 
of any type within an FPGA due to the complexity and size of its internal struc-
ture. As a result safety analysis is often performed only on the inputs/outputs of 
the board and techniques and pessimistic approaches, such as Triple Modular Re-
dundancy (TMR), are used to mitigate against possible failures and their effects. 
This is expensive in terms of cost, weight and power and may not even be neces-
sary if the effects are limited (Graham et al. 2003). Therefore, if the impact of an 
SEU can be more effectively managed (either through better safety analysis or 
reconfiguration) there are potential savings. In addition it may be possible to use 
FPGAs for more critical systems.  

3.2 Related Standards and Guidance 

It is assumed that if an FPGA is to be used in a safety-critical or safety-related sys-
tem (e.g. automotive, manufacturing, military, or avionics) it will be, at the very 
least, subject to some safety analysis to determine how it could contribute to sys-
tem hazards. Depending on the domain it may also need to be approved or certi-
fied prior to use. One difficulty with an FPGA is determining which guidance or 
standards are most appropriate to help with this, as it combines both electronic 
hardware and software features. Therefore guidance for hardware will address is-
sues such as hardware reliability and vulnerability to environmental factors, but 
guidance for software development may be needed to address the depth of rigour 
needed during the FPGA configuration and design process. A recent online dis-
cussion between experts came to no consensus on this issue (HISE Safety Critical 
Mailing List 2008). 

3.2.1. 00-56 (Issue 4)   

The U.K. defence standard 00-56 (Ministry of Defence 2007) provides guidelines 
for managing safety in military systems. The most recent version of this standard 
requires that an As Low As Reasonably Practicable (ALARP) approach be taken 
when reducing the risks associated with a safety related and safety critical system. 
This involves identification of hazards, assessment of their risk and identification 
of appropriate strategies for risk reduction which are commensurate with that risk. 
It also requires that a safety case be developed which presents an argument and 
evidence that safety requirements have been met.  

However, as discussed in the previous section the application of common man-
ual techniques for identification of hazardous failures (such as Failure Modes and 
Effects Analysis (FMEA)) to an FPGA is impractical. Hence the risk of some fail-
ures may be over estimated. Some internal analysis is highly desirable in order to 
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determine the effect of internal failures. A possible method for performing an 
FMEA style analysis internally to an FPGA is discussed in section 4. Associated 
with this is the need to link identified failures back to the system level. 

3.2.2 IEC 61508  

IEC 61508 (IEC 2000) is a general standard which applies to programmable elec-
tronics and electronic devices.  Section 2 of the standard is dedicated to hardware, 
whilst section 3 concentrates on software. Both these sections are applicable for an 
FPGA, which means that the configuration design process, and all related tools 
will be subject to the same scrutiny as would be expected for the development of 
normal software.  

3.2.3 DO-254/DO178B 

DO-254 (RTCA/EUROCAE 2000) provides guidance on Design Assurance of 
Airborne Electronic Hardware. DO-178B (RTCA/EUROCAE 1992) provides 
guidance purely for design assurance of software. These standards are listed to-
gether here as, from discussions with industrialists, both are being used to assist in 
the certification of FPGAs within military systems. They are used either in con-
junction or separately. There are two problems with this. Firstly, there is no con-
sensus as to the most appropriate guidance to use, or combination thereof. Sec-
ondly, these are often used (in the authors’ opinion) erroneously in the assumption 
that they are appropriate replacements for the now superseded military standard 
00-54 (Ministry of Defence 1999) which applied to programmable electronics. 
The idea behind their use is to support a 00-56 style safety case with evidence 
gathered using the recommended processes in the DO-254/DO-178B guidance. 
However, using these standards would not assist with the ALARP risk assessment 
process required by 00-56. The DO-254 and DO178B Design Assurance Level 
(DAL) assignments are based on assessments of affect to the workload on flight 
crew and to the safety of occupants (passengers), generally an inappropriate as-
sessment for a military situation. The level of rigour and processes applied to the 
software/hardware is based on the DAL. Therefore, at the very least, a reinterpre-
tation of the DAL assignment guidance would be needed to help satisfy 00-56 re-
quirements. 

3.2 Tools and Languages 

As discussed earlier, the tools used during the FPGA configuration process will 
need to be demonstrated to be fit for purpose. Section 2 described the process used 
to turn an HDL file into a configuration file for use on an FPGA. The tools used to 
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convert the HDL into a netlist are comparable to a compiler in how they behave, 
therefore compiler guidance is applicable.  

Place and route tools take the netlist and will link sections together in order to 
meet particular performance criteria. This can mean a lot of trade-offs between 
different criteria such as power dissipation, timing, and the ability to reconfigure 
certain sets of cells. It is difficult to provide a single re-usable argument to demon-
strate that the algorithms used for place and route will always provide an optimal 
solution, since techniques such as Genetic Algorithms (GAs) can be used. These 
will attempt to meet a set of criteria (described as a fitness function) and use ran-
domisation during their application. They are designed to simply reach a solution, 
rather than the best solution. Hence an approach for demonstrating the place-and-
route has been applied successfully would be to demonstrate that the output is ac-
ceptable on a case by case basis. This can be done statically by resource analysis, 
using well established methods. 

Depending on the behaviour or trustworthiness of the compiler or language it 
may be necessary to make restrictions on HDL constructs used, similar to a pro-
gramming language subset. One aspect to this is to avoid certain coding constructs 
which may be ambiguously defined in the language standard and hence there is no 
guarantee of how a compiler will behave when it is used. Another aspect is to 
avoid constructs which are often the cause of errors, for example using an assign-
ment statement in an ‘if’ statement, using dynamic memory, or using a variable 
before it has been initialised. Further examples of features which make verifica-
tion difficult can be found in (Ada HRG Group 1998), this study led to subsets 
such as SPARK Ada and Ravencpar, and many of the findings are relevant to 
HDL constructs. 

Some work on HDL restrictions has been undertaken e.g. (Stepney 2003, Isaac 
2004) but these are not routinely being used during FPGA development. The Alli-
ance CAD tool, which uses a VHDL subset, has been used to design a predictable 
hard real-time processor (Glavinic et al. 2000). This tool was said by the authors 
to significantly impact on the way they had to design and implement their soft-
ware. Therefore it would seem there are legitimate concerns as to how the use of a 
sub-set would impact FPGA development. 

3.3 Lack of Exploitation 

Section 2 listed some of the potential uses and benefits of FPGAs. Unfortunately 
some of these are not being exploited fully due to difficulties during certification. 
This paper concentrates mainly on the ability to reconfigure an SRAM based 
FPGA when a failure such as an SEU or broken interconnect is found. This is 
potentially very powerful, as the safety of the containing system could be better 
guaranteed, e.g. even in inhospitable conditions which lead to an increased risk of 
SEUs such as high altitude. There are a few difficulties with using it in a safety-
critical device though. First, certification guidance tends to recommend analysis 
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processes which are suitable only for a static configuration, i.e. it is assumed that 
the structure and layout of the logic cells does not change. There is a (reasonable) 
fear that re-arranging the interconnects or moving logic to different cells would 
mean performance requirements are no longer met and potentially hazardous 
failures are introduced. Second, during a reconfiguration the output from the 
FPGA device may be interrupted, at least for portions of the device, thus 
potentially interupting a stream of safety critical data. Finally, once a 
reconfiguration has taken place there is an issue of ensuring the restarted 
application is in sync with current input data and other lanes.  

There are a few possible ways to ensure safe operation whilst still using 
reconfiguration. First, reconfiguration need not necessarily mean complex 
reconnections and movements of cells. At the most basic level ‘scrubbing’ can be 
used, in other words resetting and reloading an FPGA with the same data to ensure 
SEUs are removed. A combination of scrubbing and TMR, in which only one lane 
at a time is scrubbed, can provide an uninterrupted service whilst also protecting 
against SEUs (Garvie and Thompson 2004). Another alternative is that only a few 
different static configurations are permitted to be used, and each of these is 
analysed separately, as is the reconfiguration process. However, given that it is 
currently difficult to analyse a single configuration internally this may be time 
consuming. The semi-automated technique discussed in section 4 provides one 
potential method to assist.  

Finally, the incidence rate of SEUs needs to be addressed. In terms of 
estimating the occurrence of SEUs, a sceptical approach is suggested by (Isaac 
2004): ‘As a general rule, the System Safety Engineer should assume these devices 
only have a reliability of 1x10-4

 (best case from a safety viewpoint) when 
performing safety analyses. If this is not assumed, then the higher reliability num-
ber (e.g. 1x10-24) will be used by program management’. However, this is based 
on the difficulty in assessing the effect of an SEU, and as discussed in section 3.1, 
an SEU may not cause a failure or have a safety effect even if it occurs. If better 
analysis and more mitigating strategies during coding were available a pessimistic 
stance may not be required. It is of note that work such as (Kowalski et al. 2005, 
Morgan 2006) has shown that the incidence of SEUs in trials is relatively low. 

4 Possible Solutions 

 
used to assess the affects of SEUs, thus underpinning one strand of the argument. 

This section first describes a safety argument fragment which could be used to 
demonstrate that scrubbing cells to mitigate against SEUs is acceptably safe 
within a suitable system. Then we describe the type of analysis which could be
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4.1 Safety Argument for SRAM FPGA Scrubbing 

Section 3.3 noted that there is a lack of exploitation of the reconfiguration ability 
of SRAM FPGAs (Antifuse FPGAs do not support this). Reconfiguration can 
range from simple scrubbing (resetting of logic blocks) to complex on the fly al-
terations of interconnects and movement of logic. This paper only examines the 
former as a starting point for exploitation, but a future aim is to look at complex 
reconfiguration due to its potential for providing greater safety support, particu-
larly in situations where a system is in a highly degraded state, e.g. due to battle 
damage. 

A top level argument fragment is shown in Fig. 2 (expressed using the Goal 
Structuring Notation (GSN) (Kelly 1998)) in order to set the context. Items in the 
argument which are yet to be defined are represented in curly braces {}. The top 
level goal is fairly typical (SysSafeGoal) and states that the system containing 
the FPGA is acceptably safe. The argument has then been divided based on the 
system architecture, i.e. each component in the system is examined in turn for its 
contribution to hazards (StratArchDirected). The overall combination of effects 
is examined, e.g. for unanticipated interactions which could undesirable effects 
(GoalSumParts). It is assumed that a list of hazards, a definition of acceptably 
safe and appropriate safety guidance have all been determined for System {X} 
(ContHaz, ContAccSafe, ContGuidance). The FPGA contribution has been 
partially instantiated (FPGAContrib), all other items are yet to be defined  
(GoalItemI). 

 
SysSafeGoal

System {X} containing 
FPGA is acceptably safe

StratArchDirected

Examine contribution to 
hazards of each system item 
in turn, then ensure 
combination is safe

ContGuidance

 Using guidance 
{G} and analysis

ContAccSafe

Definition of 
acceptably safe

ContHaz

List of system 
hazards {H}

GoalItemI

Item {I} contribution to 
system hazards {H} is 
acceptbly safe

GoalSumParts

Combined effects of system items 
mean system hazards {H} are 
sufficiently mitigated and no new 
hazards or undesirable effects are 
introduced

FPGAContrib

FPGAs contribution to 
system hazards {H} is 
acceptably safe
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Fig. 2. Top level argument. 

FPGAReconfigSEU

Effect and incidence of 
SEUs is acceptably safe

FPGASEL

Existing SELs (permanent faults) 
have been detected prior to FPGA 
deployment and have been 
avoided during place and route

SEUSigDet

Significant SEUs (i.e. those 
with safety effect) have been 
determined

SEUOnlineDet

Locations affected by 
significant SEUs are monitored 
online.

SEUScrubTolerance

System can tolerate SEU 
between time of incidence 
to time of fix.

ScrubSafe

Scrubbing routine is 
acceptably safe

SELNew

New SELs (permanent faults) occur 
with acceptable incidence rate, are 
reported and process is in place to 
mitigate against their effect

 
Fig. 3. Argument Fragment for FPGA Scrubbing.  

Fig. 3 shows a safety argument fragment arguing that the incidence and effect of 
SEUs is sufficiently low in the FPGA (FPGAReconfigSEU). This would be part 
of the FPGA contribution thread of the overall argument. The definition of ‘suf-
ficiently safe’ would be based on a combination of the probability of the SEUs 
occurring and ensuring that the effect of those that did occur was limited. For ex-
ample, it could be shown that the effect of an SEU was to only contribute to a haz-
ard which had been categorised with a low safety effect, or it could shown that an 
SEU which could contribute to a hazard graded highly (e.g. catastrophic) would be 
quickly detected and removed. At present board level analysis means that the 
worst possible effect of an SEU must be assumed. This argument attempts to dig 
deeper and look at the internal behaviour of the FPGA, theoretically supporting a 
higher confidence in its dependability. Internal safety analysis opens the possibil-
ity of optimising the FPGA logic design to mitigate only against significant SEUs. 

The first sub-goal states that existing permanent SELs are detected prior to 
FPGA deployment and are avoided during place and route (FPGASEL). Since 
they are permanent they can be identified offline.  

The goal SEUSigDet states that significant SEUs are detected prior to de-
ployment. In other words the FPGA configuration has been examined in order to 
determine where an SEU could cause a safety effect. A possible method for doing 
this is shown in section 4.2.  

The goal SEUOnlineDet states that those locations which could be adversely 
affected by an SEU are actively monitored for errors during operation. There are 
numerous methods for detecting an SEU online. For example, in (Zarandi et al. 
2007) the authors describe a method for detecting LUT SEUs using error detection 
and correction codes; this would impact on the complexity of the logic design 
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however. Another common method is to use replication (e.g. TMR) and compare 
results. As discussed earlier, TMR can be a crude and expensive method for miti-
gating against SEUs, hence our suggestion that detection is only targeted at areas 
of concern. Similarly, if the design has to be made more complex in order to de-
tect SEUs it would be sensible to only apply design changes on areas of concern. 
Note also that SEU significance would need to be re-assessed on any altered logic, 
i.e. throughout the design process. 

The goal SEUScrubTolerance refers to the ability of the system to cope 
with an SEU from the time of its occurrence until it is fixed. This includes opera-
tion from the moment the SEU occurs, its detection, and also a pause in operation 
whilst the scrubbing routines are run. Note beneath this goal there would need to 
be evidence of an assessment of the likelihood of SEUs offset against the time 
taken to fix it.  

The goal ScrubSafe examines the scrubbing mechanisms and ensures they 
are acceptably safe. In other words, the scrubbing routines do not introduce further 
faults and do remove SEUs.  

Finally, it is possible for a SEL to develop in an FPGA system after deploy-
ment (SELNew). If one is discovered (either during operation or during a mainte-
nance check) then a new logic configuration may be required in order to avoid it, 
i.e. a new place and route. At present we assume that this type of reconfiguration 
would be determined offline, even though in principle reconfiguration could be 
used online. As the argument stands, evidence supporting FPGASEL, 
SEUOnlineDet and SEUSigDet would need to be renewed if new permanent 
faults were found, but the other strands of the argument should not be affected.   

One concern is that a SEL develops and the FPGA repeatedly runs scrubbing 
routines to no effect, interrupting operation. In addition it is possible that a SET 
could trigger the scrubbing routines unnecessarily. The monitor system could be 
optimised to detect these issues, although there is the concern that this could also 
be affected by an SEU! 

It is possible that no significant SEUs are found. In this ideal situation no 
scrubbing routines would be required, and hence the related goals would not be 
needed. 

4.2 Failure Analysis of FPGA circuits 

This paper has advocated the use of internal analysis of an FPGA in order to de-
termine the safety impact and significance of SEUs, however the internal logic of 
a configured FPGA is extremely large and complex. One semi-automated method 
of performing safety analysis which may assist is FPTC. This technique annotates 
design components with failures and assesses how they affect other components 
(Wallace 2005). Each component can either be a source of a failure, propagate a 
failure (i.e. pass it on), transform a failure (e.g. a late failure on input may lead to 
an omission on output), or be a failure sink (i.e. it has no output effect). In order to 
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use this method each component has to be considered in turn as to how it would 
respond to a set of input failures, which failures it can ignore and which failures it 
can generate (note that it is up to the analyst to determine the appropriate level for 
dividing the design into components.). This part of the process cannot be ani-
mated. However, once the failures are known these can be fed into a tool which 
will calculate the flow of failures and hence it can be shown how they will affect a 
design. The analyst can use these results to assess the acceptability of a design and 
alter it if necessary. Full failure annotations will only need to be generated for any 
new or altered components.  

4.1.1 FPTC Example 

As a simple example consider a latch with a clock (flip flop) as shown in Fig. 4. 
These items are found within all FPGAs. The latch has two inputs, the clock signal 
(clk) and d0 (a binary value), and the output q is set to the value of d on the clock 
signal. 

d_latchd0 d

clk
q

Comment 

clk
 

Fig. 4. Latch example. 

The following table describes how the latch could be broken down into compo-
nents for FPTC and shows their respective failures. Once this assessment has been 
undertaken, the results for each component need to be converted into the correct 
format for the FPTC tool.  
Table 1 FPTC Latch Example Components and Failures 

Item Failures 
d0 Value, * The value of d0 may be either correct (indicated by a *) or 

incorrect. 
clk Early, Late, * ignal may arrive early or late or at the correct 

d_latch Value, Stale_value, * ponds to the value of q in Fig. 4. If the value of 
-

Sink 

The clock s
time. 
This corres
d0 is incorrect then this will be propagated to the latch out
put. More interestingly, if the clock signal is late then q may 
not have been updated by the time it is read and hence the 
transformed failure is “stale_value”. If the clock signal is 
early then it is possible that d0 will not have been updated 
and hence the failure is also “stale_value”. 

None This has been added as an end point for the tool. 
 
The format for th ig. 5. On the 

and f both expressio s that no 
ilure is expected on the input, i.e. d0 is a failure source. On the right hand side 

e FPTC failures attached to item d0 is shown in F
left h side o ns is a set of empty brackets, this indicate
fa
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one expression lists the value fault and the other lists no fault (expressed by an as-
terisk). More sophisticated annotations can be used if multiple faults are expected. 

 

() -> ({fault value}), ()->({*})  
Fig. 5. FPTC annotations for d0. 

 

ch example in the FPTC Tool. 

Figure 6 shows each component and their respective failure transformations and 
propagations using an FPTC tool developed in the Eclipse modelling framework 
(Paige et al. 2008). Each component shows its failure annotations, with the 
resultant output failures in italics at the bottom. The failure types are fully custom-
isable by the analyst, but it is up to them to ensure that each possible recipient 
component has a match to an input failure as the tool provides no warnings at 
present (it is perhaps debateable as to whether it should). 

4.1.2 Scaling the Analysis 

In the simple example in section 4.1.1 the only output failures were stale_value 
and value, as we would expect, and the analysis is of limited use. However, the 
value of this technique is its scalability and when more complex networks of com-
ponents are linked together the results are much more difficult to predict manu-
ally. Each logic cell in an FPGA is identical in terms of architecture, although 
once configured dif ple, the LUT in a cell 
may be configured t ), and the inte

ation file. There are a lim-
ach can be performed in 

 itself) and running it on a proposed 
reconfiguration. Obviously, there are many caveats with such an approach, not 

tomate a trustworthy assessment of adequate safety.  
how to ensure safe operation during the time 

Fig. 6. Screenshot showing the lat

ferent behaviours are offered. For exam
o perform a different operation (e.g. AND/OR r-

connects will be configured based on the input configur
ited number of operations though, and failure analysis of e
isolation and then automatically linked together based on a particular FPGA con-
figuration file. It is then possible to follow the failure effect of an SEU from its 
original location to an output source, and hence assess its safety effect. We are 
currently working on implementing this functionality. 

One further use of FPTC could be to use it to automatically assess multiple 
configurations, either offline or to dynamically assess a proposed reconfiguration 
online. This would work by embedding the FPTC functionality into the system 
containing the FPGA (perhaps onto the FPGA

least of which being how to au
There are other issues too such as 
taken to run the assessment, particularly if multiple possible reconfigurations are 
rejected. Therefore, whilst this is a possibility, it is unlikely at present. Instead we 
anticipate that this technique would be of use to a safety analyst during the design 
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process and to assess offline reconfigurations, such as those needed to avoid per-
manent short/open circuits that have developed during the FPGAs operational de-
ployment (SELNew in our safety argument). 

5 Related Work 

This section briefly describes some existing methods which are used detect SEUs 
and assess their significance. We compare these with our approach. 

In (Sterpone and Violante 2005) the authors use a graphical tool which shows 
which cells can be affected by an SEU. They then compare this with a TMR archi-
tecture (the redundancy is via circuits replicated on the same FPGA) to determine 
if the SEU can affect more than one lane. If it can then it is assumed to be signifi-
cant. The authors note that ‘the choices done during place and route operations 
influence greatly the impact of SEUs affecting the FPGAs configuration memory‘. 
Our proposed FPTC analysis approach differs from theirs in that the safety effect 
of an SEU will be determined, rather than simply assuming it leads to undesired 
behaviour. It is also applicable to different architectures (not just TMR). 

Emmert et al. describe ‘Roving STARs’ (Self-Test Areas) which robustly 
check for latchups (Emmert et al. 2000). They reconfigure the FPGA cells around 
any latchups detected and by moving the STARs around during operation they can 
cover the entire FPGA. However, this technique only detects permanent errors 
(rather than SEUs) and all latchups are avoided once found, hence it is pessimistic. 
The testing technique described would be suitable for supporting the goal 

y argument. 
r examining the effects of SEUs is via fault injection and 

testing, i.e. a configured and correctly operating FPGA file has a bit flip inserted 

with a correct 
co

Th

tion and the effects of SEUs. We presented a safety argument fragment demon-

FPGASEL in our safet
Another method fo

to simulate an SEU and the effects are observed. An example of this can be found 
in (Graham et al. 2003) where the authors used two FPGAs, one 

nfiguration file and one with a file with a fault injected. Both were executed and 
the results compared. Where results differed they determined the altered bit to be 
SEU sensitive. Again, there is a problem here that these results are very pessimis-
tic and do not assess the safety effect of the SEU.  

6 Conclusions  

is paper has described a number of different possible applications of FPGAs 
within safety critical systems, and also described some of the potential benefits 
they can offer. It has also discussed some of the difficulties which can be encoun-
tered when certifying a system containing an FPGA, particularly if they are using 
some of its advanced features. The paper has focussed on the issue of reconfigura-
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strating how FPGA scrubbing could be used to mitigate against significant SEUs. 
This is the most basic form of reconfiguration available on certain SRAM FPGAs. 
M

timisation of the FPGA design 
and configuration to mitigate against SEUs only where necessary. This potentially 
could lead to various savings in terms of cost, weight and resource usage (e.g. less 

equired . However, the research is currently in its early stages. 
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